| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039 |
- # ##########################################################
- # FlatCAM: 2D Post-processing for Manufacturing #
- # File Author: Marius Adrian Stanciu (c) #
- # Date: 4/23/2019 #
- # MIT Licence #
- # ##########################################################
- from PyQt5 import QtCore
- from appCommon.Common import GracefulException as grace
- from shapely.geometry import Polygon, LineString, MultiPolygon
- from copy import copy, deepcopy
- import numpy as np
- import re
- import logging
- log = logging.getLogger('base')
- class PdfParser(QtCore.QObject):
- def __init__(self, app):
- super().__init__()
- self.app = app
- self.step_per_circles = self.app.defaults["gerber_circle_steps"]
- # detect stroke color change; it means a new object to be created
- self.stroke_color_re = re.compile(r'^\s*(\d+\.?\d*) (\d+\.?\d*) (\d+\.?\d*)\s*RG$')
- # detect fill color change; we check here for white color (transparent geometry);
- # if detected we create an Excellon from it
- self.fill_color_re = re.compile(r'^\s*(\d+\.?\d*) (\d+\.?\d*) (\d+\.?\d*)\s*rg$')
- # detect 're' command
- self.rect_re = re.compile(r'^(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s*re$')
- # detect 'm' command
- self.start_subpath_re = re.compile(r'^(-?\d+\.?\d*)\s(-?\d+\.?\d*)\sm$')
- # detect 'l' command
- self.draw_line_re = re.compile(r'^(-?\d+\.?\d*)\s(-?\d+\.?\d*)\sl')
- # detect 'c' command
- self.draw_arc_3pt_re = re.compile(r'^(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s(-?\d+\.?\d*)'
- r'\s(-?\d+\.?\d*)\s*c$')
- # detect 'v' command
- self.draw_arc_2pt_c1start_re = re.compile(r'^(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s*v$')
- # detect 'y' command
- self.draw_arc_2pt_c2stop_re = re.compile(r'^(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s*y$')
- # detect 'h' command
- self.end_subpath_re = re.compile(r'^h$')
- # detect 'w' command
- self.strokewidth_re = re.compile(r'^(\d+\.?\d*)\s*w$')
- # detect 'S' command
- self.stroke_path__re = re.compile(r'^S\s?[Q]?$')
- # detect 's' command
- self.close_stroke_path__re = re.compile(r'^s$')
- # detect 'f' or 'f*' command
- self.fill_path_re = re.compile(r'^[f|F][*]?$')
- # detect 'B' or 'B*' command
- self.fill_stroke_path_re = re.compile(r'^B[*]?$')
- # detect 'b' or 'b*' command
- self.close_fill_stroke_path_re = re.compile(r'^b[*]?$')
- # detect 'n'
- self.no_op_re = re.compile(r'^n$')
- # detect offset transformation. Pattern: (1) (0) (0) (1) (x) (y)
- # self.offset_re = re.compile(r'^1\.?0*\s0?\.?0*\s0?\.?0*\s1\.?0*\s(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s*cm$')
- # detect scale transformation. Pattern: (factor_x) (0) (0) (factor_y) (0) (0)
- # self.scale_re = re.compile(r'^q? (-?\d+\.?\d*) 0\.?0* 0\.?0* (-?\d+\.?\d*) 0\.?0* 0\.?0*\s+cm$')
- # detect combined transformation. Should always be the last
- self.combined_transform_re = re.compile(r'^(q)?\s*(-?\d+\.?\d*) (-?\d+\.?\d*) (-?\d+\.?\d*) (-?\d+\.?\d*) '
- r'(-?\d+\.?\d*) (-?\d+\.?\d*)\s+cm$')
- # detect clipping path
- self.clip_path_re = re.compile(r'^W[*]? n?$')
- # detect save graphic state in graphic stack
- self.save_gs_re = re.compile(r'^q.*?$')
- # detect restore graphic state from graphic stack
- self.restore_gs_re = re.compile(r'^.*Q.*$')
- # graphic stack where we save parameters like transformation, line_width
- # each element is a list composed of sublist elements
- # (each sublist has 2 lists each having 2 elements: first is offset like:
- # offset_geo = [off_x, off_y], second element is scale list with 2 elements, like: scale_geo = [sc_x, sc_yy])
- self.gs = {'transform': [], 'line_width': []}
- # conversion factor to INCH
- self.point_to_unit_factor = 0.01388888888
- def parse_pdf(self, pdf_content):
- # the UNITS in PDF files are points and here we set the factor to convert them to real units (either MM or INCH)
- if self.app.defaults['units'].upper() == 'MM':
- # 1 inch = 72 points => 1 point = 1 / 72 = 0.01388888888 inch = 0.01388888888 inch * 25.4 = 0.35277777778 mm
- self.point_to_unit_factor = 25.4 / 72
- else:
- # 1 inch = 72 points => 1 point = 1 / 72 = 0.01388888888 inch
- self.point_to_unit_factor = 1 / 72
- path = {
- 'lines': [], # it's a list of lines subpaths
- 'bezier': [], # it's a list of bezier arcs subpaths
- 'rectangle': [] # it's a list of rectangle subpaths
- }
- subpath = {
- 'lines': [], # it's a list of points
- 'bezier': [], # it's a list of sublists each like this [start, c1, c2, stop]
- 'rectangle': [] # it's a list of sublists of points
- }
- # store the start point (when 'm' command is encountered)
- current_subpath = None
- # set True when 'h' command is encountered (close subpath)
- close_subpath = False
- start_point = None
- current_point = None
- size = 0
- # initial values for the transformations, in case they are not encountered in the PDF file
- offset_geo = [0, 0]
- scale_geo = [1, 1]
- # store the objects to be transformed into Gerbers
- object_dict = {}
- # will serve as key in the object_dict
- layer_nr = 1
- # create first object
- object_dict[layer_nr] = {}
- # store the apertures here
- apertures_dict = {}
- # initial aperture
- aperture = 10
- # store the apertures with clear geometry here
- # we are interested only in the circular geometry (drill holes) therefore we target only Bezier subpaths
- # everything will be stored in the '0' aperture since we are dealing with clear polygons not strokes
- clear_apertures_dict = {
- '0': {
- 'size': 0.0,
- 'type': 'C',
- 'geometry': []
- }
- }
- # on stroke color change we create a new apertures dictionary and store the old one in a storage from where
- # it will be transformed into Gerber object
- old_color = [None, None, None]
- # signal that we have clear geometry and the geometry will be added to a special layer_nr = 0
- flag_clear_geo = False
- line_nr = 0
- lines = pdf_content.splitlines()
- for pline in lines:
- if self.app.abort_flag:
- # graceful abort requested by the user
- raise grace
- line_nr += 1
- log.debug("line %d: %s" % (line_nr, pline))
- # COLOR DETECTION / OBJECT DETECTION
- match = self.stroke_color_re.search(pline)
- if match:
- color = [float(match.group(1)), float(match.group(2)), float(match.group(3))]
- log.debug(
- "parse_pdf() --> STROKE Color change on line: %s --> RED=%f GREEN=%f BLUE=%f" %
- (line_nr, color[0], color[1], color[2]))
- if color[0] == old_color[0] and color[1] == old_color[1] and color[2] == old_color[2]:
- # same color, do nothing
- continue
- else:
- if apertures_dict:
- object_dict[layer_nr] = deepcopy(apertures_dict)
- apertures_dict.clear()
- layer_nr += 1
- object_dict[layer_nr] = {}
- old_color = copy(color)
- # we make sure that the following geometry is added to the right storage
- flag_clear_geo = False
- continue
- # CLEAR GEOMETRY detection
- match = self.fill_color_re.search(pline)
- if match:
- fill_color = [float(match.group(1)), float(match.group(2)), float(match.group(3))]
- log.debug(
- "parse_pdf() --> FILL Color change on line: %s --> RED=%f GREEN=%f BLUE=%f" %
- (line_nr, fill_color[0], fill_color[1], fill_color[2]))
- # if the color is white we are seeing 'clear_geometry' that can't be seen. It may be that those
- # geometries are actually holes from which we can make an Excellon file
- if fill_color[0] == 1 and fill_color[1] == 1 and fill_color[2] == 1:
- flag_clear_geo = True
- else:
- flag_clear_geo = False
- continue
- # TRANSFORMATIONS DETECTION #
- # Detect combined transformation.
- match = self.combined_transform_re.search(pline)
- if match:
- # detect save graphic stack event
- # sometimes they combine save_to_graphics_stack with the transformation on the same line
- if match.group(1) == 'q':
- log.debug(
- "parse_pdf() --> Save to GS found on line: %s --> offset=[%f, %f] ||| scale=[%f, %f]" %
- (line_nr, offset_geo[0], offset_geo[1], scale_geo[0], scale_geo[1]))
- self.gs['transform'].append(deepcopy([offset_geo, scale_geo]))
- self.gs['line_width'].append(deepcopy(size))
- # transformation = TRANSLATION (OFFSET)
- if (float(match.group(3)) == 0 and float(match.group(4)) == 0) and \
- (float(match.group(6)) != 0 or float(match.group(7)) != 0):
- log.debug(
- "parse_pdf() --> OFFSET transformation found on line: %s --> %s" % (line_nr, pline))
- offset_geo[0] += float(match.group(6))
- offset_geo[1] += float(match.group(7))
- # log.debug("Offset= [%f, %f]" % (offset_geo[0], offset_geo[1]))
- # transformation = SCALING
- if float(match.group(2)) != 1 and float(match.group(5)) != 1:
- log.debug(
- "parse_pdf() --> SCALE transformation found on line: %s --> %s" % (line_nr, pline))
- scale_geo[0] *= float(match.group(2))
- scale_geo[1] *= float(match.group(5))
- # log.debug("Scale= [%f, %f]" % (scale_geo[0], scale_geo[1]))
- continue
- # detect save graphic stack event
- match = self.save_gs_re.search(pline)
- if match:
- log.debug(
- "parse_pdf() --> Save to GS found on line: %s --> offset=[%f, %f] ||| scale=[%f, %f]" %
- (line_nr, offset_geo[0], offset_geo[1], scale_geo[0], scale_geo[1]))
- self.gs['transform'].append(deepcopy([offset_geo, scale_geo]))
- self.gs['line_width'].append(deepcopy(size))
- # detect restore from graphic stack event
- match = self.restore_gs_re.search(pline)
- if match:
- try:
- restored_transform = self.gs['transform'].pop(-1)
- offset_geo = restored_transform[0]
- scale_geo = restored_transform[1]
- except IndexError:
- # nothing to remove
- log.debug("parse_pdf() --> Nothing to restore")
- pass
- try:
- size = self.gs['line_width'].pop(-1)
- except IndexError:
- log.debug("parse_pdf() --> Nothing to restore")
- # nothing to remove
- pass
- log.debug(
- "parse_pdf() --> Restore from GS found on line: %s --> "
- "restored_offset=[%f, %f] ||| restored_scale=[%f, %f]" %
- (line_nr, offset_geo[0], offset_geo[1], scale_geo[0], scale_geo[1]))
- # log.debug("Restored Offset= [%f, %f]" % (offset_geo[0], offset_geo[1]))
- # log.debug("Restored Scale= [%f, %f]" % (scale_geo[0], scale_geo[1]))
- # PATH CONSTRUCTION #
- # Start SUBPATH
- match = self.start_subpath_re.search(pline)
- if match:
- # we just started a subpath so we mark it as not closed yet
- close_subpath = False
- # init subpaths
- subpath['lines'] = []
- subpath['bezier'] = []
- subpath['rectangle'] = []
- # detect start point to move to
- x = float(match.group(1)) + offset_geo[0]
- y = float(match.group(2)) + offset_geo[1]
- pt = (x * self.point_to_unit_factor * scale_geo[0],
- y * self.point_to_unit_factor * scale_geo[1])
- start_point = pt
- # add the start point to subpaths
- subpath['lines'].append(start_point)
- # subpath['bezier'].append(start_point)
- # subpath['rectangle'].append(start_point)
- current_point = start_point
- continue
- # Draw Line
- match = self.draw_line_re.search(pline)
- if match:
- current_subpath = 'lines'
- x = float(match.group(1)) + offset_geo[0]
- y = float(match.group(2)) + offset_geo[1]
- pt = (x * self.point_to_unit_factor * scale_geo[0],
- y * self.point_to_unit_factor * scale_geo[1])
- subpath['lines'].append(pt)
- current_point = pt
- continue
- # Draw Bezier 'c'
- match = self.draw_arc_3pt_re.search(pline)
- if match:
- current_subpath = 'bezier'
- start = current_point
- x = float(match.group(1)) + offset_geo[0]
- y = float(match.group(2)) + offset_geo[1]
- c1 = (x * self.point_to_unit_factor * scale_geo[0],
- y * self.point_to_unit_factor * scale_geo[1])
- x = float(match.group(3)) + offset_geo[0]
- y = float(match.group(4)) + offset_geo[1]
- c2 = (x * self.point_to_unit_factor * scale_geo[0],
- y * self.point_to_unit_factor * scale_geo[1])
- x = float(match.group(5)) + offset_geo[0]
- y = float(match.group(6)) + offset_geo[1]
- stop = (x * self.point_to_unit_factor * scale_geo[0],
- y * self.point_to_unit_factor * scale_geo[1])
- subpath['bezier'].append([start, c1, c2, stop])
- current_point = stop
- continue
- # Draw Bezier 'v'
- match = self.draw_arc_2pt_c1start_re.search(pline)
- if match:
- current_subpath = 'bezier'
- start = current_point
- x = float(match.group(1)) + offset_geo[0]
- y = float(match.group(2)) + offset_geo[1]
- c2 = (x * self.point_to_unit_factor * scale_geo[0],
- y * self.point_to_unit_factor * scale_geo[1])
- x = float(match.group(3)) + offset_geo[0]
- y = float(match.group(4)) + offset_geo[1]
- stop = (x * self.point_to_unit_factor * scale_geo[0],
- y * self.point_to_unit_factor * scale_geo[1])
- subpath['bezier'].append([start, start, c2, stop])
- current_point = stop
- continue
- # Draw Bezier 'y'
- match = self.draw_arc_2pt_c2stop_re.search(pline)
- if match:
- start = current_point
- x = float(match.group(1)) + offset_geo[0]
- y = float(match.group(2)) + offset_geo[1]
- c1 = (x * self.point_to_unit_factor * scale_geo[0],
- y * self.point_to_unit_factor * scale_geo[1])
- x = float(match.group(3)) + offset_geo[0]
- y = float(match.group(4)) + offset_geo[1]
- stop = (x * self.point_to_unit_factor * scale_geo[0],
- y * self.point_to_unit_factor * scale_geo[1])
- subpath['bezier'].append([start, c1, stop, stop])
- current_point = stop
- continue
- # Draw Rectangle 're'
- match = self.rect_re.search(pline)
- if match:
- current_subpath = 'rectangle'
- x = (float(match.group(1)) + offset_geo[0]) * self.point_to_unit_factor * scale_geo[0]
- y = (float(match.group(2)) + offset_geo[1]) * self.point_to_unit_factor * scale_geo[1]
- width = (float(match.group(3)) + offset_geo[0]) * self.point_to_unit_factor * scale_geo[0]
- height = (float(match.group(4)) + offset_geo[1]) * self.point_to_unit_factor * scale_geo[1]
- pt1 = (x, y)
- pt2 = (x + width, y)
- pt3 = (x + width, y + height)
- pt4 = (x, y + height)
- subpath['rectangle'] += [pt1, pt2, pt3, pt4, pt1]
- current_point = pt1
- continue
- # Detect clipping path set
- # ignore this and delete the current subpath
- match = self.clip_path_re.search(pline)
- if match:
- subpath['lines'] = []
- subpath['bezier'] = []
- subpath['rectangle'] = []
- # it means that we've already added the subpath to path and we need to delete it
- # clipping path is usually either rectangle or lines
- if close_subpath is True:
- close_subpath = False
- if current_subpath == 'lines':
- path['lines'].pop(-1)
- if current_subpath == 'rectangle':
- path['rectangle'].pop(-1)
- continue
- # Close SUBPATH
- match = self.end_subpath_re.search(pline)
- if match:
- close_subpath = True
- if current_subpath == 'lines':
- subpath['lines'].append(start_point)
- # since we are closing the subpath add it to the path, a path may have chained subpaths
- path['lines'].append(copy(subpath['lines']))
- subpath['lines'] = []
- elif current_subpath == 'bezier':
- # subpath['bezier'].append(start_point)
- # since we are closing the subpath add it to the path, a path may have chained subpaths
- path['bezier'].append(copy(subpath['bezier']))
- subpath['bezier'] = []
- elif current_subpath == 'rectangle':
- # subpath['rectangle'].append(start_point)
- # since we are closing the subpath add it to the path, a path may have chained subpaths
- path['rectangle'].append(copy(subpath['rectangle']))
- subpath['rectangle'] = []
- continue
- # PATH PAINTING #
- # Detect Stroke width / aperture
- match = self.strokewidth_re.search(pline)
- if match:
- size = float(match.group(1))
- continue
- # Detect No_Op command, ignore the current subpath
- match = self.no_op_re.search(pline)
- if match:
- subpath['lines'] = []
- subpath['bezier'] = []
- subpath['rectangle'] = []
- continue
- # Stroke the path
- match = self.stroke_path__re.search(pline)
- if match:
- # scale the size here; some PDF printers apply transformation after the size is declared
- applied_size = size * scale_geo[0] * self.point_to_unit_factor
- path_geo = []
- if current_subpath == 'lines':
- if path['lines']:
- for subp in path['lines']:
- geo = copy(subp)
- try:
- geo = LineString(geo).buffer((float(applied_size) / 2),
- resolution=self.step_per_circles)
- path_geo.append(geo)
- except ValueError:
- pass
- # the path was painted therefore initialize it
- path['lines'] = []
- else:
- geo = copy(subpath['lines'])
- try:
- geo = LineString(geo).buffer((float(applied_size) / 2), resolution=self.step_per_circles)
- path_geo.append(geo)
- except ValueError:
- pass
- subpath['lines'] = []
- if current_subpath == 'bezier':
- if path['bezier']:
- for subp in path['bezier']:
- geo = []
- for b in subp:
- geo += self.bezier_to_points(start=b[0], c1=b[1], c2=b[2], stop=b[3])
- try:
- geo = LineString(geo).buffer((float(applied_size) / 2),
- resolution=self.step_per_circles)
- path_geo.append(geo)
- except ValueError:
- pass
- # the path was painted therefore initialize it
- path['bezier'] = []
- else:
- geo = []
- for b in subpath['bezier']:
- geo += self.bezier_to_points(start=b[0], c1=b[1], c2=b[2], stop=b[3])
- try:
- geo = LineString(geo).buffer((float(applied_size) / 2), resolution=self.step_per_circles)
- path_geo.append(geo)
- except ValueError:
- pass
- subpath['bezier'] = []
- if current_subpath == 'rectangle':
- if path['rectangle']:
- for subp in path['rectangle']:
- geo = copy(subp)
- try:
- geo = LineString(geo).buffer((float(applied_size) / 2),
- resolution=self.step_per_circles)
- path_geo.append(geo)
- except ValueError:
- pass
- # the path was painted therefore initialize it
- path['rectangle'] = []
- else:
- geo = copy(subpath['rectangle'])
- try:
- geo = LineString(geo).buffer((float(applied_size) / 2), resolution=self.step_per_circles)
- path_geo.append(geo)
- except ValueError:
- pass
- subpath['rectangle'] = []
- # store the found geometry
- found_aperture = None
- if apertures_dict:
- for apid in apertures_dict:
- # if we already have an aperture with the current size (rounded to 5 decimals)
- if apertures_dict[apid]['size'] == round(applied_size, 5):
- found_aperture = apid
- break
- if found_aperture:
- for pdf_geo in path_geo:
- if isinstance(pdf_geo, MultiPolygon):
- for poly in pdf_geo:
- new_el = {'solid': poly, 'follow': poly.exterior}
- apertures_dict[copy(found_aperture)]['geometry'].append(deepcopy(new_el))
- else:
- new_el = {'solid': pdf_geo, 'follow': pdf_geo.exterior}
- apertures_dict[copy(found_aperture)]['geometry'].append(deepcopy(new_el))
- else:
- if str(aperture) in apertures_dict.keys():
- aperture += 1
- apertures_dict[str(aperture)] = {}
- apertures_dict[str(aperture)]['size'] = round(applied_size, 5)
- apertures_dict[str(aperture)]['type'] = 'C'
- apertures_dict[str(aperture)]['geometry'] = []
- for pdf_geo in path_geo:
- if isinstance(pdf_geo, MultiPolygon):
- for poly in pdf_geo:
- new_el = {'solid': poly, 'follow': poly.exterior}
- apertures_dict[str(aperture)]['geometry'].append(deepcopy(new_el))
- else:
- new_el = {'solid': pdf_geo, 'follow': pdf_geo.exterior}
- apertures_dict[str(aperture)]['geometry'].append(deepcopy(new_el))
- else:
- apertures_dict[str(aperture)] = {}
- apertures_dict[str(aperture)]['size'] = round(applied_size, 5)
- apertures_dict[str(aperture)]['type'] = 'C'
- apertures_dict[str(aperture)]['geometry'] = []
- for pdf_geo in path_geo:
- if isinstance(pdf_geo, MultiPolygon):
- for poly in pdf_geo:
- new_el = {'solid': poly, 'follow': poly.exterior}
- apertures_dict[str(aperture)]['geometry'].append(deepcopy(new_el))
- else:
- new_el = {'solid': pdf_geo, 'follow': pdf_geo.exterior}
- apertures_dict[str(aperture)]['geometry'].append(deepcopy(new_el))
- continue
- # Fill the path
- match = self.fill_path_re.search(pline)
- if match:
- # scale the size here; some PDF printers apply transformation after the size is declared
- applied_size = size * scale_geo[0] * self.point_to_unit_factor
- path_geo = []
- if current_subpath == 'lines':
- if path['lines']:
- for subp in path['lines']:
- geo = copy(subp)
- # close the subpath if it was not closed already
- if close_subpath is False:
- geo.append(geo[0])
- try:
- geo_el = Polygon(geo).buffer(0.0000001, resolution=self.step_per_circles)
- path_geo.append(geo_el)
- except ValueError:
- pass
- # the path was painted therefore initialize it
- path['lines'] = []
- else:
- geo = copy(subpath['lines'])
- # close the subpath if it was not closed already
- if close_subpath is False:
- geo.append(start_point)
- try:
- geo_el = Polygon(geo).buffer(0.0000001, resolution=self.step_per_circles)
- path_geo.append(geo_el)
- except ValueError:
- pass
- subpath['lines'] = []
- if current_subpath == 'bezier':
- geo = []
- if path['bezier']:
- for subp in path['bezier']:
- for b in subp:
- geo += self.bezier_to_points(start=b[0], c1=b[1], c2=b[2], stop=b[3])
- # close the subpath if it was not closed already
- if close_subpath is False:
- new_g = geo[0]
- geo.append(new_g)
- try:
- geo_el = Polygon(geo).buffer(0.0000001, resolution=self.step_per_circles)
- path_geo.append(geo_el)
- except ValueError:
- pass
- # the path was painted therefore initialize it
- path['bezier'] = []
- else:
- for b in subpath['bezier']:
- geo += self.bezier_to_points(start=b[0], c1=b[1], c2=b[2], stop=b[3])
- if close_subpath is False:
- geo.append(start_point)
- try:
- geo_el = Polygon(geo).buffer(0.0000001, resolution=self.step_per_circles)
- path_geo.append(geo_el)
- except ValueError:
- pass
- subpath['bezier'] = []
- if current_subpath == 'rectangle':
- if path['rectangle']:
- for subp in path['rectangle']:
- geo = copy(subp)
- # # close the subpath if it was not closed already
- # if close_subpath is False and start_point is not None:
- # geo.append(start_point)
- try:
- geo_el = Polygon(geo).buffer(0.0000001, resolution=self.step_per_circles)
- path_geo.append(geo_el)
- except ValueError:
- pass
- # the path was painted therefore initialize it
- path['rectangle'] = []
- else:
- geo = copy(subpath['rectangle'])
- # # close the subpath if it was not closed already
- # if close_subpath is False and start_point is not None:
- # geo.append(start_point)
- try:
- geo_el = Polygon(geo).buffer(0.0000001, resolution=self.step_per_circles)
- path_geo.append(geo_el)
- except ValueError:
- pass
- subpath['rectangle'] = []
- # we finished painting and also closed the path if it was the case
- close_subpath = True
- # in case that a color change to white (transparent) occurred
- if flag_clear_geo is True:
- # if there was a fill color change we look for circular geometries from which we can make
- # drill holes for the Excellon file
- if current_subpath == 'bezier':
- # if there are geometries in the list
- if path_geo:
- try:
- for g in path_geo:
- new_el = {'clear': g}
- clear_apertures_dict['0']['geometry'].append(new_el)
- except TypeError:
- new_el = {'clear': path_geo}
- clear_apertures_dict['0']['geometry'].append(new_el)
- # now that we finished searching for drill holes (this is not very precise because holes in the
- # polygon pours may appear as drill too, but .. hey you can't have it all ...) we add
- # clear_geometry
- try:
- for pdf_geo in path_geo:
- if isinstance(pdf_geo, MultiPolygon):
- for poly in pdf_geo:
- new_el = {'clear': poly}
- apertures_dict['0']['geometry'].append(deepcopy(new_el))
- else:
- new_el = {'clear': pdf_geo}
- apertures_dict['0']['geometry'].append(deepcopy(new_el))
- except KeyError:
- # in case there is no stroke width yet therefore no aperture
- apertures_dict['0'] = {}
- apertures_dict['0']['size'] = applied_size
- apertures_dict['0']['type'] = 'C'
- apertures_dict['0']['geometry'] = []
- for pdf_geo in path_geo:
- if isinstance(pdf_geo, MultiPolygon):
- for poly in pdf_geo:
- new_el = {'clear': poly}
- apertures_dict['0']['geometry'].append(deepcopy(new_el))
- else:
- new_el = {'clear': pdf_geo}
- apertures_dict['0']['geometry'].append(deepcopy(new_el))
- else:
- # else, add the geometry as usual
- try:
- for pdf_geo in path_geo:
- if isinstance(pdf_geo, MultiPolygon):
- for poly in pdf_geo:
- new_el = {'solid': poly, 'follow': poly.exterior}
- apertures_dict['0']['geometry'].append(deepcopy(new_el))
- else:
- new_el = {'solid': pdf_geo, 'follow': pdf_geo.exterior}
- apertures_dict['0']['geometry'].append(deepcopy(new_el))
- except KeyError:
- # in case there is no stroke width yet therefore no aperture
- apertures_dict['0'] = {}
- apertures_dict['0']['size'] = applied_size
- apertures_dict['0']['type'] = 'C'
- apertures_dict['0']['geometry'] = []
- for pdf_geo in path_geo:
- if isinstance(pdf_geo, MultiPolygon):
- for poly in pdf_geo:
- new_el = {'solid': poly, 'follow': poly.exterior}
- apertures_dict['0']['geometry'].append(deepcopy(new_el))
- else:
- new_el = {'solid': pdf_geo, 'follow': pdf_geo.exterior}
- apertures_dict['0']['geometry'].append(deepcopy(new_el))
- continue
- # Fill and Stroke the path
- match = self.fill_stroke_path_re.search(pline)
- if match:
- # scale the size here; some PDF printers apply transformation after the size is declared
- applied_size = size * scale_geo[0] * self.point_to_unit_factor
- path_geo = []
- fill_geo = []
- if current_subpath == 'lines':
- if path['lines']:
- # fill
- for subp in path['lines']:
- geo = copy(subp)
- # close the subpath if it was not closed already
- if close_subpath is False:
- geo.append(geo[0])
- try:
- geo_el = Polygon(geo).buffer(0.0000001, resolution=self.step_per_circles)
- fill_geo.append(geo_el)
- except ValueError:
- pass
- # stroke
- for subp in path['lines']:
- geo = copy(subp)
- geo = LineString(geo).buffer((float(applied_size) / 2), resolution=self.step_per_circles)
- path_geo.append(geo)
- # the path was painted therefore initialize it
- path['lines'] = []
- else:
- # fill
- geo = copy(subpath['lines'])
- # close the subpath if it was not closed already
- if close_subpath is False:
- geo.append(start_point)
- try:
- geo_el = Polygon(geo).buffer(0.0000001, resolution=self.step_per_circles)
- fill_geo.append(geo_el)
- except ValueError:
- pass
- # stroke
- geo = copy(subpath['lines'])
- geo = LineString(geo).buffer((float(applied_size) / 2), resolution=self.step_per_circles)
- path_geo.append(geo)
- subpath['lines'] = []
- subpath['lines'] = []
- if current_subpath == 'bezier':
- geo = []
- if path['bezier']:
- # fill
- for subp in path['bezier']:
- for b in subp:
- geo += self.bezier_to_points(start=b[0], c1=b[1], c2=b[2], stop=b[3])
- # close the subpath if it was not closed already
- if close_subpath is False:
- geo.append(geo[0])
- try:
- geo_el = Polygon(geo).buffer(0.0000001, resolution=self.step_per_circles)
- fill_geo.append(geo_el)
- except ValueError:
- pass
- # stroke
- for subp in path['bezier']:
- geo = []
- for b in subp:
- geo += self.bezier_to_points(start=b[0], c1=b[1], c2=b[2], stop=b[3])
- geo = LineString(geo).buffer((float(applied_size) / 2), resolution=self.step_per_circles)
- path_geo.append(geo)
- # the path was painted therefore initialize it
- path['bezier'] = []
- else:
- # fill
- for b in subpath['bezier']:
- geo += self.bezier_to_points(start=b[0], c1=b[1], c2=b[2], stop=b[3])
- if close_subpath is False:
- geo.append(start_point)
- try:
- geo_el = Polygon(geo).buffer(0.0000001, resolution=self.step_per_circles)
- fill_geo.append(geo_el)
- except ValueError:
- pass
- # stroke
- geo = []
- for b in subpath['bezier']:
- geo += self.bezier_to_points(start=b[0], c1=b[1], c2=b[2], stop=b[3])
- geo = LineString(geo).buffer((float(applied_size) / 2), resolution=self.step_per_circles)
- path_geo.append(geo)
- subpath['bezier'] = []
- if current_subpath == 'rectangle':
- if path['rectangle']:
- # fill
- for subp in path['rectangle']:
- geo = copy(subp)
- # # close the subpath if it was not closed already
- # if close_subpath is False:
- # geo.append(geo[0])
- try:
- geo_el = Polygon(geo).buffer(0.0000001, resolution=self.step_per_circles)
- fill_geo.append(geo_el)
- except ValueError:
- pass
- # stroke
- for subp in path['rectangle']:
- geo = copy(subp)
- geo = LineString(geo).buffer((float(applied_size) / 2), resolution=self.step_per_circles)
- path_geo.append(geo)
- # the path was painted therefore initialize it
- path['rectangle'] = []
- else:
- # fill
- geo = copy(subpath['rectangle'])
- # # close the subpath if it was not closed already
- # if close_subpath is False:
- # geo.append(start_point)
- try:
- geo_el = Polygon(geo).buffer(0.0000001, resolution=self.step_per_circles)
- fill_geo.append(geo_el)
- except ValueError:
- pass
- # stroke
- geo = copy(subpath['rectangle'])
- geo = LineString(geo).buffer((float(applied_size) / 2), resolution=self.step_per_circles)
- path_geo.append(geo)
- subpath['rectangle'] = []
- # we finished painting and also closed the path if it was the case
- close_subpath = True
- # store the found geometry for stroking the path
- found_aperture = None
- if apertures_dict:
- for apid in apertures_dict:
- # if we already have an aperture with the current size (rounded to 5 decimals)
- if apertures_dict[apid]['size'] == round(applied_size, 5):
- found_aperture = apid
- break
- if found_aperture:
- for pdf_geo in path_geo:
- if isinstance(pdf_geo, MultiPolygon):
- for poly in pdf_geo:
- new_el = {'solid': poly, 'follow': poly.exterior}
- apertures_dict[copy(found_aperture)]['geometry'].append(deepcopy(new_el))
- else:
- new_el = {'solid': pdf_geo, 'follow': pdf_geo.exterior}
- apertures_dict[copy(found_aperture)]['geometry'].append(deepcopy(new_el))
- else:
- if str(aperture) in apertures_dict.keys():
- aperture += 1
- apertures_dict[str(aperture)] = {
- 'size': round(applied_size, 5),
- 'type': 'C',
- 'geometry': []
- }
- for pdf_geo in path_geo:
- if isinstance(pdf_geo, MultiPolygon):
- for poly in pdf_geo:
- new_el = {'solid': poly, 'follow': poly.exterior}
- apertures_dict[str(aperture)]['geometry'].append(deepcopy(new_el))
- else:
- new_el = {'solid': pdf_geo, 'follow': pdf_geo.exterior}
- apertures_dict[str(aperture)]['geometry'].append(deepcopy(new_el))
- else:
- apertures_dict[str(aperture)] = {
- 'size': round(applied_size, 5),
- 'type': 'C',
- 'geometry': []
- }
- for pdf_geo in path_geo:
- if isinstance(pdf_geo, MultiPolygon):
- for poly in pdf_geo:
- new_el = {'solid': poly, 'follow': poly.exterior}
- apertures_dict[str(aperture)]['geometry'].append(deepcopy(new_el))
- else:
- new_el = {'solid': pdf_geo, 'follow': pdf_geo.exterior}
- apertures_dict[str(aperture)]['geometry'].append(deepcopy(new_el))
- # ############################################# ##
- # store the found geometry for filling the path #
- # ############################################# ##
- # in case that a color change to white (transparent) occurred
- if flag_clear_geo is True:
- try:
- for pdf_geo in path_geo:
- if isinstance(pdf_geo, MultiPolygon):
- for poly in fill_geo:
- new_el = {'clear': poly}
- apertures_dict['0']['geometry'].append(deepcopy(new_el))
- else:
- new_el = {'clear': pdf_geo}
- apertures_dict['0']['geometry'].append(deepcopy(new_el))
- except KeyError:
- # in case there is no stroke width yet therefore no aperture
- apertures_dict['0'] = {
- 'size': round(applied_size, 5),
- 'type': 'C',
- 'geometry': []
- }
- for pdf_geo in fill_geo:
- if isinstance(pdf_geo, MultiPolygon):
- for poly in pdf_geo:
- new_el = {'clear': poly}
- apertures_dict['0']['geometry'].append(deepcopy(new_el))
- else:
- new_el = {'clear': pdf_geo}
- apertures_dict['0']['geometry'].append(deepcopy(new_el))
- else:
- try:
- for pdf_geo in path_geo:
- if isinstance(pdf_geo, MultiPolygon):
- for poly in fill_geo:
- new_el = {'solid': poly, 'follow': poly.exterior}
- apertures_dict['0']['geometry'].append(deepcopy(new_el))
- else:
- new_el = {'solid': pdf_geo, 'follow': pdf_geo.exterior}
- apertures_dict['0']['geometry'].append(deepcopy(new_el))
- except KeyError:
- # in case there is no stroke width yet therefore no aperture
- apertures_dict['0'] = {
- 'size': round(applied_size, 5),
- 'type': 'C',
- 'geometry': []
- }
- for pdf_geo in fill_geo:
- if isinstance(pdf_geo, MultiPolygon):
- for poly in pdf_geo:
- new_el = {'solid': poly, 'follow': poly.exterior}
- apertures_dict['0']['geometry'].append(deepcopy(new_el))
- else:
- new_el = {'solid': pdf_geo, 'follow': pdf_geo.exterior}
- apertures_dict['0']['geometry'].append(deepcopy(new_el))
- continue
- # tidy up. copy the current aperture dict to the object dict but only if it is not empty
- if apertures_dict:
- object_dict[layer_nr] = deepcopy(apertures_dict)
- if clear_apertures_dict['0']['geometry']:
- object_dict[0] = deepcopy(clear_apertures_dict)
- # delete keys (layers) with empty values
- empty_layers = []
- for layer in object_dict:
- if not object_dict[layer]:
- empty_layers.append(layer)
- for x in empty_layers:
- if x in object_dict:
- object_dict.pop(x)
- if self.app.abort_flag:
- # graceful abort requested by the user
- raise grace
- return object_dict
- def bezier_to_points(self, start, c1, c2, stop):
- """
- # Equation Bezier, page 184 PDF 1.4 reference
- # https://www.adobe.com/content/dam/acom/en/devnet/pdf/pdfs/pdf_reference_archives/PDFReference.pdf
- # Given the coordinates of the four points, the curve is generated by varying the parameter t from 0.0 to 1.0
- # in the following equation:
- # R(t) = P0*(1 - t) ** 3 + P1*3*t*(1 - t) ** 2 + P2 * 3*(1 - t) * t ** 2 + P3*t ** 3
- # When t = 0.0, the value from the function coincides with the current point P0; when t = 1.0, R(t) coincides
- # with the final point P3. Intermediate values of t generate intermediate points along the curve.
- # The curve does not, in general, pass through the two control points P1 and P2
- :return: A list of point coordinates tuples (x, y)
- """
- # here we store the geometric points
- points = []
- nr_points = np.arange(0.0, 1.0, (1 / self.step_per_circles))
- for t in nr_points:
- term_p0 = (1 - t) ** 3
- term_p1 = 3 * t * (1 - t) ** 2
- term_p2 = 3 * (1 - t) * t ** 2
- term_p3 = t ** 3
- x = start[0] * term_p0 + c1[0] * term_p1 + c2[0] * term_p2 + stop[0] * term_p3
- y = start[1] * term_p0 + c1[1] * term_p1 + c2[1] * term_p2 + stop[1] * term_p3
- points.append([x, y])
- return points
- # def bezier_to_circle(self, path):
- # lst = []
- # for el in range(len(path)):
- # if type(path) is list:
- # for coord in path[el]:
- # lst.append(coord)
- # else:
- # lst.append(el)
- #
- # if lst:
- # minx = min(lst, key=lambda t: t[0])[0]
- # miny = min(lst, key=lambda t: t[1])[1]
- # maxx = max(lst, key=lambda t: t[0])[0]
- # maxy = max(lst, key=lambda t: t[1])[1]
- # center = (maxx-minx, maxy-miny)
- # radius = (maxx-minx) / 2
- # return [center, radius]
- #
- # def circle_to_points(self, center, radius):
- # geo = Point(center).buffer(radius, resolution=self.step_per_circles)
- # return LineString(list(geo.exterior.coords))
- #
|