| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412 |
- # ##########################################################
- # FlatCAM: 2D Post-processing for Manufacturing #
- # File Author: Marius Adrian Stanciu (c) #
- # Date: 4/23/2019 #
- # MIT Licence #
- # ##########################################################
- from PyQt5 import QtWidgets, QtCore
- from FlatCAMTool import FlatCAMTool
- import FlatCAMApp
- from shapely.geometry import Point, Polygon, LineString, MultiPolygon
- from shapely.ops import unary_union
- from copy import copy, deepcopy
- import numpy as np
- import zlib
- import re
- import time
- import logging
- import traceback
- import gettext
- import FlatCAMTranslation as fcTranslate
- import builtins
- fcTranslate.apply_language('strings')
- if '_' not in builtins.__dict__:
- _ = gettext.gettext
- log = logging.getLogger('base')
- class ToolPDF(FlatCAMTool):
- """
- Parse a PDF file.
- Reference here: https://www.adobe.com/content/dam/acom/en/devnet/pdf/pdfs/pdf_reference_archives/PDFReference.pdf
- Return a list of geometries
- """
- toolName = _("PDF Import Tool")
- def __init__(self, app):
- FlatCAMTool.__init__(self, app)
- self.app = app
- self.step_per_circles = self.app.defaults["gerber_circle_steps"]
- self.stream_re = re.compile(b'.*?FlateDecode.*?stream(.*?)endstream', re.S)
- # detect stroke color change; it means a new object to be created
- self.stroke_color_re = re.compile(r'^\s*(\d+\.?\d*) (\d+\.?\d*) (\d+\.?\d*)\s*RG$')
- # detect fill color change; we check here for white color (transparent geometry);
- # if detected we create an Excellon from it
- self.fill_color_re = re.compile(r'^\s*(\d+\.?\d*) (\d+\.?\d*) (\d+\.?\d*)\s*rg$')
- # detect 're' command
- self.rect_re = re.compile(r'^(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s*re$')
- # detect 'm' command
- self.start_subpath_re = re.compile(r'^(-?\d+\.?\d*)\s(-?\d+\.?\d*)\sm$')
- # detect 'l' command
- self.draw_line_re = re.compile(r'^(-?\d+\.?\d*)\s(-?\d+\.?\d*)\sl')
- # detect 'c' command
- self.draw_arc_3pt_re = re.compile(r'^(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s(-?\d+\.?\d*)'
- r'\s(-?\d+\.?\d*)\s*c$')
- # detect 'v' command
- self.draw_arc_2pt_c1start_re = re.compile(r'^(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s*v$')
- # detect 'y' command
- self.draw_arc_2pt_c2stop_re = re.compile(r'^(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s*y$')
- # detect 'h' command
- self.end_subpath_re = re.compile(r'^h$')
- # detect 'w' command
- self.strokewidth_re = re.compile(r'^(\d+\.?\d*)\s*w$')
- # detect 'S' command
- self.stroke_path__re = re.compile(r'^S\s?[Q]?$')
- # detect 's' command
- self.close_stroke_path__re = re.compile(r'^s$')
- # detect 'f' or 'f*' command
- self.fill_path_re = re.compile(r'^[f|F][*]?$')
- # detect 'B' or 'B*' command
- self.fill_stroke_path_re = re.compile(r'^B[*]?$')
- # detect 'b' or 'b*' command
- self.close_fill_stroke_path_re = re.compile(r'^b[*]?$')
- # detect 'n'
- self.no_op_re = re.compile(r'^n$')
- # detect offset transformation. Pattern: (1) (0) (0) (1) (x) (y)
- # self.offset_re = re.compile(r'^1\.?0*\s0?\.?0*\s0?\.?0*\s1\.?0*\s(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s*cm$')
- # detect scale transformation. Pattern: (factor_x) (0) (0) (factor_y) (0) (0)
- # self.scale_re = re.compile(r'^q? (-?\d+\.?\d*) 0\.?0* 0\.?0* (-?\d+\.?\d*) 0\.?0* 0\.?0*\s+cm$')
- # detect combined transformation. Should always be the last
- self.combined_transform_re = re.compile(r'^(q)?\s*(-?\d+\.?\d*) (-?\d+\.?\d*) (-?\d+\.?\d*) (-?\d+\.?\d*) '
- r'(-?\d+\.?\d*) (-?\d+\.?\d*)\s+cm$')
- # detect clipping path
- self.clip_path_re = re.compile(r'^W[*]? n?$')
- # detect save graphic state in graphic stack
- self.save_gs_re = re.compile(r'^q.*?$')
- # detect restore graphic state from graphic stack
- self.restore_gs_re = re.compile(r'^.*Q.*$')
- # graphic stack where we save parameters like transformation, line_width
- self.gs = dict()
- # each element is a list composed of sublist elements
- # (each sublist has 2 lists each having 2 elements: first is offset like:
- # offset_geo = [off_x, off_y], second element is scale list with 2 elements, like: scale_geo = [sc_x, sc_yy])
- self.gs['transform'] = []
- self.gs['line_width'] = [] # each element is a float
- self.pdf_decompressed = {}
- # key = file name and extension
- # value is a dict to store the parsed content of the PDF
- self.pdf_parsed = {}
- # QTimer for periodic check
- self.check_thread = QtCore.QTimer()
- # Every time a parser is started we add a promise; every time a parser finished we remove a promise
- # when empty we start the layer rendering
- self.parsing_promises = []
- # conversion factor to INCH
- self.point_to_unit_factor = 0.01388888888
- def run(self, toggle=True):
- self.app.report_usage("ToolPDF()")
- self.set_tool_ui()
- self.on_open_pdf_click()
- def install(self, icon=None, separator=None, **kwargs):
- FlatCAMTool.install(self, icon, separator, shortcut='ALT+Q', **kwargs)
- def set_tool_ui(self):
- pass
- def on_open_pdf_click(self):
- """
- File menu callback for opening an PDF file.
- :return: None
- """
- self.app.report_usage("ToolPDF.on_open_pdf_click()")
- self.app.log.debug("ToolPDF.on_open_pdf_click()")
- _filter_ = "Adobe PDF Files (*.pdf);;" \
- "All Files (*.*)"
- try:
- filenames, _f = QtWidgets.QFileDialog.getOpenFileNames(caption=_("Open PDF"),
- directory=self.app.get_last_folder(),
- filter=_filter_)
- except TypeError:
- filenames, _f = QtWidgets.QFileDialog.getOpenFileNames(caption=_("Open PDF"), filter=_filter_)
- if len(filenames) == 0:
- self.app.inform.emit('[WARNING_NOTCL] %s.' % _("Open PDF cancelled"))
- else:
- # start the parsing timer with a period of 1 second
- self.periodic_check(1000)
- for filename in filenames:
- if filename != '':
- self.app.worker_task.emit({'fcn': self.open_pdf,
- 'params': [filename]})
- def open_pdf(self, filename):
- short_name = filename.split('/')[-1].split('\\')[-1]
- self.parsing_promises.append(short_name)
- self.pdf_parsed[short_name] = {}
- self.pdf_parsed[short_name]['pdf'] = {}
- self.pdf_parsed[short_name]['filename'] = filename
- self.pdf_decompressed[short_name] = ''
- # the UNITS in PDF files are points and here we set the factor to convert them to real units (either MM or INCH)
- if self.app.ui.general_defaults_form.general_app_group.units_radio.get_value().upper() == 'MM':
- # 1 inch = 72 points => 1 point = 1 / 72 = 0.01388888888 inch = 0.01388888888 inch * 25.4 = 0.35277777778 mm
- self.point_to_unit_factor = 25.4 / 72
- else:
- # 1 inch = 72 points => 1 point = 1 / 72 = 0.01388888888 inch
- self.point_to_unit_factor = 1 / 72
- if self.app.abort_flag:
- # graceful abort requested by the user
- raise FlatCAMApp.GracefulException
- with self.app.proc_container.new(_("Parsing PDF file ...")):
- with open(filename, "rb") as f:
- pdf = f.read()
- stream_nr = 0
- for s in re.findall(self.stream_re, pdf):
- if self.app.abort_flag:
- # graceful abort requested by the user
- raise FlatCAMApp.GracefulException
- stream_nr += 1
- log.debug(" PDF STREAM: %d\n" % stream_nr)
- s = s.strip(b'\r\n')
- try:
- self.pdf_decompressed[short_name] += (zlib.decompress(s).decode('UTF-8') + '\r\n')
- except Exception as e:
- log.debug("ToolPDF.open_pdf().obj_init() --> %s" % str(e))
- self.pdf_parsed[short_name]['pdf'] = self.parse_pdf(pdf_content=self.pdf_decompressed[short_name])
- # we used it, now we delete it
- self.pdf_decompressed[short_name] = ''
- # removal from list is done in a multithreaded way therefore not always the removal can be done
- # try to remove until it's done
- try:
- while True:
- self.parsing_promises.remove(short_name)
- time.sleep(0.1)
- except Exception as e:
- log.debug("ToolPDF.open_pdf() --> %s" % str(e))
- self.app.inform.emit('[success] %s: %s' % (_("Opened"), str(filename)))
- def layer_rendering_as_excellon(self, filename, ap_dict, layer_nr):
- outname = filename.split('/')[-1].split('\\')[-1] + "_%s" % str(layer_nr)
- # store the points here until reconstitution:
- # keys are diameters and values are list of (x,y) coords
- points = {}
- def obj_init(exc_obj, app_obj):
- clear_geo = [geo_el['clear'] for geo_el in ap_dict['0']['geometry']]
- for geo in clear_geo:
- xmin, ymin, xmax, ymax = geo.bounds
- center = (((xmax - xmin) / 2) + xmin, ((ymax - ymin) / 2) + ymin)
- # for drill bits, even in INCH, it's enough 3 decimals
- correction_factor = 0.974
- dia = (xmax - xmin) * correction_factor
- dia = round(dia, 3)
- if dia in points:
- points[dia].append(center)
- else:
- points[dia] = [center]
- sorted_dia = sorted(points.keys())
- name_tool = 0
- for dia in sorted_dia:
- name_tool += 1
- # create tools dictionary
- spec = {"C": dia, 'solid_geometry': []}
- exc_obj.tools[str(name_tool)] = spec
- # create drill list of dictionaries
- for dia_points in points:
- if dia == dia_points:
- for pt in points[dia_points]:
- exc_obj.drills.append({'point': Point(pt), 'tool': str(name_tool)})
- break
- ret = exc_obj.create_geometry()
- if ret == 'fail':
- log.debug("Could not create geometry for Excellon object.")
- return "fail"
- for tool in exc_obj.tools:
- if exc_obj.tools[tool]['solid_geometry']:
- return
- app_obj.inform.emit('[ERROR_NOTCL] %s: %s' %
- (_("No geometry found in file"), outname))
- return "fail"
- with self.app.proc_container.new(_("Rendering PDF layer #%d ...") % int(layer_nr)):
- ret_val = self.app.new_object("excellon", outname, obj_init, autoselected=False)
- if ret_val == 'fail':
- self.app.inform.emit('[ERROR_NOTCL] %s' %
- _('Open PDF file failed.'))
- return
- # Register recent file
- self.app.file_opened.emit("excellon", filename)
- # GUI feedback
- self.app.inform.emit('[success] %s: %s' %
- (_("Rendered"), outname))
- def layer_rendering_as_gerber(self, filename, ap_dict, layer_nr):
- outname = filename.split('/')[-1].split('\\')[-1] + "_%s" % str(layer_nr)
- def obj_init(grb_obj, app_obj):
- grb_obj.apertures = ap_dict
- poly_buff = []
- follow_buf = []
- for ap in grb_obj.apertures:
- for k in grb_obj.apertures[ap]:
- if k == 'geometry':
- for geo_el in ap_dict[ap][k]:
- if 'solid' in geo_el:
- poly_buff.append(geo_el['solid'])
- if 'follow' in geo_el:
- follow_buf.append(geo_el['follow'])
- poly_buff = unary_union(poly_buff)
- if '0' in grb_obj.apertures:
- global_clear_geo = []
- if 'geometry' in grb_obj.apertures['0']:
- for geo_el in ap_dict['0']['geometry']:
- if 'clear' in geo_el:
- global_clear_geo.append(geo_el['clear'])
- if global_clear_geo:
- solid = []
- for apid in grb_obj.apertures:
- if 'geometry' in grb_obj.apertures[apid]:
- for elem in grb_obj.apertures[apid]['geometry']:
- if 'solid' in elem:
- solid_geo = deepcopy(elem['solid'])
- for clear_geo in global_clear_geo:
- # Make sure that the clear_geo is within the solid_geo otherwise we loose
- # the solid_geometry. We want for clear_geometry just to cut into solid_geometry
- # not to delete it
- if clear_geo.within(solid_geo):
- solid_geo = solid_geo.difference(clear_geo)
- if solid_geo.is_empty:
- solid_geo = elem['solid']
- try:
- for poly in solid_geo:
- solid.append(poly)
- except TypeError:
- solid.append(solid_geo)
- poly_buff = deepcopy(MultiPolygon(solid))
- follow_buf = unary_union(follow_buf)
- try:
- poly_buff = poly_buff.buffer(0.0000001)
- except ValueError:
- pass
- try:
- poly_buff = poly_buff.buffer(-0.0000001)
- except ValueError:
- pass
- grb_obj.solid_geometry = deepcopy(poly_buff)
- grb_obj.follow_geometry = deepcopy(follow_buf)
- with self.app.proc_container.new(_("Rendering PDF layer #%d ...") % int(layer_nr)):
- ret = self.app.new_object('gerber', outname, obj_init, autoselected=False)
- if ret == 'fail':
- self.app.inform.emit('[ERROR_NOTCL] %s' %
- _('Open PDF file failed.'))
- return
- # Register recent file
- self.app.file_opened.emit('gerber', filename)
- # GUI feedback
- self.app.inform.emit('[success] %s: %s' % (_("Rendered"), outname))
- def periodic_check(self, check_period):
- """
- This function starts an QTimer and it will periodically check if parsing was done
- :param check_period: time at which to check periodically if all plots finished to be plotted
- :return:
- """
- # self.plot_thread = threading.Thread(target=lambda: self.check_plot_finished(check_period))
- # self.plot_thread.start()
- log.debug("ToolPDF --> Periodic Check started.")
- try:
- self.check_thread.stop()
- except TypeError:
- pass
- self.check_thread.setInterval(check_period)
- try:
- self.check_thread.timeout.disconnect(self.periodic_check_handler)
- except (TypeError, AttributeError):
- pass
- self.check_thread.timeout.connect(self.periodic_check_handler)
- self.check_thread.start(QtCore.QThread.HighPriority)
- def periodic_check_handler(self):
- """
- If the parsing worker finished then start multithreaded rendering
- :return:
- """
- # log.debug("checking parsing --> %s" % str(self.parsing_promises))
- try:
- if not self.parsing_promises:
- self.check_thread.stop()
- # parsing finished start the layer rendering
- if self.pdf_parsed:
- obj_to_delete = []
- for object_name in self.pdf_parsed:
- if self.app.abort_flag:
- # graceful abort requested by the user
- raise FlatCAMApp.GracefulException
- filename = deepcopy(self.pdf_parsed[object_name]['filename'])
- pdf_content = deepcopy(self.pdf_parsed[object_name]['pdf'])
- obj_to_delete.append(object_name)
- for k in pdf_content:
- if self.app.abort_flag:
- # graceful abort requested by the user
- raise FlatCAMApp.GracefulException
- ap_dict = pdf_content[k]
- if ap_dict:
- layer_nr = k
- if k == 0:
- self.app.worker_task.emit({'fcn': self.layer_rendering_as_excellon,
- 'params': [filename, ap_dict, layer_nr]})
- else:
- self.app.worker_task.emit({'fcn': self.layer_rendering_as_gerber,
- 'params': [filename, ap_dict, layer_nr]})
- # delete the object already processed so it will not be processed again for other objects
- # that were opened at the same time; like in drag & drop on GUI
- for obj_name in obj_to_delete:
- if obj_name in self.pdf_parsed:
- self.pdf_parsed.pop(obj_name)
- log.debug("ToolPDF --> Periodic check finished.")
- except Exception:
- traceback.print_exc()
- def parse_pdf(self, pdf_content):
- path = dict()
- path['lines'] = [] # it's a list of lines subpaths
- path['bezier'] = [] # it's a list of bezier arcs subpaths
- path['rectangle'] = [] # it's a list of rectangle subpaths
- subpath = dict()
- subpath['lines'] = [] # it's a list of points
- subpath['bezier'] = [] # it's a list of sublists each like this [start, c1, c2, stop]
- subpath['rectangle'] = [] # it's a list of sublists of points
- # store the start point (when 'm' command is encountered)
- current_subpath = None
- # set True when 'h' command is encountered (close subpath)
- close_subpath = False
- start_point = None
- current_point = None
- size = 0
- # initial values for the transformations, in case they are not encountered in the PDF file
- offset_geo = [0, 0]
- scale_geo = [1, 1]
- # store the objects to be transformed into Gerbers
- object_dict = {}
- # will serve as key in the object_dict
- layer_nr = 1
- # create first object
- object_dict[layer_nr] = {}
- # store the apertures here
- apertures_dict = {}
- # initial aperture
- aperture = 10
- # store the apertures with clear geometry here
- # we are interested only in the circular geometry (drill holes) therefore we target only Bezier subpaths
- clear_apertures_dict = dict()
- # everything will be stored in the '0' aperture since we are dealing with clear polygons not strokes
- clear_apertures_dict['0'] = dict()
- clear_apertures_dict['0']['size'] = 0.0
- clear_apertures_dict['0']['type'] = 'C'
- clear_apertures_dict['0']['geometry'] = []
- # on stroke color change we create a new apertures dictionary and store the old one in a storage from where
- # it will be transformed into Gerber object
- old_color = [None, None, None]
- # signal that we have clear geometry and the geometry will be added to a special layer_nr = 0
- flag_clear_geo = False
- line_nr = 0
- lines = pdf_content.splitlines()
- for pline in lines:
- if self.app.abort_flag:
- # graceful abort requested by the user
- raise FlatCAMApp.GracefulException
- line_nr += 1
- log.debug("line %d: %s" % (line_nr, pline))
- # COLOR DETECTION / OBJECT DETECTION
- match = self.stroke_color_re.search(pline)
- if match:
- color = [float(match.group(1)), float(match.group(2)), float(match.group(3))]
- log.debug(
- "ToolPDF.parse_pdf() --> STROKE Color change on line: %s --> RED=%f GREEN=%f BLUE=%f" %
- (line_nr, color[0], color[1], color[2]))
- if color[0] == old_color[0] and color[1] == old_color[1] and color[2] == old_color[2]:
- # same color, do nothing
- continue
- else:
- if apertures_dict:
- object_dict[layer_nr] = deepcopy(apertures_dict)
- apertures_dict.clear()
- layer_nr += 1
- object_dict[layer_nr] = dict()
- old_color = copy(color)
- # we make sure that the following geometry is added to the right storage
- flag_clear_geo = False
- continue
- # CLEAR GEOMETRY detection
- match = self.fill_color_re.search(pline)
- if match:
- fill_color = [float(match.group(1)), float(match.group(2)), float(match.group(3))]
- log.debug(
- "ToolPDF.parse_pdf() --> FILL Color change on line: %s --> RED=%f GREEN=%f BLUE=%f" %
- (line_nr, fill_color[0], fill_color[1], fill_color[2]))
- # if the color is white we are seeing 'clear_geometry' that can't be seen. It may be that those
- # geometries are actually holes from which we can make an Excellon file
- if fill_color[0] == 1 and fill_color[1] == 1 and fill_color[2] == 1:
- flag_clear_geo = True
- else:
- flag_clear_geo = False
- continue
- # TRANSFORMATIONS DETECTION #
- # Detect combined transformation.
- match = self.combined_transform_re.search(pline)
- if match:
- # detect save graphic stack event
- # sometimes they combine save_to_graphics_stack with the transformation on the same line
- if match.group(1) == 'q':
- log.debug(
- "ToolPDF.parse_pdf() --> Save to GS found on line: %s --> offset=[%f, %f] ||| scale=[%f, %f]" %
- (line_nr, offset_geo[0], offset_geo[1], scale_geo[0], scale_geo[1]))
- self.gs['transform'].append(deepcopy([offset_geo, scale_geo]))
- self.gs['line_width'].append(deepcopy(size))
- # transformation = TRANSLATION (OFFSET)
- if (float(match.group(3)) == 0 and float(match.group(4)) == 0) and \
- (float(match.group(6)) != 0 or float(match.group(7)) != 0):
- log.debug(
- "ToolPDF.parse_pdf() --> OFFSET transformation found on line: %s --> %s" % (line_nr, pline))
- offset_geo[0] += float(match.group(6))
- offset_geo[1] += float(match.group(7))
- # log.debug("Offset= [%f, %f]" % (offset_geo[0], offset_geo[1]))
- # transformation = SCALING
- if float(match.group(2)) != 1 and float(match.group(5)) != 1:
- log.debug(
- "ToolPDF.parse_pdf() --> SCALE transformation found on line: %s --> %s" % (line_nr, pline))
- scale_geo[0] *= float(match.group(2))
- scale_geo[1] *= float(match.group(5))
- # log.debug("Scale= [%f, %f]" % (scale_geo[0], scale_geo[1]))
- continue
- # detect save graphic stack event
- match = self.save_gs_re.search(pline)
- if match:
- log.debug(
- "ToolPDF.parse_pdf() --> Save to GS found on line: %s --> offset=[%f, %f] ||| scale=[%f, %f]" %
- (line_nr, offset_geo[0], offset_geo[1], scale_geo[0], scale_geo[1]))
- self.gs['transform'].append(deepcopy([offset_geo, scale_geo]))
- self.gs['line_width'].append(deepcopy(size))
- # detect restore from graphic stack event
- match = self.restore_gs_re.search(pline)
- if match:
- try:
- restored_transform = self.gs['transform'].pop(-1)
- offset_geo = restored_transform[0]
- scale_geo = restored_transform[1]
- except IndexError:
- # nothing to remove
- log.debug("ToolPDF.parse_pdf() --> Nothing to restore")
- pass
- try:
- size = self.gs['line_width'].pop(-1)
- except IndexError:
- log.debug("ToolPDF.parse_pdf() --> Nothing to restore")
- # nothing to remove
- pass
- log.debug(
- "ToolPDF.parse_pdf() --> Restore from GS found on line: %s --> "
- "restored_offset=[%f, %f] ||| restored_scale=[%f, %f]" %
- (line_nr, offset_geo[0], offset_geo[1], scale_geo[0], scale_geo[1]))
- # log.debug("Restored Offset= [%f, %f]" % (offset_geo[0], offset_geo[1]))
- # log.debug("Restored Scale= [%f, %f]" % (scale_geo[0], scale_geo[1]))
- # PATH CONSTRUCTION #
- # Start SUBPATH
- match = self.start_subpath_re.search(pline)
- if match:
- # we just started a subpath so we mark it as not closed yet
- close_subpath = False
- # init subpaths
- subpath['lines'] = []
- subpath['bezier'] = []
- subpath['rectangle'] = []
- # detect start point to move to
- x = float(match.group(1)) + offset_geo[0]
- y = float(match.group(2)) + offset_geo[1]
- pt = (x * self.point_to_unit_factor * scale_geo[0],
- y * self.point_to_unit_factor * scale_geo[1])
- start_point = pt
- # add the start point to subpaths
- subpath['lines'].append(start_point)
- # subpath['bezier'].append(start_point)
- # subpath['rectangle'].append(start_point)
- current_point = start_point
- continue
- # Draw Line
- match = self.draw_line_re.search(pline)
- if match:
- current_subpath = 'lines'
- x = float(match.group(1)) + offset_geo[0]
- y = float(match.group(2)) + offset_geo[1]
- pt = (x * self.point_to_unit_factor * scale_geo[0],
- y * self.point_to_unit_factor * scale_geo[1])
- subpath['lines'].append(pt)
- current_point = pt
- continue
- # Draw Bezier 'c'
- match = self.draw_arc_3pt_re.search(pline)
- if match:
- current_subpath = 'bezier'
- start = current_point
- x = float(match.group(1)) + offset_geo[0]
- y = float(match.group(2)) + offset_geo[1]
- c1 = (x * self.point_to_unit_factor * scale_geo[0],
- y * self.point_to_unit_factor * scale_geo[1])
- x = float(match.group(3)) + offset_geo[0]
- y = float(match.group(4)) + offset_geo[1]
- c2 = (x * self.point_to_unit_factor * scale_geo[0],
- y * self.point_to_unit_factor * scale_geo[1])
- x = float(match.group(5)) + offset_geo[0]
- y = float(match.group(6)) + offset_geo[1]
- stop = (x * self.point_to_unit_factor * scale_geo[0],
- y * self.point_to_unit_factor * scale_geo[1])
- subpath['bezier'].append([start, c1, c2, stop])
- current_point = stop
- continue
- # Draw Bezier 'v'
- match = self.draw_arc_2pt_c1start_re.search(pline)
- if match:
- current_subpath = 'bezier'
- start = current_point
- x = float(match.group(1)) + offset_geo[0]
- y = float(match.group(2)) + offset_geo[1]
- c2 = (x * self.point_to_unit_factor * scale_geo[0],
- y * self.point_to_unit_factor * scale_geo[1])
- x = float(match.group(3)) + offset_geo[0]
- y = float(match.group(4)) + offset_geo[1]
- stop = (x * self.point_to_unit_factor * scale_geo[0],
- y * self.point_to_unit_factor * scale_geo[1])
- subpath['bezier'].append([start, start, c2, stop])
- current_point = stop
- continue
- # Draw Bezier 'y'
- match = self.draw_arc_2pt_c2stop_re.search(pline)
- if match:
- start = current_point
- x = float(match.group(1)) + offset_geo[0]
- y = float(match.group(2)) + offset_geo[1]
- c1 = (x * self.point_to_unit_factor * scale_geo[0],
- y * self.point_to_unit_factor * scale_geo[1])
- x = float(match.group(3)) + offset_geo[0]
- y = float(match.group(4)) + offset_geo[1]
- stop = (x * self.point_to_unit_factor * scale_geo[0],
- y * self.point_to_unit_factor * scale_geo[1])
- subpath['bezier'].append([start, c1, stop, stop])
- current_point = stop
- continue
- # Draw Rectangle 're'
- match = self.rect_re.search(pline)
- if match:
- current_subpath = 'rectangle'
- x = (float(match.group(1)) + offset_geo[0]) * self.point_to_unit_factor * scale_geo[0]
- y = (float(match.group(2)) + offset_geo[1]) * self.point_to_unit_factor * scale_geo[1]
- width = (float(match.group(3)) + offset_geo[0]) * self.point_to_unit_factor * scale_geo[0]
- height = (float(match.group(4)) + offset_geo[1]) * self.point_to_unit_factor * scale_geo[1]
- pt1 = (x, y)
- pt2 = (x+width, y)
- pt3 = (x+width, y+height)
- pt4 = (x, y+height)
- subpath['rectangle'] += [pt1, pt2, pt3, pt4, pt1]
- current_point = pt1
- continue
- # Detect clipping path set
- # ignore this and delete the current subpath
- match = self.clip_path_re.search(pline)
- if match:
- subpath['lines'] = []
- subpath['bezier'] = []
- subpath['rectangle'] = []
- # it means that we've already added the subpath to path and we need to delete it
- # clipping path is usually either rectangle or lines
- if close_subpath is True:
- close_subpath = False
- if current_subpath == 'lines':
- path['lines'].pop(-1)
- if current_subpath == 'rectangle':
- path['rectangle'].pop(-1)
- continue
- # Close SUBPATH
- match = self.end_subpath_re.search(pline)
- if match:
- close_subpath = True
- if current_subpath == 'lines':
- subpath['lines'].append(start_point)
- # since we are closing the subpath add it to the path, a path may have chained subpaths
- path['lines'].append(copy(subpath['lines']))
- subpath['lines'] = []
- elif current_subpath == 'bezier':
- # subpath['bezier'].append(start_point)
- # since we are closing the subpath add it to the path, a path may have chained subpaths
- path['bezier'].append(copy(subpath['bezier']))
- subpath['bezier'] = []
- elif current_subpath == 'rectangle':
- # subpath['rectangle'].append(start_point)
- # since we are closing the subpath add it to the path, a path may have chained subpaths
- path['rectangle'].append(copy(subpath['rectangle']))
- subpath['rectangle'] = []
- continue
- # PATH PAINTING #
- # Detect Stroke width / aperture
- match = self.strokewidth_re.search(pline)
- if match:
- size = float(match.group(1))
- continue
- # Detect No_Op command, ignore the current subpath
- match = self.no_op_re.search(pline)
- if match:
- subpath['lines'] = []
- subpath['bezier'] = []
- subpath['rectangle'] = []
- continue
- # Stroke the path
- match = self.stroke_path__re.search(pline)
- if match:
- # scale the size here; some PDF printers apply transformation after the size is declared
- applied_size = size * scale_geo[0] * self.point_to_unit_factor
- path_geo = list()
- if current_subpath == 'lines':
- if path['lines']:
- for subp in path['lines']:
- geo = copy(subp)
- try:
- geo = LineString(geo).buffer((float(applied_size) / 2),
- resolution=self.step_per_circles)
- path_geo.append(geo)
- except ValueError:
- pass
- # the path was painted therefore initialize it
- path['lines'] = []
- else:
- geo = copy(subpath['lines'])
- try:
- geo = LineString(geo).buffer((float(applied_size) / 2), resolution=self.step_per_circles)
- path_geo.append(geo)
- except ValueError:
- pass
- subpath['lines'] = []
- if current_subpath == 'bezier':
- if path['bezier']:
- for subp in path['bezier']:
- geo = []
- for b in subp:
- geo += self.bezier_to_points(start=b[0], c1=b[1], c2=b[2], stop=b[3])
- try:
- geo = LineString(geo).buffer((float(applied_size) / 2),
- resolution=self.step_per_circles)
- path_geo.append(geo)
- except ValueError:
- pass
- # the path was painted therefore initialize it
- path['bezier'] = []
- else:
- geo = []
- for b in subpath['bezier']:
- geo += self.bezier_to_points(start=b[0], c1=b[1], c2=b[2], stop=b[3])
- try:
- geo = LineString(geo).buffer((float(applied_size) / 2), resolution=self.step_per_circles)
- path_geo.append(geo)
- except ValueError:
- pass
- subpath['bezier'] = []
- if current_subpath == 'rectangle':
- if path['rectangle']:
- for subp in path['rectangle']:
- geo = copy(subp)
- try:
- geo = LineString(geo).buffer((float(applied_size) / 2),
- resolution=self.step_per_circles)
- path_geo.append(geo)
- except ValueError:
- pass
- # the path was painted therefore initialize it
- path['rectangle'] = []
- else:
- geo = copy(subpath['rectangle'])
- try:
- geo = LineString(geo).buffer((float(applied_size) / 2), resolution=self.step_per_circles)
- path_geo.append(geo)
- except ValueError:
- pass
- subpath['rectangle'] = []
- # store the found geometry
- found_aperture = None
- if apertures_dict:
- for apid in apertures_dict:
- # if we already have an aperture with the current size (rounded to 5 decimals)
- if apertures_dict[apid]['size'] == round(applied_size, 5):
- found_aperture = apid
- break
- if found_aperture:
- for pdf_geo in path_geo:
- if isinstance(pdf_geo, MultiPolygon):
- for poly in pdf_geo:
- new_el = dict()
- new_el['solid'] = poly
- new_el['follow'] = poly.exterior
- apertures_dict[copy(found_aperture)]['geometry'].append(deepcopy(new_el))
- else:
- new_el = dict()
- new_el['solid'] = pdf_geo
- new_el['follow'] = pdf_geo.exterior
- apertures_dict[copy(found_aperture)]['geometry'].append(deepcopy(new_el))
- found_aperture = None
- else:
- if str(aperture) in apertures_dict.keys():
- aperture += 1
- apertures_dict[str(aperture)] = {}
- apertures_dict[str(aperture)]['size'] = round(applied_size, 5)
- apertures_dict[str(aperture)]['type'] = 'C'
- apertures_dict[str(aperture)]['geometry'] = []
- for pdf_geo in path_geo:
- if isinstance(pdf_geo, MultiPolygon):
- for poly in pdf_geo:
- new_el = dict()
- new_el['solid'] = poly
- new_el['follow'] = poly.exterior
- apertures_dict[str(aperture)]['geometry'].append(deepcopy(new_el))
- else:
- new_el = dict()
- new_el['solid'] = pdf_geo
- new_el['follow'] = pdf_geo.exterior
- apertures_dict[str(aperture)]['geometry'].append(deepcopy(new_el))
- else:
- apertures_dict[str(aperture)] = {}
- apertures_dict[str(aperture)]['size'] = round(applied_size, 5)
- apertures_dict[str(aperture)]['type'] = 'C'
- apertures_dict[str(aperture)]['geometry'] = []
- for pdf_geo in path_geo:
- if isinstance(pdf_geo, MultiPolygon):
- for poly in pdf_geo:
- new_el = dict()
- new_el['solid'] = poly
- new_el['follow'] = poly.exterior
- apertures_dict[str(aperture)]['geometry'].append(deepcopy(new_el))
- else:
- new_el = dict()
- new_el['solid'] = pdf_geo
- new_el['follow'] = pdf_geo.exterior
- apertures_dict[str(aperture)]['geometry'].append(deepcopy(new_el))
- continue
- # Fill the path
- match = self.fill_path_re.search(pline)
- if match:
- # scale the size here; some PDF printers apply transformation after the size is declared
- applied_size = size * scale_geo[0] * self.point_to_unit_factor
- path_geo = list()
- if current_subpath == 'lines':
- if path['lines']:
- for subp in path['lines']:
- geo = copy(subp)
- # close the subpath if it was not closed already
- if close_subpath is False:
- geo.append(geo[0])
- try:
- geo_el = Polygon(geo).buffer(0.0000001, resolution=self.step_per_circles)
- path_geo.append(geo_el)
- except ValueError:
- pass
- # the path was painted therefore initialize it
- path['lines'] = []
- else:
- geo = copy(subpath['lines'])
- # close the subpath if it was not closed already
- if close_subpath is False:
- geo.append(start_point)
- try:
- geo_el = Polygon(geo).buffer(0.0000001, resolution=self.step_per_circles)
- path_geo.append(geo_el)
- except ValueError:
- pass
- subpath['lines'] = []
- if current_subpath == 'bezier':
- geo = []
- if path['bezier']:
- for subp in path['bezier']:
- for b in subp:
- geo += self.bezier_to_points(start=b[0], c1=b[1], c2=b[2], stop=b[3])
- # close the subpath if it was not closed already
- if close_subpath is False:
- geo.append(geo[0])
- try:
- geo_el = Polygon(geo).buffer(0.0000001, resolution=self.step_per_circles)
- path_geo.append(geo_el)
- except ValueError:
- pass
- # the path was painted therefore initialize it
- path['bezier'] = []
- else:
- for b in subpath['bezier']:
- geo += self.bezier_to_points(start=b[0], c1=b[1], c2=b[2], stop=b[3])
- if close_subpath is False:
- geo.append(start_point)
- try:
- geo_el = Polygon(geo).buffer(0.0000001, resolution=self.step_per_circles)
- path_geo.append(geo_el)
- except ValueError:
- pass
- subpath['bezier'] = []
- if current_subpath == 'rectangle':
- if path['rectangle']:
- for subp in path['rectangle']:
- geo = copy(subp)
- # # close the subpath if it was not closed already
- # if close_subpath is False and start_point is not None:
- # geo.append(start_point)
- try:
- geo_el = Polygon(geo).buffer(0.0000001, resolution=self.step_per_circles)
- path_geo.append(geo_el)
- except ValueError:
- pass
- # the path was painted therefore initialize it
- path['rectangle'] = []
- else:
- geo = copy(subpath['rectangle'])
- # # close the subpath if it was not closed already
- # if close_subpath is False and start_point is not None:
- # geo.append(start_point)
- try:
- geo_el = Polygon(geo).buffer(0.0000001, resolution=self.step_per_circles)
- path_geo.append(geo_el)
- except ValueError:
- pass
- subpath['rectangle'] = []
- # we finished painting and also closed the path if it was the case
- close_subpath = True
- # in case that a color change to white (transparent) occurred
- if flag_clear_geo is True:
- # if there was a fill color change we look for circular geometries from which we can make
- # drill holes for the Excellon file
- if current_subpath == 'bezier':
- # if there are geometries in the list
- if path_geo:
- try:
- for g in path_geo:
- new_el = dict()
- new_el['clear'] = g
- clear_apertures_dict['0']['geometry'].append(new_el)
- except TypeError:
- new_el = dict()
- new_el['clear'] = path_geo
- clear_apertures_dict['0']['geometry'].append(new_el)
- # now that we finished searching for drill holes (this is not very precise because holes in the
- # polygon pours may appear as drill too, but .. hey you can't have it all ...) we add
- # clear_geometry
- try:
- for pdf_geo in path_geo:
- if isinstance(pdf_geo, MultiPolygon):
- for poly in pdf_geo:
- new_el = dict()
- new_el['clear'] = poly
- apertures_dict['0']['geometry'].append(deepcopy(new_el))
- else:
- new_el = dict()
- new_el['clear'] = pdf_geo
- apertures_dict['0']['geometry'].append(deepcopy(new_el))
- except KeyError:
- # in case there is no stroke width yet therefore no aperture
- apertures_dict['0'] = {}
- apertures_dict['0']['size'] = applied_size
- apertures_dict['0']['type'] = 'C'
- apertures_dict['0']['geometry'] = []
- for pdf_geo in path_geo:
- if isinstance(pdf_geo, MultiPolygon):
- for poly in pdf_geo:
- new_el = dict()
- new_el['clear'] = poly
- apertures_dict['0']['geometry'].append(deepcopy(new_el))
- else:
- new_el = dict()
- new_el['clear'] = pdf_geo
- apertures_dict['0']['geometry'].append(deepcopy(new_el))
- else:
- # else, add the geometry as usual
- try:
- for pdf_geo in path_geo:
- if isinstance(pdf_geo, MultiPolygon):
- for poly in pdf_geo:
- new_el = dict()
- new_el['solid'] = poly
- new_el['follow'] = poly.exterior
- apertures_dict['0']['geometry'].append(deepcopy(new_el))
- else:
- new_el = dict()
- new_el['solid'] = pdf_geo
- new_el['follow'] = pdf_geo.exterior
- apertures_dict['0']['geometry'].append(deepcopy(new_el))
- except KeyError:
- # in case there is no stroke width yet therefore no aperture
- apertures_dict['0'] = {}
- apertures_dict['0']['size'] = applied_size
- apertures_dict['0']['type'] = 'C'
- apertures_dict['0']['geometry'] = []
- for pdf_geo in path_geo:
- if isinstance(pdf_geo, MultiPolygon):
- for poly in pdf_geo:
- new_el = dict()
- new_el['solid'] = poly
- new_el['follow'] = poly.exterior
- apertures_dict['0']['geometry'].append(deepcopy(new_el))
- else:
- new_el = dict()
- new_el['solid'] = pdf_geo
- new_el['follow'] = pdf_geo.exterior
- apertures_dict['0']['geometry'].append(deepcopy(new_el))
- continue
- # Fill and Stroke the path
- match = self.fill_stroke_path_re.search(pline)
- if match:
- # scale the size here; some PDF printers apply transformation after the size is declared
- applied_size = size * scale_geo[0] * self.point_to_unit_factor
- path_geo = list()
- fill_geo = list()
- if current_subpath == 'lines':
- if path['lines']:
- # fill
- for subp in path['lines']:
- geo = copy(subp)
- # close the subpath if it was not closed already
- if close_subpath is False:
- geo.append(geo[0])
- try:
- geo_el = Polygon(geo).buffer(0.0000001, resolution=self.step_per_circles)
- fill_geo.append(geo_el)
- except ValueError:
- pass
- # stroke
- for subp in path['lines']:
- geo = copy(subp)
- geo = LineString(geo).buffer((float(applied_size) / 2), resolution=self.step_per_circles)
- path_geo.append(geo)
- # the path was painted therefore initialize it
- path['lines'] = []
- else:
- # fill
- geo = copy(subpath['lines'])
- # close the subpath if it was not closed already
- if close_subpath is False:
- geo.append(start_point)
- try:
- geo_el = Polygon(geo).buffer(0.0000001, resolution=self.step_per_circles)
- fill_geo.append(geo_el)
- except ValueError:
- pass
- # stroke
- geo = copy(subpath['lines'])
- geo = LineString(geo).buffer((float(applied_size) / 2), resolution=self.step_per_circles)
- path_geo.append(geo)
- subpath['lines'] = []
- subpath['lines'] = []
- if current_subpath == 'bezier':
- geo = []
- if path['bezier']:
- # fill
- for subp in path['bezier']:
- for b in subp:
- geo += self.bezier_to_points(start=b[0], c1=b[1], c2=b[2], stop=b[3])
- # close the subpath if it was not closed already
- if close_subpath is False:
- geo.append(geo[0])
- try:
- geo_el = Polygon(geo).buffer(0.0000001, resolution=self.step_per_circles)
- fill_geo.append(geo_el)
- except ValueError:
- pass
- # stroke
- for subp in path['bezier']:
- geo = []
- for b in subp:
- geo += self.bezier_to_points(start=b[0], c1=b[1], c2=b[2], stop=b[3])
- geo = LineString(geo).buffer((float(applied_size) / 2), resolution=self.step_per_circles)
- path_geo.append(geo)
- # the path was painted therefore initialize it
- path['bezier'] = []
- else:
- # fill
- for b in subpath['bezier']:
- geo += self.bezier_to_points(start=b[0], c1=b[1], c2=b[2], stop=b[3])
- if close_subpath is False:
- geo.append(start_point)
- try:
- geo_el = Polygon(geo).buffer(0.0000001, resolution=self.step_per_circles)
- fill_geo.append(geo_el)
- except ValueError:
- pass
- # stroke
- geo = []
- for b in subpath['bezier']:
- geo += self.bezier_to_points(start=b[0], c1=b[1], c2=b[2], stop=b[3])
- geo = LineString(geo).buffer((float(applied_size) / 2), resolution=self.step_per_circles)
- path_geo.append(geo)
- subpath['bezier'] = []
- if current_subpath == 'rectangle':
- if path['rectangle']:
- # fill
- for subp in path['rectangle']:
- geo = copy(subp)
- # # close the subpath if it was not closed already
- # if close_subpath is False:
- # geo.append(geo[0])
- try:
- geo_el = Polygon(geo).buffer(0.0000001, resolution=self.step_per_circles)
- fill_geo.append(geo_el)
- except ValueError:
- pass
- # stroke
- for subp in path['rectangle']:
- geo = copy(subp)
- geo = LineString(geo).buffer((float(applied_size) / 2), resolution=self.step_per_circles)
- path_geo.append(geo)
- # the path was painted therefore initialize it
- path['rectangle'] = []
- else:
- # fill
- geo = copy(subpath['rectangle'])
- # # close the subpath if it was not closed already
- # if close_subpath is False:
- # geo.append(start_point)
- try:
- geo_el = Polygon(geo).buffer(0.0000001, resolution=self.step_per_circles)
- fill_geo.append(geo_el)
- except ValueError:
- pass
- # stroke
- geo = copy(subpath['rectangle'])
- geo = LineString(geo).buffer((float(applied_size) / 2), resolution=self.step_per_circles)
- path_geo.append(geo)
- subpath['rectangle'] = []
- # we finished painting and also closed the path if it was the case
- close_subpath = True
- # store the found geometry for stroking the path
- found_aperture = None
- if apertures_dict:
- for apid in apertures_dict:
- # if we already have an aperture with the current size (rounded to 5 decimals)
- if apertures_dict[apid]['size'] == round(applied_size, 5):
- found_aperture = apid
- break
- if found_aperture:
- for pdf_geo in path_geo:
- if isinstance(pdf_geo, MultiPolygon):
- for poly in pdf_geo:
- new_el = dict()
- new_el['solid'] = poly
- new_el['follow'] = poly.exterior
- apertures_dict[copy(found_aperture)]['geometry'].append(deepcopy(new_el))
- else:
- new_el = dict()
- new_el['solid'] = pdf_geo
- new_el['follow'] = pdf_geo.exterior
- apertures_dict[copy(found_aperture)]['geometry'].append(deepcopy(new_el))
- found_aperture = None
- else:
- if str(aperture) in apertures_dict.keys():
- aperture += 1
- apertures_dict[str(aperture)] = {}
- apertures_dict[str(aperture)]['size'] = round(applied_size, 5)
- apertures_dict[str(aperture)]['type'] = 'C'
- apertures_dict[str(aperture)]['geometry'] = []
- for pdf_geo in path_geo:
- if isinstance(pdf_geo, MultiPolygon):
- for poly in pdf_geo:
- new_el = dict()
- new_el['solid'] = poly
- new_el['follow'] = poly.exterior
- apertures_dict[str(aperture)]['geometry'].append(deepcopy(new_el))
- else:
- new_el = dict()
- new_el['solid'] = pdf_geo
- new_el['follow'] = pdf_geo.exterior
- apertures_dict[str(aperture)]['geometry'].append(deepcopy(new_el))
- else:
- apertures_dict[str(aperture)] = {}
- apertures_dict[str(aperture)]['size'] = round(applied_size, 5)
- apertures_dict[str(aperture)]['type'] = 'C'
- apertures_dict[str(aperture)]['geometry'] = []
- for pdf_geo in path_geo:
- if isinstance(pdf_geo, MultiPolygon):
- for poly in pdf_geo:
- new_el = dict()
- new_el['solid'] = poly
- new_el['follow'] = poly.exterior
- apertures_dict[str(aperture)]['geometry'].append(deepcopy(new_el))
- else:
- new_el = dict()
- new_el['solid'] = pdf_geo
- new_el['follow'] = pdf_geo.exterior
- apertures_dict[str(aperture)]['geometry'].append(deepcopy(new_el))
- # ############################################# ##
- # store the found geometry for filling the path #
- # ############################################# ##
- # in case that a color change to white (transparent) occurred
- if flag_clear_geo is True:
- try:
- for pdf_geo in path_geo:
- if isinstance(pdf_geo, MultiPolygon):
- for poly in fill_geo:
- new_el = dict()
- new_el['clear'] = poly
- apertures_dict['0']['geometry'].append(deepcopy(new_el))
- else:
- new_el = dict()
- new_el['clear'] = pdf_geo
- apertures_dict['0']['geometry'].append(deepcopy(new_el))
- except KeyError:
- # in case there is no stroke width yet therefore no aperture
- apertures_dict['0'] = {}
- apertures_dict['0']['size'] = round(applied_size, 5)
- apertures_dict['0']['type'] = 'C'
- apertures_dict['0']['geometry'] = []
- for pdf_geo in fill_geo:
- if isinstance(pdf_geo, MultiPolygon):
- for poly in pdf_geo:
- new_el = dict()
- new_el['clear'] = poly
- apertures_dict['0']['geometry'].append(deepcopy(new_el))
- else:
- new_el = dict()
- new_el['clear'] = pdf_geo
- apertures_dict['0']['geometry'].append(deepcopy(new_el))
- else:
- try:
- for pdf_geo in path_geo:
- if isinstance(pdf_geo, MultiPolygon):
- for poly in fill_geo:
- new_el = dict()
- new_el['solid'] = poly
- new_el['follow'] = poly.exterior
- apertures_dict['0']['geometry'].append(deepcopy(new_el))
- else:
- new_el = dict()
- new_el['solid'] = pdf_geo
- new_el['follow'] = pdf_geo.exterior
- apertures_dict['0']['geometry'].append(deepcopy(new_el))
- except KeyError:
- # in case there is no stroke width yet therefore no aperture
- apertures_dict['0'] = {}
- apertures_dict['0']['size'] = round(applied_size, 5)
- apertures_dict['0']['type'] = 'C'
- apertures_dict['0']['geometry'] = []
- for pdf_geo in fill_geo:
- if isinstance(pdf_geo, MultiPolygon):
- for poly in pdf_geo:
- new_el = dict()
- new_el['solid'] = poly
- new_el['follow'] = poly.exterior
- apertures_dict['0']['geometry'].append(deepcopy(new_el))
- else:
- new_el = dict()
- new_el['solid'] = pdf_geo
- new_el['follow'] = pdf_geo.exterior
- apertures_dict['0']['geometry'].append(deepcopy(new_el))
- continue
- # tidy up. copy the current aperture dict to the object dict but only if it is not empty
- if apertures_dict:
- object_dict[layer_nr] = deepcopy(apertures_dict)
- if clear_apertures_dict['0']['geometry']:
- object_dict[0] = deepcopy(clear_apertures_dict)
- # delete keys (layers) with empty values
- empty_layers = []
- for layer in object_dict:
- if not object_dict[layer]:
- empty_layers.append(layer)
- for x in empty_layers:
- if x in object_dict:
- object_dict.pop(x)
- if self.app.abort_flag:
- # graceful abort requested by the user
- raise FlatCAMApp.GracefulException
- return object_dict
- def bezier_to_points(self, start, c1, c2, stop):
- """
- # Equation Bezier, page 184 PDF 1.4 reference
- # https://www.adobe.com/content/dam/acom/en/devnet/pdf/pdfs/pdf_reference_archives/PDFReference.pdf
- # Given the coordinates of the four points, the curve is generated by varying the parameter t from 0.0 to 1.0
- # in the following equation:
- # R(t) = P0*(1 - t) ** 3 + P1*3*t*(1 - t) ** 2 + P2 * 3*(1 - t) * t ** 2 + P3*t ** 3
- # When t = 0.0, the value from the function coincides with the current point P0; when t = 1.0, R(t) coincides
- # with the final point P3. Intermediate values of t generate intermediate points along the curve.
- # The curve does not, in general, pass through the two control points P1 and P2
- :return: A list of point coordinates tuples (x, y)
- """
- # here we store the geometric points
- points = []
- nr_points = np.arange(0.0, 1.0, (1 / self.step_per_circles))
- for t in nr_points:
- term_p0 = (1 - t) ** 3
- term_p1 = 3 * t * (1 - t) ** 2
- term_p2 = 3 * (1 - t) * t ** 2
- term_p3 = t ** 3
- x = start[0] * term_p0 + c1[0] * term_p1 + c2[0] * term_p2 + stop[0] * term_p3
- y = start[1] * term_p0 + c1[1] * term_p1 + c2[1] * term_p2 + stop[1] * term_p3
- points.append([x, y])
- return points
- # def bezier_to_circle(self, path):
- # lst = []
- # for el in range(len(path)):
- # if type(path) is list:
- # for coord in path[el]:
- # lst.append(coord)
- # else:
- # lst.append(el)
- #
- # if lst:
- # minx = min(lst, key=lambda t: t[0])[0]
- # miny = min(lst, key=lambda t: t[1])[1]
- # maxx = max(lst, key=lambda t: t[0])[0]
- # maxy = max(lst, key=lambda t: t[1])[1]
- # center = (maxx-minx, maxy-miny)
- # radius = (maxx-minx) / 2
- # return [center, radius]
- #
- # def circle_to_points(self, center, radius):
- # geo = Point(center).buffer(radius, resolution=self.step_per_circles)
- # return LineString(list(geo.exterior.coords))
- #
|