camlib.py 145 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204
  1. ############################################################
  2. # FlatCAM: 2D Post-processing for Manufacturing #
  3. # http://flatcam.org #
  4. # Author: Juan Pablo Caram (c) #
  5. # Date: 2/5/2014 #
  6. # MIT Licence #
  7. ############################################################
  8. #from __future__ import division
  9. #from scipy import optimize
  10. #import traceback
  11. from cStringIO import StringIO
  12. from numpy import arctan2, Inf, array, sqrt, pi, ceil, sin, cos, dot, float32, \
  13. transpose
  14. from numpy.linalg import solve, norm
  15. from matplotlib.figure import Figure
  16. import re
  17. import sys
  18. import traceback
  19. from decimal import Decimal
  20. import collections
  21. import numpy as np
  22. import matplotlib
  23. #import matplotlib.pyplot as plt
  24. #from scipy.spatial import Delaunay, KDTree
  25. from rtree import index as rtindex
  26. # See: http://toblerity.org/shapely/manual.html
  27. from shapely.geometry import Polygon, LineString, Point, LinearRing
  28. from shapely.geometry import MultiPoint, MultiPolygon
  29. from shapely.geometry import box as shply_box
  30. from shapely.ops import cascaded_union, unary_union
  31. import shapely.affinity as affinity
  32. from shapely.wkt import loads as sloads
  33. from shapely.wkt import dumps as sdumps
  34. from shapely.geometry.base import BaseGeometry
  35. # Used for solid polygons in Matplotlib
  36. from descartes.patch import PolygonPatch
  37. import simplejson as json
  38. # TODO: Commented for FlatCAM packaging with cx_freeze
  39. #from matplotlib.pyplot import plot, subplot
  40. import xml.etree.ElementTree as ET
  41. from svg.path import Path, Line, Arc, CubicBezier, QuadraticBezier, parse_path
  42. import itertools
  43. import xml.etree.ElementTree as ET
  44. from svg.path import Path, Line, Arc, CubicBezier, QuadraticBezier, parse_path
  45. from svgparse import *
  46. import logging
  47. log = logging.getLogger('base2')
  48. log.setLevel(logging.DEBUG)
  49. # log.setLevel(logging.WARNING)
  50. # log.setLevel(logging.INFO)
  51. formatter = logging.Formatter('[%(levelname)s] %(message)s')
  52. handler = logging.StreamHandler()
  53. handler.setFormatter(formatter)
  54. log.addHandler(handler)
  55. class ParseError(Exception):
  56. pass
  57. class Geometry(object):
  58. """
  59. Base geometry class.
  60. """
  61. defaults = {
  62. "init_units": 'in'
  63. }
  64. def __init__(self):
  65. # Units (in or mm)
  66. self.units = Geometry.defaults["init_units"]
  67. # Final geometry: MultiPolygon or list (of geometry constructs)
  68. self.solid_geometry = None
  69. # Attributes to be included in serialization
  70. self.ser_attrs = ['units', 'solid_geometry']
  71. # Flattened geometry (list of paths only)
  72. self.flat_geometry = []
  73. # Index
  74. self.index = None
  75. def make_index(self):
  76. self.flatten()
  77. self.index = FlatCAMRTree()
  78. for i, g in enumerate(self.flat_geometry):
  79. self.index.insert(i, g)
  80. def add_circle(self, origin, radius):
  81. """
  82. Adds a circle to the object.
  83. :param origin: Center of the circle.
  84. :param radius: Radius of the circle.
  85. :return: None
  86. """
  87. # TODO: Decide what solid_geometry is supposed to be and how we append to it.
  88. if self.solid_geometry is None:
  89. self.solid_geometry = []
  90. if type(self.solid_geometry) is list:
  91. self.solid_geometry.append(Point(origin).buffer(radius))
  92. return
  93. try:
  94. self.solid_geometry = self.solid_geometry.union(Point(origin).buffer(radius))
  95. except:
  96. #print "Failed to run union on polygons."
  97. log.error("Failed to run union on polygons.")
  98. raise
  99. def add_polygon(self, points):
  100. """
  101. Adds a polygon to the object (by union)
  102. :param points: The vertices of the polygon.
  103. :return: None
  104. """
  105. if self.solid_geometry is None:
  106. self.solid_geometry = []
  107. if type(self.solid_geometry) is list:
  108. self.solid_geometry.append(Polygon(points))
  109. return
  110. try:
  111. self.solid_geometry = self.solid_geometry.union(Polygon(points))
  112. except:
  113. #print "Failed to run union on polygons."
  114. log.error("Failed to run union on polygons.")
  115. raise
  116. def add_polyline(self, points):
  117. """
  118. Adds a polyline to the object (by union)
  119. :param points: The vertices of the polyline.
  120. :return: None
  121. """
  122. if self.solid_geometry is None:
  123. self.solid_geometry = []
  124. if type(self.solid_geometry) is list:
  125. self.solid_geometry.append(LineString(points))
  126. return
  127. try:
  128. self.solid_geometry = self.solid_geometry.union(LineString(points))
  129. except:
  130. #print "Failed to run union on polygons."
  131. log.error("Failed to run union on polylines.")
  132. raise
  133. def is_empty(self):
  134. if isinstance(self.solid_geometry, BaseGeometry):
  135. return self.solid_geometry.is_empty
  136. if isinstance(self.solid_geometry, list):
  137. return len(self.solid_geometry) == 0
  138. raise Exception("self.solid_geometry is neither BaseGeometry or list.")
  139. def subtract_polygon(self, points):
  140. """
  141. Subtract polygon from the given object. This only operates on the paths in the original geometry, i.e. it converts polygons into paths.
  142. :param points: The vertices of the polygon.
  143. :return: none
  144. """
  145. if self.solid_geometry is None:
  146. self.solid_geometry = []
  147. #pathonly should be allways True, otherwise polygons are not subtracted
  148. flat_geometry = self.flatten(pathonly=True)
  149. log.debug("%d paths" % len(flat_geometry))
  150. polygon=Polygon(points)
  151. toolgeo=cascaded_union(polygon)
  152. diffs=[]
  153. for target in flat_geometry:
  154. if type(target) == LineString or type(target) == LinearRing:
  155. diffs.append(target.difference(toolgeo))
  156. else:
  157. log.warning("Not implemented.")
  158. self.solid_geometry=cascaded_union(diffs)
  159. def bounds(self):
  160. """
  161. Returns coordinates of rectangular bounds
  162. of geometry: (xmin, ymin, xmax, ymax).
  163. """
  164. log.debug("Geometry->bounds()")
  165. if self.solid_geometry is None:
  166. log.debug("solid_geometry is None")
  167. return 0, 0, 0, 0
  168. if type(self.solid_geometry) is list:
  169. # TODO: This can be done faster. See comment from Shapely mailing lists.
  170. if len(self.solid_geometry) == 0:
  171. log.debug('solid_geometry is empty []')
  172. return 0, 0, 0, 0
  173. return cascaded_union(self.solid_geometry).bounds
  174. else:
  175. return self.solid_geometry.bounds
  176. def find_polygon(self, point, geoset=None):
  177. """
  178. Find an object that object.contains(Point(point)) in
  179. geoset, which can can be iterable, contain iterables of, or
  180. be itself an implementer of .contains().
  181. Note:
  182. * Shapely Polygons will work as expected here. Linearrings
  183. will only yield true if the point is in the perimeter.
  184. :param point: See description
  185. :param geoset: Set to search. If none, the defaults to
  186. self.solid_geometry.
  187. :return: Polygon containing point or None.
  188. """
  189. if geoset is None:
  190. geoset = self.solid_geometry
  191. try: # Iterable
  192. for sub_geo in geoset:
  193. p = self.find_polygon(point, geoset=sub_geo)
  194. if p is not None:
  195. return p
  196. except TypeError: # Non-iterable
  197. try: # Implements .contains()
  198. if geoset.contains(Point(point)):
  199. return geoset
  200. except AttributeError: # Does not implement .contains()
  201. return None
  202. return None
  203. def get_interiors(self, geometry=None):
  204. interiors = []
  205. if geometry is None:
  206. geometry = self.solid_geometry
  207. ## If iterable, expand recursively.
  208. try:
  209. for geo in geometry:
  210. interiors.extend(self.get_interiors(geometry=geo))
  211. ## Not iterable, get the exterior if polygon.
  212. except TypeError:
  213. if type(geometry) == Polygon:
  214. interiors.extend(geometry.interiors)
  215. return interiors
  216. def get_exteriors(self, geometry=None):
  217. """
  218. Returns all exteriors of polygons in geometry. Uses
  219. ``self.solid_geometry`` if geometry is not provided.
  220. :param geometry: Shapely type or list or list of list of such.
  221. :return: List of paths constituting the exteriors
  222. of polygons in geometry.
  223. """
  224. exteriors = []
  225. if geometry is None:
  226. geometry = self.solid_geometry
  227. ## If iterable, expand recursively.
  228. try:
  229. for geo in geometry:
  230. exteriors.extend(self.get_exteriors(geometry=geo))
  231. ## Not iterable, get the exterior if polygon.
  232. except TypeError:
  233. if type(geometry) == Polygon:
  234. exteriors.append(geometry.exterior)
  235. return exteriors
  236. def flatten(self, geometry=None, reset=True, pathonly=False):
  237. """
  238. Creates a list of non-iterable linear geometry objects.
  239. Polygons are expanded into its exterior and interiors if specified.
  240. Results are placed in self.flat_geoemtry
  241. :param geometry: Shapely type or list or list of list of such.
  242. :param reset: Clears the contents of self.flat_geometry.
  243. :param pathonly: Expands polygons into linear elements.
  244. """
  245. if geometry is None:
  246. geometry = self.solid_geometry
  247. if reset:
  248. self.flat_geometry = []
  249. ## If iterable, expand recursively.
  250. try:
  251. for geo in geometry:
  252. self.flatten(geometry=geo,
  253. reset=False,
  254. pathonly=pathonly)
  255. ## Not iterable, do the actual indexing and add.
  256. except TypeError:
  257. if pathonly and type(geometry) == Polygon:
  258. self.flat_geometry.append(geometry.exterior)
  259. self.flatten(geometry=geometry.interiors,
  260. reset=False,
  261. pathonly=True)
  262. else:
  263. self.flat_geometry.append(geometry)
  264. return self.flat_geometry
  265. # def make2Dstorage(self):
  266. #
  267. # self.flatten()
  268. #
  269. # def get_pts(o):
  270. # pts = []
  271. # if type(o) == Polygon:
  272. # g = o.exterior
  273. # pts += list(g.coords)
  274. # for i in o.interiors:
  275. # pts += list(i.coords)
  276. # else:
  277. # pts += list(o.coords)
  278. # return pts
  279. #
  280. # storage = FlatCAMRTreeStorage()
  281. # storage.get_points = get_pts
  282. # for shape in self.flat_geometry:
  283. # storage.insert(shape)
  284. # return storage
  285. # def flatten_to_paths(self, geometry=None, reset=True):
  286. # """
  287. # Creates a list of non-iterable linear geometry elements and
  288. # indexes them in rtree.
  289. #
  290. # :param geometry: Iterable geometry
  291. # :param reset: Wether to clear (True) or append (False) to self.flat_geometry
  292. # :return: self.flat_geometry, self.flat_geometry_rtree
  293. # """
  294. #
  295. # if geometry is None:
  296. # geometry = self.solid_geometry
  297. #
  298. # if reset:
  299. # self.flat_geometry = []
  300. #
  301. # ## If iterable, expand recursively.
  302. # try:
  303. # for geo in geometry:
  304. # self.flatten_to_paths(geometry=geo, reset=False)
  305. #
  306. # ## Not iterable, do the actual indexing and add.
  307. # except TypeError:
  308. # if type(geometry) == Polygon:
  309. # g = geometry.exterior
  310. # self.flat_geometry.append(g)
  311. #
  312. # ## Add first and last points of the path to the index.
  313. # self.flat_geometry_rtree.insert(len(self.flat_geometry) - 1, g.coords[0])
  314. # self.flat_geometry_rtree.insert(len(self.flat_geometry) - 1, g.coords[-1])
  315. #
  316. # for interior in geometry.interiors:
  317. # g = interior
  318. # self.flat_geometry.append(g)
  319. # self.flat_geometry_rtree.insert(len(self.flat_geometry) - 1, g.coords[0])
  320. # self.flat_geometry_rtree.insert(len(self.flat_geometry) - 1, g.coords[-1])
  321. # else:
  322. # g = geometry
  323. # self.flat_geometry.append(g)
  324. # self.flat_geometry_rtree.insert(len(self.flat_geometry) - 1, g.coords[0])
  325. # self.flat_geometry_rtree.insert(len(self.flat_geometry) - 1, g.coords[-1])
  326. #
  327. # return self.flat_geometry, self.flat_geometry_rtree
  328. def isolation_geometry(self, offset):
  329. """
  330. Creates contours around geometry at a given
  331. offset distance.
  332. :param offset: Offset distance.
  333. :type offset: float
  334. :return: The buffered geometry.
  335. :rtype: Shapely.MultiPolygon or Shapely.Polygon
  336. """
  337. return self.solid_geometry.buffer(offset)
  338. def import_svg(self, filename, flip=True):
  339. """
  340. Imports shapes from an SVG file into the object's geometry.
  341. :param filename: Path to the SVG file.
  342. :type filename: str
  343. :param flip: Flip the vertically.
  344. :type flip: bool
  345. :return: None
  346. """
  347. # Parse into list of shapely objects
  348. svg_tree = ET.parse(filename)
  349. svg_root = svg_tree.getroot()
  350. # Change origin to bottom left
  351. h = svgparselength(svg_root.get('height'))[0] # TODO: No units support yet
  352. geos = getsvggeo(svg_root)
  353. if flip:
  354. geos = [translate(scale(g, 1.0, -1.0, origin=(0, 0)), yoff=h) for g in geos]
  355. # Add to object
  356. if self.solid_geometry is None:
  357. self.solid_geometry = []
  358. if type(self.solid_geometry) is list:
  359. # self.solid_geometry.append(cascaded_union(geos))
  360. if type(geos) is list:
  361. self.solid_geometry += geos
  362. else:
  363. self.solid_geometry.append(geos)
  364. else: # It's shapely geometry
  365. # self.solid_geometry = cascaded_union([self.solid_geometry,
  366. # cascaded_union(geos)])
  367. self.solid_geometry = [self.solid_geometry, geos]
  368. def size(self):
  369. """
  370. Returns (width, height) of rectangular
  371. bounds of geometry.
  372. """
  373. if self.solid_geometry is None:
  374. log.warning("Solid_geometry not computed yet.")
  375. return 0
  376. bounds = self.bounds()
  377. return bounds[2] - bounds[0], bounds[3] - bounds[1]
  378. def get_empty_area(self, boundary=None):
  379. """
  380. Returns the complement of self.solid_geometry within
  381. the given boundary polygon. If not specified, it defaults to
  382. the rectangular bounding box of self.solid_geometry.
  383. """
  384. if boundary is None:
  385. boundary = self.solid_geometry.envelope
  386. return boundary.difference(self.solid_geometry)
  387. @staticmethod
  388. def clear_polygon(polygon, tooldia, overlap=0.15, connect=True):
  389. """
  390. Creates geometry inside a polygon for a tool to cover
  391. the whole area.
  392. This algorithm shrinks the edges of the polygon and takes
  393. the resulting edges as toolpaths.
  394. :param polygon: Polygon to clear.
  395. :param tooldia: Diameter of the tool.
  396. :param overlap: Overlap of toolpasses.
  397. :return:
  398. """
  399. log.debug("camlib.clear_polygon()")
  400. assert type(polygon) == Polygon or type(polygon) == MultiPolygon, \
  401. "Expected a Polygon or MultiPolygon, got %s" % type(polygon)
  402. ## The toolpaths
  403. # Index first and last points in paths
  404. def get_pts(o):
  405. return [o.coords[0], o.coords[-1]]
  406. geoms = FlatCAMRTreeStorage()
  407. geoms.get_points = get_pts
  408. # Can only result in a Polygon or MultiPolygon
  409. # NOTE: The resulting polygon can be "empty".
  410. current = polygon.buffer(-tooldia / 2.0)
  411. if current.area == 0:
  412. # Otherwise, trying to to insert current.exterior == None
  413. # into the FlatCAMStorage will fail.
  414. return None
  415. # current can be a MultiPolygon
  416. try:
  417. for p in current:
  418. geoms.insert(p.exterior)
  419. for i in p.interiors:
  420. geoms.insert(i)
  421. # Not a Multipolygon. Must be a Polygon
  422. except TypeError:
  423. geoms.insert(current.exterior)
  424. for i in current.interiors:
  425. geoms.insert(i)
  426. while True:
  427. # Can only result in a Polygon or MultiPolygon
  428. current = current.buffer(-tooldia * (1 - overlap))
  429. if current.area > 0:
  430. # current can be a MultiPolygon
  431. try:
  432. for p in current:
  433. geoms.insert(p.exterior)
  434. for i in p.interiors:
  435. geoms.insert(i)
  436. # Not a Multipolygon. Must be a Polygon
  437. except TypeError:
  438. geoms.insert(current.exterior)
  439. for i in current.interiors:
  440. geoms.insert(i)
  441. else:
  442. break
  443. # Optimization: Reduce lifts
  444. if connect:
  445. log.debug("Reducing tool lifts...")
  446. geoms = Geometry.paint_connect(geoms, polygon, tooldia)
  447. return geoms
  448. @staticmethod
  449. def clear_polygon2(polygon, tooldia, seedpoint=None, overlap=0.15, connect=True):
  450. """
  451. Creates geometry inside a polygon for a tool to cover
  452. the whole area.
  453. This algorithm starts with a seed point inside the polygon
  454. and draws circles around it. Arcs inside the polygons are
  455. valid cuts. Finalizes by cutting around the inside edge of
  456. the polygon.
  457. :param polygon: Shapely.geometry.Polygon
  458. :param tooldia: Diameter of the tool
  459. :param seedpoint: Shapely.geometry.Point or None
  460. :param overlap: Tool fraction overlap bewteen passes
  461. :return: List of toolpaths covering polygon.
  462. :rtype: FlatCAMRTreeStorage | None
  463. """
  464. log.debug("camlib.clear_polygon2()")
  465. # Current buffer radius
  466. radius = tooldia / 2 * (1 - overlap)
  467. ## The toolpaths
  468. # Index first and last points in paths
  469. def get_pts(o):
  470. return [o.coords[0], o.coords[-1]]
  471. geoms = FlatCAMRTreeStorage()
  472. geoms.get_points = get_pts
  473. # Path margin
  474. path_margin = polygon.buffer(-tooldia / 2)
  475. # Estimate good seedpoint if not provided.
  476. if seedpoint is None:
  477. seedpoint = path_margin.representative_point()
  478. # Grow from seed until outside the box. The polygons will
  479. # never have an interior, so take the exterior LinearRing.
  480. while 1:
  481. path = Point(seedpoint).buffer(radius).exterior
  482. path = path.intersection(path_margin)
  483. # Touches polygon?
  484. if path.is_empty:
  485. break
  486. else:
  487. #geoms.append(path)
  488. #geoms.insert(path)
  489. # path can be a collection of paths.
  490. try:
  491. for p in path:
  492. geoms.insert(p)
  493. except TypeError:
  494. geoms.insert(path)
  495. radius += tooldia * (1 - overlap)
  496. # Clean inside edges of the original polygon
  497. outer_edges = [x.exterior for x in autolist(polygon.buffer(-tooldia / 2))]
  498. inner_edges = []
  499. for x in autolist(polygon.buffer(-tooldia / 2)): # Over resulting polygons
  500. for y in x.interiors: # Over interiors of each polygon
  501. inner_edges.append(y)
  502. #geoms += outer_edges + inner_edges
  503. for g in outer_edges + inner_edges:
  504. geoms.insert(g)
  505. # Optimization connect touching paths
  506. # log.debug("Connecting paths...")
  507. # geoms = Geometry.path_connect(geoms)
  508. # Optimization: Reduce lifts
  509. if connect:
  510. log.debug("Reducing tool lifts...")
  511. geoms = Geometry.paint_connect(geoms, polygon, tooldia)
  512. return geoms
  513. @staticmethod
  514. def clear_polygon3(polygon, tooldia, overlap=0.15, connect=True):
  515. """
  516. Creates geometry inside a polygon for a tool to cover
  517. the whole area.
  518. This algorithm draws horizontal lines inside the polygon.
  519. :param polygon: The polygon being painted.
  520. :type polygon: shapely.geometry.Polygon
  521. :param tooldia: Tool diameter.
  522. :param overlap: Tool path overlap percentage.
  523. :param connect: Connect lines to avoid tool lifts.
  524. :return:
  525. """
  526. log.debug("camlib.clear_polygon3()")
  527. ## The toolpaths
  528. # Index first and last points in paths
  529. def get_pts(o):
  530. return [o.coords[0], o.coords[-1]]
  531. geoms = FlatCAMRTreeStorage()
  532. geoms.get_points = get_pts
  533. lines = []
  534. # Bounding box
  535. left, bot, right, top = polygon.bounds
  536. # First line
  537. y = top - tooldia / 2
  538. while y > bot + tooldia / 2:
  539. line = LineString([(left, y), (right, y)])
  540. lines.append(line)
  541. y -= tooldia * (1 - overlap)
  542. # Last line
  543. y = bot + tooldia / 2
  544. line = LineString([(left, y), (right, y)])
  545. lines.append(line)
  546. # Combine
  547. linesgeo = unary_union(lines)
  548. # Trim to the polygon
  549. margin_poly = polygon.buffer(-tooldia / 2)
  550. lines_trimmed = linesgeo.intersection(margin_poly)
  551. # Add lines to storage
  552. for line in lines_trimmed:
  553. geoms.insert(line)
  554. # Add margin to storage
  555. # geoms.insert(margin_poly.exterior)
  556. # for ints in margin_poly.interiors:
  557. # geoms.insert(ints)
  558. # Optimization: Reduce lifts
  559. if connect:
  560. log.debug("Reducing tool lifts...")
  561. geoms = Geometry.paint_connect(geoms, polygon, tooldia)
  562. return geoms
  563. def scale(self, factor):
  564. """
  565. Scales all of the object's geometry by a given factor. Override
  566. this method.
  567. :param factor: Number by which to scale.
  568. :type factor: float
  569. :return: None
  570. :rtype: None
  571. """
  572. return
  573. def offset(self, vect):
  574. """
  575. Offset the geometry by the given vector. Override this method.
  576. :param vect: (x, y) vector by which to offset the object.
  577. :type vect: tuple
  578. :return: None
  579. """
  580. return
  581. @staticmethod
  582. def paint_connect(storage, boundary, tooldia, max_walk=None):
  583. """
  584. Connects paths that results in a connection segment that is
  585. within the paint area. This avoids unnecessary tool lifting.
  586. :param storage: Geometry to be optimized.
  587. :type storage: FlatCAMRTreeStorage
  588. :param boundary: Polygon defining the limits of the paintable area.
  589. :type boundary: Polygon
  590. :param tooldia: Tool diameter.
  591. :rtype tooldia: float
  592. :param max_walk: Maximum allowable distance without lifting tool.
  593. :type max_walk: float or None
  594. :return: Optimized geometry.
  595. :rtype: FlatCAMRTreeStorage
  596. """
  597. # If max_walk is not specified, the maximum allowed is
  598. # 10 times the tool diameter
  599. max_walk = max_walk or 10 * tooldia
  600. # Assuming geolist is a flat list of flat elements
  601. ## Index first and last points in paths
  602. def get_pts(o):
  603. return [o.coords[0], o.coords[-1]]
  604. # storage = FlatCAMRTreeStorage()
  605. # storage.get_points = get_pts
  606. #
  607. # for shape in geolist:
  608. # if shape is not None: # TODO: This shouldn't have happened.
  609. # # Make LlinearRings into linestrings otherwise
  610. # # When chaining the coordinates path is messed up.
  611. # storage.insert(LineString(shape))
  612. # #storage.insert(shape)
  613. ## Iterate over geometry paths getting the nearest each time.
  614. #optimized_paths = []
  615. optimized_paths = FlatCAMRTreeStorage()
  616. optimized_paths.get_points = get_pts
  617. path_count = 0
  618. current_pt = (0, 0)
  619. pt, geo = storage.nearest(current_pt)
  620. storage.remove(geo)
  621. geo = LineString(geo)
  622. current_pt = geo.coords[-1]
  623. try:
  624. while True:
  625. path_count += 1
  626. #log.debug("Path %d" % path_count)
  627. pt, candidate = storage.nearest(current_pt)
  628. storage.remove(candidate)
  629. candidate = LineString(candidate)
  630. # If last point in geometry is the nearest
  631. # then reverse coordinates.
  632. # but prefer the first one if last == first
  633. if pt != candidate.coords[0] and pt == candidate.coords[-1]:
  634. candidate.coords = list(candidate.coords)[::-1]
  635. # Straight line from current_pt to pt.
  636. # Is the toolpath inside the geometry?
  637. walk_path = LineString([current_pt, pt])
  638. walk_cut = walk_path.buffer(tooldia / 2)
  639. if walk_cut.within(boundary) and walk_path.length < max_walk:
  640. #log.debug("Walk to path #%d is inside. Joining." % path_count)
  641. # Completely inside. Append...
  642. geo.coords = list(geo.coords) + list(candidate.coords)
  643. # try:
  644. # last = optimized_paths[-1]
  645. # last.coords = list(last.coords) + list(geo.coords)
  646. # except IndexError:
  647. # optimized_paths.append(geo)
  648. else:
  649. # Have to lift tool. End path.
  650. #log.debug("Path #%d not within boundary. Next." % path_count)
  651. #optimized_paths.append(geo)
  652. optimized_paths.insert(geo)
  653. geo = candidate
  654. current_pt = geo.coords[-1]
  655. # Next
  656. #pt, geo = storage.nearest(current_pt)
  657. except StopIteration: # Nothing left in storage.
  658. #pass
  659. optimized_paths.insert(geo)
  660. return optimized_paths
  661. @staticmethod
  662. def path_connect(storage, origin=(0, 0)):
  663. """
  664. Simplifies paths in the FlatCAMRTreeStorage storage by
  665. connecting paths that touch on their enpoints.
  666. :param storage: Storage containing the initial paths.
  667. :rtype storage: FlatCAMRTreeStorage
  668. :return: Simplified storage.
  669. :rtype: FlatCAMRTreeStorage
  670. """
  671. log.debug("path_connect()")
  672. ## Index first and last points in paths
  673. def get_pts(o):
  674. return [o.coords[0], o.coords[-1]]
  675. #
  676. # storage = FlatCAMRTreeStorage()
  677. # storage.get_points = get_pts
  678. #
  679. # for shape in pathlist:
  680. # if shape is not None: # TODO: This shouldn't have happened.
  681. # storage.insert(shape)
  682. path_count = 0
  683. pt, geo = storage.nearest(origin)
  684. storage.remove(geo)
  685. #optimized_geometry = [geo]
  686. optimized_geometry = FlatCAMRTreeStorage()
  687. optimized_geometry.get_points = get_pts
  688. #optimized_geometry.insert(geo)
  689. try:
  690. while True:
  691. path_count += 1
  692. #print "geo is", geo
  693. _, left = storage.nearest(geo.coords[0])
  694. #print "left is", left
  695. # If left touches geo, remove left from original
  696. # storage and append to geo.
  697. if type(left) == LineString:
  698. if left.coords[0] == geo.coords[0]:
  699. storage.remove(left)
  700. geo.coords = list(geo.coords)[::-1] + list(left.coords)
  701. continue
  702. if left.coords[-1] == geo.coords[0]:
  703. storage.remove(left)
  704. geo.coords = list(left.coords) + list(geo.coords)
  705. continue
  706. if left.coords[0] == geo.coords[-1]:
  707. storage.remove(left)
  708. geo.coords = list(geo.coords) + list(left.coords)
  709. continue
  710. if left.coords[-1] == geo.coords[-1]:
  711. storage.remove(left)
  712. geo.coords = list(geo.coords) + list(left.coords)[::-1]
  713. continue
  714. _, right = storage.nearest(geo.coords[-1])
  715. #print "right is", right
  716. # If right touches geo, remove left from original
  717. # storage and append to geo.
  718. if type(right) == LineString:
  719. if right.coords[0] == geo.coords[-1]:
  720. storage.remove(right)
  721. geo.coords = list(geo.coords) + list(right.coords)
  722. continue
  723. if right.coords[-1] == geo.coords[-1]:
  724. storage.remove(right)
  725. geo.coords = list(geo.coords) + list(right.coords)[::-1]
  726. continue
  727. if right.coords[0] == geo.coords[0]:
  728. storage.remove(right)
  729. geo.coords = list(geo.coords)[::-1] + list(right.coords)
  730. continue
  731. if right.coords[-1] == geo.coords[0]:
  732. storage.remove(right)
  733. geo.coords = list(left.coords) + list(geo.coords)
  734. continue
  735. # right is either a LinearRing or it does not connect
  736. # to geo (nothing left to connect to geo), so we continue
  737. # with right as geo.
  738. storage.remove(right)
  739. if type(right) == LinearRing:
  740. optimized_geometry.insert(right)
  741. else:
  742. # Cannot exteng geo any further. Put it away.
  743. optimized_geometry.insert(geo)
  744. # Continue with right.
  745. geo = right
  746. except StopIteration: # Nothing found in storage.
  747. optimized_geometry.insert(geo)
  748. #print path_count
  749. log.debug("path_count = %d" % path_count)
  750. return optimized_geometry
  751. def convert_units(self, units):
  752. """
  753. Converts the units of the object to ``units`` by scaling all
  754. the geometry appropriately. This call ``scale()``. Don't call
  755. it again in descendents.
  756. :param units: "IN" or "MM"
  757. :type units: str
  758. :return: Scaling factor resulting from unit change.
  759. :rtype: float
  760. """
  761. log.debug("Geometry.convert_units()")
  762. if units.upper() == self.units.upper():
  763. return 1.0
  764. if units.upper() == "MM":
  765. factor = 25.4
  766. elif units.upper() == "IN":
  767. factor = 1 / 25.4
  768. else:
  769. log.error("Unsupported units: %s" % str(units))
  770. return 1.0
  771. self.units = units
  772. self.scale(factor)
  773. return factor
  774. def to_dict(self):
  775. """
  776. Returns a respresentation of the object as a dictionary.
  777. Attributes to include are listed in ``self.ser_attrs``.
  778. :return: A dictionary-encoded copy of the object.
  779. :rtype: dict
  780. """
  781. d = {}
  782. for attr in self.ser_attrs:
  783. d[attr] = getattr(self, attr)
  784. return d
  785. def from_dict(self, d):
  786. """
  787. Sets object's attributes from a dictionary.
  788. Attributes to include are listed in ``self.ser_attrs``.
  789. This method will look only for only and all the
  790. attributes in ``self.ser_attrs``. They must all
  791. be present. Use only for deserializing saved
  792. objects.
  793. :param d: Dictionary of attributes to set in the object.
  794. :type d: dict
  795. :return: None
  796. """
  797. for attr in self.ser_attrs:
  798. setattr(self, attr, d[attr])
  799. def union(self):
  800. """
  801. Runs a cascaded union on the list of objects in
  802. solid_geometry.
  803. :return: None
  804. """
  805. self.solid_geometry = [cascaded_union(self.solid_geometry)]
  806. def export_svg(self, scale_factor=0.00):
  807. """
  808. Exports the Gemoetry Object as a SVG Element
  809. :return: SVG Element
  810. """
  811. # Make sure we see a Shapely Geometry class and not a list
  812. geom = cascaded_union(self.flatten())
  813. # scale_factor is a multiplication factor for the SVG stroke-width used within shapely's svg export
  814. # If 0 or less which is invalid then default to 0.05
  815. # This value appears to work for zooming, and getting the output svg line width
  816. # to match that viewed on screen with FlatCam
  817. if scale_factor <= 0:
  818. scale_factor = 0.05
  819. # Convert to a SVG
  820. svg_elem = geom.svg(scale_factor=scale_factor)
  821. return svg_elem
  822. def mirror(self, axis, point):
  823. """
  824. Mirrors the object around a specified axis passign through
  825. the given point.
  826. :param axis: "X" or "Y" indicates around which axis to mirror.
  827. :type axis: str
  828. :param point: [x, y] point belonging to the mirror axis.
  829. :type point: list
  830. :return: None
  831. """
  832. px, py = point
  833. xscale, yscale = {"X": (1.0, -1.0), "Y": (-1.0, 1.0)}[axis]
  834. def mirror_geom(obj):
  835. if type(obj) is list:
  836. new_obj = []
  837. for g in obj:
  838. new_obj.append(mirror_geom(g))
  839. return new_obj
  840. else:
  841. return affinity.scale(obj, xscale, yscale, origin=(px,py))
  842. self.solid_geometry = mirror_geom(self.solid_geometry)
  843. class ApertureMacro:
  844. """
  845. Syntax of aperture macros.
  846. <AM command>: AM<Aperture macro name>*<Macro content>
  847. <Macro content>: {{<Variable definition>*}{<Primitive>*}}
  848. <Variable definition>: $K=<Arithmetic expression>
  849. <Primitive>: <Primitive code>,<Modifier>{,<Modifier>}|<Comment>
  850. <Modifier>: $M|< Arithmetic expression>
  851. <Comment>: 0 <Text>
  852. """
  853. ## Regular expressions
  854. am1_re = re.compile(r'^%AM([^\*]+)\*(.+)?(%)?$')
  855. am2_re = re.compile(r'(.*)%$')
  856. amcomm_re = re.compile(r'^0(.*)')
  857. amprim_re = re.compile(r'^[1-9].*')
  858. amvar_re = re.compile(r'^\$([0-9a-zA-z]+)=(.*)')
  859. def __init__(self, name=None):
  860. self.name = name
  861. self.raw = ""
  862. ## These below are recomputed for every aperture
  863. ## definition, in other words, are temporary variables.
  864. self.primitives = []
  865. self.locvars = {}
  866. self.geometry = None
  867. def to_dict(self):
  868. """
  869. Returns the object in a serializable form. Only the name and
  870. raw are required.
  871. :return: Dictionary representing the object. JSON ready.
  872. :rtype: dict
  873. """
  874. return {
  875. 'name': self.name,
  876. 'raw': self.raw
  877. }
  878. def from_dict(self, d):
  879. """
  880. Populates the object from a serial representation created
  881. with ``self.to_dict()``.
  882. :param d: Serial representation of an ApertureMacro object.
  883. :return: None
  884. """
  885. for attr in ['name', 'raw']:
  886. setattr(self, attr, d[attr])
  887. def parse_content(self):
  888. """
  889. Creates numerical lists for all primitives in the aperture
  890. macro (in ``self.raw``) by replacing all variables by their
  891. values iteratively and evaluating expressions. Results
  892. are stored in ``self.primitives``.
  893. :return: None
  894. """
  895. # Cleanup
  896. self.raw = self.raw.replace('\n', '').replace('\r', '').strip(" *")
  897. self.primitives = []
  898. # Separate parts
  899. parts = self.raw.split('*')
  900. #### Every part in the macro ####
  901. for part in parts:
  902. ### Comments. Ignored.
  903. match = ApertureMacro.amcomm_re.search(part)
  904. if match:
  905. continue
  906. ### Variables
  907. # These are variables defined locally inside the macro. They can be
  908. # numerical constant or defind in terms of previously define
  909. # variables, which can be defined locally or in an aperture
  910. # definition. All replacements ocurr here.
  911. match = ApertureMacro.amvar_re.search(part)
  912. if match:
  913. var = match.group(1)
  914. val = match.group(2)
  915. # Replace variables in value
  916. for v in self.locvars:
  917. val = re.sub(r'\$'+str(v)+r'(?![0-9a-zA-Z])', str(self.locvars[v]), val)
  918. # Make all others 0
  919. val = re.sub(r'\$[0-9a-zA-Z](?![0-9a-zA-Z])', "0", val)
  920. # Change x with *
  921. val = re.sub(r'[xX]', "*", val)
  922. # Eval() and store.
  923. self.locvars[var] = eval(val)
  924. continue
  925. ### Primitives
  926. # Each is an array. The first identifies the primitive, while the
  927. # rest depend on the primitive. All are strings representing a
  928. # number and may contain variable definition. The values of these
  929. # variables are defined in an aperture definition.
  930. match = ApertureMacro.amprim_re.search(part)
  931. if match:
  932. ## Replace all variables
  933. for v in self.locvars:
  934. part = re.sub(r'\$' + str(v) + r'(?![0-9a-zA-Z])', str(self.locvars[v]), part)
  935. # Make all others 0
  936. part = re.sub(r'\$[0-9a-zA-Z](?![0-9a-zA-Z])', "0", part)
  937. # Change x with *
  938. part = re.sub(r'[xX]', "*", part)
  939. ## Store
  940. elements = part.split(",")
  941. self.primitives.append([eval(x) for x in elements])
  942. continue
  943. log.warning("Unknown syntax of aperture macro part: %s" % str(part))
  944. def append(self, data):
  945. """
  946. Appends a string to the raw macro.
  947. :param data: Part of the macro.
  948. :type data: str
  949. :return: None
  950. """
  951. self.raw += data
  952. @staticmethod
  953. def default2zero(n, mods):
  954. """
  955. Pads the ``mods`` list with zeros resulting in an
  956. list of length n.
  957. :param n: Length of the resulting list.
  958. :type n: int
  959. :param mods: List to be padded.
  960. :type mods: list
  961. :return: Zero-padded list.
  962. :rtype: list
  963. """
  964. x = [0.0] * n
  965. na = len(mods)
  966. x[0:na] = mods
  967. return x
  968. @staticmethod
  969. def make_circle(mods):
  970. """
  971. :param mods: (Exposure 0/1, Diameter >=0, X-coord, Y-coord)
  972. :return:
  973. """
  974. pol, dia, x, y = ApertureMacro.default2zero(4, mods)
  975. return {"pol": int(pol), "geometry": Point(x, y).buffer(dia/2)}
  976. @staticmethod
  977. def make_vectorline(mods):
  978. """
  979. :param mods: (Exposure 0/1, Line width >= 0, X-start, Y-start, X-end, Y-end,
  980. rotation angle around origin in degrees)
  981. :return:
  982. """
  983. pol, width, xs, ys, xe, ye, angle = ApertureMacro.default2zero(7, mods)
  984. line = LineString([(xs, ys), (xe, ye)])
  985. box = line.buffer(width/2, cap_style=2)
  986. box_rotated = affinity.rotate(box, angle, origin=(0, 0))
  987. return {"pol": int(pol), "geometry": box_rotated}
  988. @staticmethod
  989. def make_centerline(mods):
  990. """
  991. :param mods: (Exposure 0/1, width >=0, height >=0, x-center, y-center,
  992. rotation angle around origin in degrees)
  993. :return:
  994. """
  995. pol, width, height, x, y, angle = ApertureMacro.default2zero(6, mods)
  996. box = shply_box(x-width/2, y-height/2, x+width/2, y+height/2)
  997. box_rotated = affinity.rotate(box, angle, origin=(0, 0))
  998. return {"pol": int(pol), "geometry": box_rotated}
  999. @staticmethod
  1000. def make_lowerleftline(mods):
  1001. """
  1002. :param mods: (exposure 0/1, width >=0, height >=0, x-lowerleft, y-lowerleft,
  1003. rotation angle around origin in degrees)
  1004. :return:
  1005. """
  1006. pol, width, height, x, y, angle = ApertureMacro.default2zero(6, mods)
  1007. box = shply_box(x, y, x+width, y+height)
  1008. box_rotated = affinity.rotate(box, angle, origin=(0, 0))
  1009. return {"pol": int(pol), "geometry": box_rotated}
  1010. @staticmethod
  1011. def make_outline(mods):
  1012. """
  1013. :param mods:
  1014. :return:
  1015. """
  1016. pol = mods[0]
  1017. n = mods[1]
  1018. points = [(0, 0)]*(n+1)
  1019. for i in range(n+1):
  1020. points[i] = mods[2*i + 2:2*i + 4]
  1021. angle = mods[2*n + 4]
  1022. poly = Polygon(points)
  1023. poly_rotated = affinity.rotate(poly, angle, origin=(0, 0))
  1024. return {"pol": int(pol), "geometry": poly_rotated}
  1025. @staticmethod
  1026. def make_polygon(mods):
  1027. """
  1028. Note: Specs indicate that rotation is only allowed if the center
  1029. (x, y) == (0, 0). I will tolerate breaking this rule.
  1030. :param mods: (exposure 0/1, n_verts 3<=n<=12, x-center, y-center,
  1031. diameter of circumscribed circle >=0, rotation angle around origin)
  1032. :return:
  1033. """
  1034. pol, nverts, x, y, dia, angle = ApertureMacro.default2zero(6, mods)
  1035. points = [(0, 0)]*nverts
  1036. for i in range(nverts):
  1037. points[i] = (x + 0.5 * dia * cos(2*pi * i/nverts),
  1038. y + 0.5 * dia * sin(2*pi * i/nverts))
  1039. poly = Polygon(points)
  1040. poly_rotated = affinity.rotate(poly, angle, origin=(0, 0))
  1041. return {"pol": int(pol), "geometry": poly_rotated}
  1042. @staticmethod
  1043. def make_moire(mods):
  1044. """
  1045. Note: Specs indicate that rotation is only allowed if the center
  1046. (x, y) == (0, 0). I will tolerate breaking this rule.
  1047. :param mods: (x-center, y-center, outer_dia_outer_ring, ring thickness,
  1048. gap, max_rings, crosshair_thickness, crosshair_len, rotation
  1049. angle around origin in degrees)
  1050. :return:
  1051. """
  1052. x, y, dia, thickness, gap, nrings, cross_th, cross_len, angle = ApertureMacro.default2zero(9, mods)
  1053. r = dia/2 - thickness/2
  1054. result = Point((x, y)).buffer(r).exterior.buffer(thickness/2.0)
  1055. ring = Point((x, y)).buffer(r).exterior.buffer(thickness/2.0) # Need a copy!
  1056. i = 1 # Number of rings created so far
  1057. ## If the ring does not have an interior it means that it is
  1058. ## a disk. Then stop.
  1059. while len(ring.interiors) > 0 and i < nrings:
  1060. r -= thickness + gap
  1061. if r <= 0:
  1062. break
  1063. ring = Point((x, y)).buffer(r).exterior.buffer(thickness/2.0)
  1064. result = cascaded_union([result, ring])
  1065. i += 1
  1066. ## Crosshair
  1067. hor = LineString([(x - cross_len, y), (x + cross_len, y)]).buffer(cross_th/2.0, cap_style=2)
  1068. ver = LineString([(x, y-cross_len), (x, y + cross_len)]).buffer(cross_th/2.0, cap_style=2)
  1069. result = cascaded_union([result, hor, ver])
  1070. return {"pol": 1, "geometry": result}
  1071. @staticmethod
  1072. def make_thermal(mods):
  1073. """
  1074. Note: Specs indicate that rotation is only allowed if the center
  1075. (x, y) == (0, 0). I will tolerate breaking this rule.
  1076. :param mods: [x-center, y-center, diameter-outside, diameter-inside,
  1077. gap-thickness, rotation angle around origin]
  1078. :return:
  1079. """
  1080. x, y, dout, din, t, angle = ApertureMacro.default2zero(6, mods)
  1081. ring = Point((x, y)).buffer(dout/2.0).difference(Point((x, y)).buffer(din/2.0))
  1082. hline = LineString([(x - dout/2.0, y), (x + dout/2.0, y)]).buffer(t/2.0, cap_style=3)
  1083. vline = LineString([(x, y - dout/2.0), (x, y + dout/2.0)]).buffer(t/2.0, cap_style=3)
  1084. thermal = ring.difference(hline.union(vline))
  1085. return {"pol": 1, "geometry": thermal}
  1086. def make_geometry(self, modifiers):
  1087. """
  1088. Runs the macro for the given modifiers and generates
  1089. the corresponding geometry.
  1090. :param modifiers: Modifiers (parameters) for this macro
  1091. :type modifiers: list
  1092. :return: Shapely geometry
  1093. :rtype: shapely.geometry.polygon
  1094. """
  1095. ## Primitive makers
  1096. makers = {
  1097. "1": ApertureMacro.make_circle,
  1098. "2": ApertureMacro.make_vectorline,
  1099. "20": ApertureMacro.make_vectorline,
  1100. "21": ApertureMacro.make_centerline,
  1101. "22": ApertureMacro.make_lowerleftline,
  1102. "4": ApertureMacro.make_outline,
  1103. "5": ApertureMacro.make_polygon,
  1104. "6": ApertureMacro.make_moire,
  1105. "7": ApertureMacro.make_thermal
  1106. }
  1107. ## Store modifiers as local variables
  1108. modifiers = modifiers or []
  1109. modifiers = [float(m) for m in modifiers]
  1110. self.locvars = {}
  1111. for i in range(0, len(modifiers)):
  1112. self.locvars[str(i + 1)] = modifiers[i]
  1113. ## Parse
  1114. self.primitives = [] # Cleanup
  1115. self.geometry = Polygon()
  1116. self.parse_content()
  1117. ## Make the geometry
  1118. for primitive in self.primitives:
  1119. # Make the primitive
  1120. prim_geo = makers[str(int(primitive[0]))](primitive[1:])
  1121. # Add it (according to polarity)
  1122. # if self.geometry is None and prim_geo['pol'] == 1:
  1123. # self.geometry = prim_geo['geometry']
  1124. # continue
  1125. if prim_geo['pol'] == 1:
  1126. self.geometry = self.geometry.union(prim_geo['geometry'])
  1127. continue
  1128. if prim_geo['pol'] == 0:
  1129. self.geometry = self.geometry.difference(prim_geo['geometry'])
  1130. continue
  1131. return self.geometry
  1132. class Gerber (Geometry):
  1133. """
  1134. **ATTRIBUTES**
  1135. * ``apertures`` (dict): The keys are names/identifiers of each aperture.
  1136. The values are dictionaries key/value pairs which describe the aperture. The
  1137. type key is always present and the rest depend on the key:
  1138. +-----------+-----------------------------------+
  1139. | Key | Value |
  1140. +===========+===================================+
  1141. | type | (str) "C", "R", "O", "P", or "AP" |
  1142. +-----------+-----------------------------------+
  1143. | others | Depend on ``type`` |
  1144. +-----------+-----------------------------------+
  1145. * ``aperture_macros`` (dictionary): Are predefined geometrical structures
  1146. that can be instanciated with different parameters in an aperture
  1147. definition. See ``apertures`` above. The key is the name of the macro,
  1148. and the macro itself, the value, is a ``Aperture_Macro`` object.
  1149. * ``flash_geometry`` (list): List of (Shapely) geometric object resulting
  1150. from ``flashes``. These are generated from ``flashes`` in ``do_flashes()``.
  1151. * ``buffered_paths`` (list): List of (Shapely) polygons resulting from
  1152. *buffering* (or thickening) the ``paths`` with the aperture. These are
  1153. generated from ``paths`` in ``buffer_paths()``.
  1154. **USAGE**::
  1155. g = Gerber()
  1156. g.parse_file(filename)
  1157. g.create_geometry()
  1158. do_something(s.solid_geometry)
  1159. """
  1160. defaults = {
  1161. "steps_per_circle": 40,
  1162. "use_buffer_for_union": True
  1163. }
  1164. def __init__(self, steps_per_circle=None):
  1165. """
  1166. The constructor takes no parameters. Use ``gerber.parse_files()``
  1167. or ``gerber.parse_lines()`` to populate the object from Gerber source.
  1168. :return: Gerber object
  1169. :rtype: Gerber
  1170. """
  1171. # Initialize parent
  1172. Geometry.__init__(self)
  1173. self.solid_geometry = Polygon()
  1174. # Number format
  1175. self.int_digits = 3
  1176. """Number of integer digits in Gerber numbers. Used during parsing."""
  1177. self.frac_digits = 4
  1178. """Number of fraction digits in Gerber numbers. Used during parsing."""
  1179. ## Gerber elements ##
  1180. # Apertures {'id':{'type':chr,
  1181. # ['size':float], ['width':float],
  1182. # ['height':float]}, ...}
  1183. self.apertures = {}
  1184. # Aperture Macros
  1185. self.aperture_macros = {}
  1186. # Attributes to be included in serialization
  1187. # Always append to it because it carries contents
  1188. # from Geometry.
  1189. self.ser_attrs += ['int_digits', 'frac_digits', 'apertures',
  1190. 'aperture_macros', 'solid_geometry']
  1191. #### Parser patterns ####
  1192. # FS - Format Specification
  1193. # The format of X and Y must be the same!
  1194. # L-omit leading zeros, T-omit trailing zeros
  1195. # A-absolute notation, I-incremental notation
  1196. self.fmt_re = re.compile(r'%FS([LT])([AI])X(\d)(\d)Y\d\d\*%$')
  1197. # Mode (IN/MM)
  1198. self.mode_re = re.compile(r'^%MO(IN|MM)\*%$')
  1199. # Comment G04|G4
  1200. self.comm_re = re.compile(r'^G0?4(.*)$')
  1201. # AD - Aperture definition
  1202. # Aperture Macro names: Name = [a-zA-Z_.$]{[a-zA-Z_.0-9]+}
  1203. # NOTE: Adding "-" to support output from Upverter.
  1204. self.ad_re = re.compile(r'^%ADD(\d\d+)([a-zA-Z_$\.][a-zA-Z0-9_$\.\-]*)(?:,(.*))?\*%$')
  1205. # AM - Aperture Macro
  1206. # Beginning of macro (Ends with *%):
  1207. #self.am_re = re.compile(r'^%AM([a-zA-Z0-9]*)\*')
  1208. # Tool change
  1209. # May begin with G54 but that is deprecated
  1210. self.tool_re = re.compile(r'^(?:G54)?D(\d\d+)\*$')
  1211. # G01... - Linear interpolation plus flashes with coordinates
  1212. # Operation code (D0x) missing is deprecated... oh well I will support it.
  1213. self.lin_re = re.compile(r'^(?:G0?(1))?(?=.*X([\+-]?\d+))?(?=.*Y([\+-]?\d+))?[XY][^DIJ]*(?:D0?([123]))?\*$')
  1214. # Operation code alone, usually just D03 (Flash)
  1215. self.opcode_re = re.compile(r'^D0?([123])\*$')
  1216. # G02/3... - Circular interpolation with coordinates
  1217. # 2-clockwise, 3-counterclockwise
  1218. # Operation code (D0x) missing is deprecated... oh well I will support it.
  1219. # Optional start with G02 or G03, optional end with D01 or D02 with
  1220. # optional coordinates but at least one in any order.
  1221. self.circ_re = re.compile(r'^(?:G0?([23]))?(?=.*X([\+-]?\d+))?(?=.*Y([\+-]?\d+))' +
  1222. '?(?=.*I([\+-]?\d+))?(?=.*J([\+-]?\d+))?[XYIJ][^D]*(?:D0([12]))?\*$')
  1223. # G01/2/3 Occurring without coordinates
  1224. self.interp_re = re.compile(r'^(?:G0?([123]))\*')
  1225. # Single D74 or multi D75 quadrant for circular interpolation
  1226. self.quad_re = re.compile(r'^G7([45])\*$')
  1227. # Region mode on
  1228. # In region mode, D01 starts a region
  1229. # and D02 ends it. A new region can be started again
  1230. # with D01. All contours must be closed before
  1231. # D02 or G37.
  1232. self.regionon_re = re.compile(r'^G36\*$')
  1233. # Region mode off
  1234. # Will end a region and come off region mode.
  1235. # All contours must be closed before D02 or G37.
  1236. self.regionoff_re = re.compile(r'^G37\*$')
  1237. # End of file
  1238. self.eof_re = re.compile(r'^M02\*')
  1239. # IP - Image polarity
  1240. self.pol_re = re.compile(r'^%IP(POS|NEG)\*%$')
  1241. # LP - Level polarity
  1242. self.lpol_re = re.compile(r'^%LP([DC])\*%$')
  1243. # Units (OBSOLETE)
  1244. self.units_re = re.compile(r'^G7([01])\*$')
  1245. # Absolute/Relative G90/1 (OBSOLETE)
  1246. self.absrel_re = re.compile(r'^G9([01])\*$')
  1247. # Aperture macros
  1248. self.am1_re = re.compile(r'^%AM([^\*]+)\*([^%]+)?(%)?$')
  1249. self.am2_re = re.compile(r'(.*)%$')
  1250. # How to discretize a circle.
  1251. self.steps_per_circ = steps_per_circle or Gerber.defaults['steps_per_circle']
  1252. self.use_buffer_for_union = self.defaults["use_buffer_for_union"]
  1253. def scale(self, factor):
  1254. """
  1255. Scales the objects' geometry on the XY plane by a given factor.
  1256. These are:
  1257. * ``buffered_paths``
  1258. * ``flash_geometry``
  1259. * ``solid_geometry``
  1260. * ``regions``
  1261. NOTE:
  1262. Does not modify the data used to create these elements. If these
  1263. are recreated, the scaling will be lost. This behavior was modified
  1264. because of the complexity reached in this class.
  1265. :param factor: Number by which to scale.
  1266. :type factor: float
  1267. :rtype : None
  1268. """
  1269. ## solid_geometry ???
  1270. # It's a cascaded union of objects.
  1271. self.solid_geometry = affinity.scale(self.solid_geometry, factor,
  1272. factor, origin=(0, 0))
  1273. # # Now buffered_paths, flash_geometry and solid_geometry
  1274. # self.create_geometry()
  1275. def offset(self, vect):
  1276. """
  1277. Offsets the objects' geometry on the XY plane by a given vector.
  1278. These are:
  1279. * ``buffered_paths``
  1280. * ``flash_geometry``
  1281. * ``solid_geometry``
  1282. * ``regions``
  1283. NOTE:
  1284. Does not modify the data used to create these elements. If these
  1285. are recreated, the scaling will be lost. This behavior was modified
  1286. because of the complexity reached in this class.
  1287. :param vect: (x, y) offset vector.
  1288. :type vect: tuple
  1289. :return: None
  1290. """
  1291. dx, dy = vect
  1292. ## Solid geometry
  1293. self.solid_geometry = affinity.translate(self.solid_geometry, xoff=dx, yoff=dy)
  1294. # def mirror(self, axis, point):
  1295. # """
  1296. # Mirrors the object around a specified axis passign through
  1297. # the given point. What is affected:
  1298. #
  1299. # * ``buffered_paths``
  1300. # * ``flash_geometry``
  1301. # * ``solid_geometry``
  1302. # * ``regions``
  1303. #
  1304. # NOTE:
  1305. # Does not modify the data used to create these elements. If these
  1306. # are recreated, the scaling will be lost. This behavior was modified
  1307. # because of the complexity reached in this class.
  1308. #
  1309. # :param axis: "X" or "Y" indicates around which axis to mirror.
  1310. # :type axis: str
  1311. # :param point: [x, y] point belonging to the mirror axis.
  1312. # :type point: list
  1313. # :return: None
  1314. # """
  1315. #
  1316. # px, py = point
  1317. # xscale, yscale = {"X": (1.0, -1.0), "Y": (-1.0, 1.0)}[axis]
  1318. #
  1319. # ## solid_geometry ???
  1320. # # It's a cascaded union of objects.
  1321. # self.solid_geometry = affinity.scale(self.solid_geometry,
  1322. # xscale, yscale, origin=(px, py))
  1323. def aperture_parse(self, apertureId, apertureType, apParameters):
  1324. """
  1325. Parse gerber aperture definition into dictionary of apertures.
  1326. The following kinds and their attributes are supported:
  1327. * *Circular (C)*: size (float)
  1328. * *Rectangle (R)*: width (float), height (float)
  1329. * *Obround (O)*: width (float), height (float).
  1330. * *Polygon (P)*: diameter(float), vertices(int), [rotation(float)]
  1331. * *Aperture Macro (AM)*: macro (ApertureMacro), modifiers (list)
  1332. :param apertureId: Id of the aperture being defined.
  1333. :param apertureType: Type of the aperture.
  1334. :param apParameters: Parameters of the aperture.
  1335. :type apertureId: str
  1336. :type apertureType: str
  1337. :type apParameters: str
  1338. :return: Identifier of the aperture.
  1339. :rtype: str
  1340. """
  1341. # Found some Gerber with a leading zero in the aperture id and the
  1342. # referenced it without the zero, so this is a hack to handle that.
  1343. apid = str(int(apertureId))
  1344. try: # Could be empty for aperture macros
  1345. paramList = apParameters.split('X')
  1346. except:
  1347. paramList = None
  1348. if apertureType == "C": # Circle, example: %ADD11C,0.1*%
  1349. self.apertures[apid] = {"type": "C",
  1350. "size": float(paramList[0])}
  1351. return apid
  1352. if apertureType == "R": # Rectangle, example: %ADD15R,0.05X0.12*%
  1353. self.apertures[apid] = {"type": "R",
  1354. "width": float(paramList[0]),
  1355. "height": float(paramList[1]),
  1356. "size": sqrt(float(paramList[0])**2 + float(paramList[1])**2)} # Hack
  1357. return apid
  1358. if apertureType == "O": # Obround
  1359. self.apertures[apid] = {"type": "O",
  1360. "width": float(paramList[0]),
  1361. "height": float(paramList[1]),
  1362. "size": sqrt(float(paramList[0])**2 + float(paramList[1])**2)} # Hack
  1363. return apid
  1364. if apertureType == "P": # Polygon (regular)
  1365. self.apertures[apid] = {"type": "P",
  1366. "diam": float(paramList[0]),
  1367. "nVertices": int(paramList[1]),
  1368. "size": float(paramList[0])} # Hack
  1369. if len(paramList) >= 3:
  1370. self.apertures[apid]["rotation"] = float(paramList[2])
  1371. return apid
  1372. if apertureType in self.aperture_macros:
  1373. self.apertures[apid] = {"type": "AM",
  1374. "macro": self.aperture_macros[apertureType],
  1375. "modifiers": paramList}
  1376. return apid
  1377. log.warning("Aperture not implemented: %s" % str(apertureType))
  1378. return None
  1379. def parse_file(self, filename, follow=False):
  1380. """
  1381. Calls Gerber.parse_lines() with generator of lines
  1382. read from the given file. Will split the lines if multiple
  1383. statements are found in a single original line.
  1384. The following line is split into two::
  1385. G54D11*G36*
  1386. First is ``G54D11*`` and seconds is ``G36*``.
  1387. :param filename: Gerber file to parse.
  1388. :type filename: str
  1389. :param follow: If true, will not create polygons, just lines
  1390. following the gerber path.
  1391. :type follow: bool
  1392. :return: None
  1393. """
  1394. with open(filename, 'r') as gfile:
  1395. def line_generator():
  1396. for line in gfile:
  1397. line = line.strip(' \r\n')
  1398. while len(line) > 0:
  1399. # If ends with '%' leave as is.
  1400. if line[-1] == '%':
  1401. yield line
  1402. break
  1403. # Split after '*' if any.
  1404. starpos = line.find('*')
  1405. if starpos > -1:
  1406. cleanline = line[:starpos + 1]
  1407. yield cleanline
  1408. line = line[starpos + 1:]
  1409. # Otherwise leave as is.
  1410. else:
  1411. # yield cleanline
  1412. yield line
  1413. break
  1414. self.parse_lines(line_generator(), follow=follow)
  1415. #@profile
  1416. def parse_lines(self, glines, follow=False):
  1417. """
  1418. Main Gerber parser. Reads Gerber and populates ``self.paths``, ``self.apertures``,
  1419. ``self.flashes``, ``self.regions`` and ``self.units``.
  1420. :param glines: Gerber code as list of strings, each element being
  1421. one line of the source file.
  1422. :type glines: list
  1423. :param follow: If true, will not create polygons, just lines
  1424. following the gerber path.
  1425. :type follow: bool
  1426. :return: None
  1427. :rtype: None
  1428. """
  1429. # Coordinates of the current path, each is [x, y]
  1430. path = []
  1431. # Polygons are stored here until there is a change in polarity.
  1432. # Only then they are combined via cascaded_union and added or
  1433. # subtracted from solid_geometry. This is ~100 times faster than
  1434. # applyng a union for every new polygon.
  1435. poly_buffer = []
  1436. last_path_aperture = None
  1437. current_aperture = None
  1438. # 1,2 or 3 from "G01", "G02" or "G03"
  1439. current_interpolation_mode = None
  1440. # 1 or 2 from "D01" or "D02"
  1441. # Note this is to support deprecated Gerber not putting
  1442. # an operation code at the end of every coordinate line.
  1443. current_operation_code = None
  1444. # Current coordinates
  1445. current_x = None
  1446. current_y = None
  1447. # Absolute or Relative/Incremental coordinates
  1448. # Not implemented
  1449. absolute = True
  1450. # How to interpret circular interpolation: SINGLE or MULTI
  1451. quadrant_mode = None
  1452. # Indicates we are parsing an aperture macro
  1453. current_macro = None
  1454. # Indicates the current polarity: D-Dark, C-Clear
  1455. current_polarity = 'D'
  1456. # If a region is being defined
  1457. making_region = False
  1458. #### Parsing starts here ####
  1459. line_num = 0
  1460. gline = ""
  1461. try:
  1462. for gline in glines:
  1463. line_num += 1
  1464. ### Cleanup
  1465. gline = gline.strip(' \r\n')
  1466. #log.debug("%3s %s" % (line_num, gline))
  1467. ### Aperture Macros
  1468. # Having this at the beggining will slow things down
  1469. # but macros can have complicated statements than could
  1470. # be caught by other patterns.
  1471. if current_macro is None: # No macro started yet
  1472. match = self.am1_re.search(gline)
  1473. # Start macro if match, else not an AM, carry on.
  1474. if match:
  1475. log.debug("Starting macro. Line %d: %s" % (line_num, gline))
  1476. current_macro = match.group(1)
  1477. self.aperture_macros[current_macro] = ApertureMacro(name=current_macro)
  1478. if match.group(2): # Append
  1479. self.aperture_macros[current_macro].append(match.group(2))
  1480. if match.group(3): # Finish macro
  1481. #self.aperture_macros[current_macro].parse_content()
  1482. current_macro = None
  1483. log.debug("Macro complete in 1 line.")
  1484. continue
  1485. else: # Continue macro
  1486. log.debug("Continuing macro. Line %d." % line_num)
  1487. match = self.am2_re.search(gline)
  1488. if match: # Finish macro
  1489. log.debug("End of macro. Line %d." % line_num)
  1490. self.aperture_macros[current_macro].append(match.group(1))
  1491. #self.aperture_macros[current_macro].parse_content()
  1492. current_macro = None
  1493. else: # Append
  1494. self.aperture_macros[current_macro].append(gline)
  1495. continue
  1496. ### G01 - Linear interpolation plus flashes
  1497. # Operation code (D0x) missing is deprecated... oh well I will support it.
  1498. # REGEX: r'^(?:G0?(1))?(?:X(-?\d+))?(?:Y(-?\d+))?(?:D0([123]))?\*$'
  1499. match = self.lin_re.search(gline)
  1500. if match:
  1501. # Dxx alone?
  1502. # if match.group(1) is None and match.group(2) is None and match.group(3) is None:
  1503. # try:
  1504. # current_operation_code = int(match.group(4))
  1505. # except:
  1506. # pass # A line with just * will match too.
  1507. # continue
  1508. # NOTE: Letting it continue allows it to react to the
  1509. # operation code.
  1510. # Parse coordinates
  1511. if match.group(2) is not None:
  1512. current_x = parse_gerber_number(match.group(2), self.frac_digits)
  1513. if match.group(3) is not None:
  1514. current_y = parse_gerber_number(match.group(3), self.frac_digits)
  1515. # Parse operation code
  1516. if match.group(4) is not None:
  1517. current_operation_code = int(match.group(4))
  1518. # Pen down: add segment
  1519. if current_operation_code == 1:
  1520. path.append([current_x, current_y])
  1521. last_path_aperture = current_aperture
  1522. elif current_operation_code == 2:
  1523. if len(path) > 1:
  1524. ## --- BUFFERED ---
  1525. if making_region:
  1526. if follow:
  1527. geo = Polygon()
  1528. else:
  1529. geo = Polygon(path)
  1530. else:
  1531. if last_path_aperture is None:
  1532. log.warning("No aperture defined for curent path. (%d)" % line_num)
  1533. width = self.apertures[last_path_aperture]["size"] # TODO: WARNING this should fail!
  1534. #log.debug("Line %d: Setting aperture to %s before buffering." % (line_num, last_path_aperture))
  1535. if follow:
  1536. geo = LineString(path)
  1537. else:
  1538. geo = LineString(path).buffer(width / 2)
  1539. if not geo.is_empty:
  1540. poly_buffer.append(geo)
  1541. path = [[current_x, current_y]] # Start new path
  1542. # Flash
  1543. # Not allowed in region mode.
  1544. elif current_operation_code == 3:
  1545. # Create path draw so far.
  1546. if len(path) > 1:
  1547. # --- Buffered ----
  1548. width = self.apertures[last_path_aperture]["size"]
  1549. if follow:
  1550. geo = LineString(path)
  1551. else:
  1552. geo = LineString(path).buffer(width / 2)
  1553. if not geo.is_empty:
  1554. poly_buffer.append(geo)
  1555. # Reset path starting point
  1556. path = [[current_x, current_y]]
  1557. # --- BUFFERED ---
  1558. # Draw the flash
  1559. if follow:
  1560. continue
  1561. flash = Gerber.create_flash_geometry(Point([current_x, current_y]),
  1562. self.apertures[current_aperture])
  1563. if not flash.is_empty:
  1564. poly_buffer.append(flash)
  1565. continue
  1566. ### G02/3 - Circular interpolation
  1567. # 2-clockwise, 3-counterclockwise
  1568. match = self.circ_re.search(gline)
  1569. if match:
  1570. arcdir = [None, None, "cw", "ccw"]
  1571. mode, x, y, i, j, d = match.groups()
  1572. try:
  1573. x = parse_gerber_number(x, self.frac_digits)
  1574. except:
  1575. x = current_x
  1576. try:
  1577. y = parse_gerber_number(y, self.frac_digits)
  1578. except:
  1579. y = current_y
  1580. try:
  1581. i = parse_gerber_number(i, self.frac_digits)
  1582. except:
  1583. i = 0
  1584. try:
  1585. j = parse_gerber_number(j, self.frac_digits)
  1586. except:
  1587. j = 0
  1588. if quadrant_mode is None:
  1589. log.error("Found arc without preceding quadrant specification G74 or G75. (%d)" % line_num)
  1590. log.error(gline)
  1591. continue
  1592. if mode is None and current_interpolation_mode not in [2, 3]:
  1593. log.error("Found arc without circular interpolation mode defined. (%d)" % line_num)
  1594. log.error(gline)
  1595. continue
  1596. elif mode is not None:
  1597. current_interpolation_mode = int(mode)
  1598. # Set operation code if provided
  1599. if d is not None:
  1600. current_operation_code = int(d)
  1601. # Nothing created! Pen Up.
  1602. if current_operation_code == 2:
  1603. log.warning("Arc with D2. (%d)" % line_num)
  1604. if len(path) > 1:
  1605. if last_path_aperture is None:
  1606. log.warning("No aperture defined for curent path. (%d)" % line_num)
  1607. # --- BUFFERED ---
  1608. width = self.apertures[last_path_aperture]["size"]
  1609. if follow:
  1610. buffered = LineString(path)
  1611. else:
  1612. buffered = LineString(path).buffer(width / 2)
  1613. if not buffered.is_empty:
  1614. poly_buffer.append(buffered)
  1615. current_x = x
  1616. current_y = y
  1617. path = [[current_x, current_y]] # Start new path
  1618. continue
  1619. # Flash should not happen here
  1620. if current_operation_code == 3:
  1621. log.error("Trying to flash within arc. (%d)" % line_num)
  1622. continue
  1623. if quadrant_mode == 'MULTI':
  1624. center = [i + current_x, j + current_y]
  1625. radius = sqrt(i ** 2 + j ** 2)
  1626. start = arctan2(-j, -i) # Start angle
  1627. # Numerical errors might prevent start == stop therefore
  1628. # we check ahead of time. This should result in a
  1629. # 360 degree arc.
  1630. if current_x == x and current_y == y:
  1631. stop = start
  1632. else:
  1633. stop = arctan2(-center[1] + y, -center[0] + x) # Stop angle
  1634. this_arc = arc(center, radius, start, stop,
  1635. arcdir[current_interpolation_mode],
  1636. self.steps_per_circ)
  1637. # The last point in the computed arc can have
  1638. # numerical errors. The exact final point is the
  1639. # specified (x, y). Replace.
  1640. this_arc[-1] = (x, y)
  1641. # Last point in path is current point
  1642. # current_x = this_arc[-1][0]
  1643. # current_y = this_arc[-1][1]
  1644. current_x, current_y = x, y
  1645. # Append
  1646. path += this_arc
  1647. last_path_aperture = current_aperture
  1648. continue
  1649. if quadrant_mode == 'SINGLE':
  1650. center_candidates = [
  1651. [i + current_x, j + current_y],
  1652. [-i + current_x, j + current_y],
  1653. [i + current_x, -j + current_y],
  1654. [-i + current_x, -j + current_y]
  1655. ]
  1656. valid = False
  1657. log.debug("I: %f J: %f" % (i, j))
  1658. for center in center_candidates:
  1659. radius = sqrt(i ** 2 + j ** 2)
  1660. # Make sure radius to start is the same as radius to end.
  1661. radius2 = sqrt((center[0] - x) ** 2 + (center[1] - y) ** 2)
  1662. if radius2 < radius * 0.95 or radius2 > radius * 1.05:
  1663. continue # Not a valid center.
  1664. # Correct i and j and continue as with multi-quadrant.
  1665. i = center[0] - current_x
  1666. j = center[1] - current_y
  1667. start = arctan2(-j, -i) # Start angle
  1668. stop = arctan2(-center[1] + y, -center[0] + x) # Stop angle
  1669. angle = abs(arc_angle(start, stop, arcdir[current_interpolation_mode]))
  1670. log.debug("ARC START: %f, %f CENTER: %f, %f STOP: %f, %f" %
  1671. (current_x, current_y, center[0], center[1], x, y))
  1672. log.debug("START Ang: %f, STOP Ang: %f, DIR: %s, ABS: %.12f <= %.12f: %s" %
  1673. (start * 180 / pi, stop * 180 / pi, arcdir[current_interpolation_mode],
  1674. angle * 180 / pi, pi / 2 * 180 / pi, angle <= (pi + 1e-6) / 2))
  1675. if angle <= (pi + 1e-6) / 2:
  1676. log.debug("########## ACCEPTING ARC ############")
  1677. this_arc = arc(center, radius, start, stop,
  1678. arcdir[current_interpolation_mode],
  1679. self.steps_per_circ)
  1680. # Replace with exact values
  1681. this_arc[-1] = (x, y)
  1682. # current_x = this_arc[-1][0]
  1683. # current_y = this_arc[-1][1]
  1684. current_x, current_y = x, y
  1685. path += this_arc
  1686. last_path_aperture = current_aperture
  1687. valid = True
  1688. break
  1689. if valid:
  1690. continue
  1691. else:
  1692. log.warning("Invalid arc in line %d." % line_num)
  1693. ### Operation code alone
  1694. # Operation code alone, usually just D03 (Flash)
  1695. # self.opcode_re = re.compile(r'^D0?([123])\*$')
  1696. match = self.opcode_re.search(gline)
  1697. if match:
  1698. current_operation_code = int(match.group(1))
  1699. if current_operation_code == 3:
  1700. ## --- Buffered ---
  1701. try:
  1702. log.debug("Bare op-code %d." % current_operation_code)
  1703. # flash = Gerber.create_flash_geometry(Point(path[-1]),
  1704. # self.apertures[current_aperture])
  1705. if follow:
  1706. continue
  1707. flash = Gerber.create_flash_geometry(Point(current_x, current_y),
  1708. self.apertures[current_aperture])
  1709. if not flash.is_empty:
  1710. poly_buffer.append(flash)
  1711. except IndexError:
  1712. log.warning("Line %d: %s -> Nothing there to flash!" % (line_num, gline))
  1713. continue
  1714. ### G74/75* - Single or multiple quadrant arcs
  1715. match = self.quad_re.search(gline)
  1716. if match:
  1717. if match.group(1) == '4':
  1718. quadrant_mode = 'SINGLE'
  1719. else:
  1720. quadrant_mode = 'MULTI'
  1721. continue
  1722. ### G36* - Begin region
  1723. if self.regionon_re.search(gline):
  1724. if len(path) > 1:
  1725. # Take care of what is left in the path
  1726. ## --- Buffered ---
  1727. width = self.apertures[last_path_aperture]["size"]
  1728. if follow:
  1729. geo = LineString(path)
  1730. else:
  1731. geo = LineString(path).buffer(width/2)
  1732. if not geo.is_empty:
  1733. poly_buffer.append(geo)
  1734. path = [path[-1]]
  1735. making_region = True
  1736. continue
  1737. ### G37* - End region
  1738. if self.regionoff_re.search(gline):
  1739. making_region = False
  1740. # Only one path defines region?
  1741. # This can happen if D02 happened before G37 and
  1742. # is not and error.
  1743. if len(path) < 3:
  1744. # print "ERROR: Path contains less than 3 points:"
  1745. # print path
  1746. # print "Line (%d): " % line_num, gline
  1747. # path = []
  1748. #path = [[current_x, current_y]]
  1749. continue
  1750. # For regions we may ignore an aperture that is None
  1751. # self.regions.append({"polygon": Polygon(path),
  1752. # "aperture": last_path_aperture})
  1753. # --- Buffered ---
  1754. if follow:
  1755. region = Polygon()
  1756. else:
  1757. region = Polygon(path)
  1758. if not region.is_valid:
  1759. if not follow:
  1760. region = region.buffer(0)
  1761. if not region.is_empty:
  1762. poly_buffer.append(region)
  1763. path = [[current_x, current_y]] # Start new path
  1764. continue
  1765. ### Aperture definitions %ADD...
  1766. match = self.ad_re.search(gline)
  1767. if match:
  1768. log.info("Found aperture definition. Line %d: %s" % (line_num, gline))
  1769. self.aperture_parse(match.group(1), match.group(2), match.group(3))
  1770. continue
  1771. ### G01/2/3* - Interpolation mode change
  1772. # Can occur along with coordinates and operation code but
  1773. # sometimes by itself (handled here).
  1774. # Example: G01*
  1775. match = self.interp_re.search(gline)
  1776. if match:
  1777. current_interpolation_mode = int(match.group(1))
  1778. continue
  1779. ### Tool/aperture change
  1780. # Example: D12*
  1781. match = self.tool_re.search(gline)
  1782. if match:
  1783. current_aperture = match.group(1)
  1784. log.debug("Line %d: Aperture change to (%s)" % (line_num, match.group(1)))
  1785. log.debug(self.apertures[current_aperture])
  1786. # Take care of the current path with the previous tool
  1787. if len(path) > 1:
  1788. # --- Buffered ----
  1789. width = self.apertures[last_path_aperture]["size"]
  1790. if follow:
  1791. geo = LineString(path)
  1792. else:
  1793. geo = LineString(path).buffer(width / 2)
  1794. if not geo.is_empty:
  1795. poly_buffer.append(geo)
  1796. path = [path[-1]]
  1797. continue
  1798. ### Polarity change
  1799. # Example: %LPD*% or %LPC*%
  1800. # If polarity changes, creates geometry from current
  1801. # buffer, then adds or subtracts accordingly.
  1802. match = self.lpol_re.search(gline)
  1803. if match:
  1804. if len(path) > 1 and current_polarity != match.group(1):
  1805. # --- Buffered ----
  1806. width = self.apertures[last_path_aperture]["size"]
  1807. if follow:
  1808. geo = LineString(path)
  1809. else:
  1810. geo = LineString(path).buffer(width / 2)
  1811. if not geo.is_empty:
  1812. poly_buffer.append(geo)
  1813. path = [path[-1]]
  1814. # --- Apply buffer ---
  1815. # If added for testing of bug #83
  1816. # TODO: Remove when bug fixed
  1817. if len(poly_buffer) > 0:
  1818. if current_polarity == 'D':
  1819. self.solid_geometry = self.solid_geometry.union(cascaded_union(poly_buffer))
  1820. else:
  1821. self.solid_geometry = self.solid_geometry.difference(cascaded_union(poly_buffer))
  1822. poly_buffer = []
  1823. current_polarity = match.group(1)
  1824. continue
  1825. ### Number format
  1826. # Example: %FSLAX24Y24*%
  1827. # TODO: This is ignoring most of the format. Implement the rest.
  1828. match = self.fmt_re.search(gline)
  1829. if match:
  1830. absolute = {'A': True, 'I': False}
  1831. self.int_digits = int(match.group(3))
  1832. self.frac_digits = int(match.group(4))
  1833. continue
  1834. ### Mode (IN/MM)
  1835. # Example: %MOIN*%
  1836. match = self.mode_re.search(gline)
  1837. if match:
  1838. #self.units = match.group(1)
  1839. # Changed for issue #80
  1840. self.convert_units(match.group(1))
  1841. continue
  1842. ### Units (G70/1) OBSOLETE
  1843. match = self.units_re.search(gline)
  1844. if match:
  1845. #self.units = {'0': 'IN', '1': 'MM'}[match.group(1)]
  1846. # Changed for issue #80
  1847. self.convert_units({'0': 'IN', '1': 'MM'}[match.group(1)])
  1848. continue
  1849. ### Absolute/relative coordinates G90/1 OBSOLETE
  1850. match = self.absrel_re.search(gline)
  1851. if match:
  1852. absolute = {'0': True, '1': False}[match.group(1)]
  1853. continue
  1854. #### Ignored lines
  1855. ## Comments
  1856. match = self.comm_re.search(gline)
  1857. if match:
  1858. continue
  1859. ## EOF
  1860. match = self.eof_re.search(gline)
  1861. if match:
  1862. continue
  1863. ### Line did not match any pattern. Warn user.
  1864. log.warning("Line ignored (%d): %s" % (line_num, gline))
  1865. if len(path) > 1:
  1866. # EOF, create shapely LineString if something still in path
  1867. ## --- Buffered ---
  1868. width = self.apertures[last_path_aperture]["size"]
  1869. if follow:
  1870. geo = LineString(path)
  1871. else:
  1872. geo = LineString(path).buffer(width / 2)
  1873. if not geo.is_empty:
  1874. poly_buffer.append(geo)
  1875. # --- Apply buffer ---
  1876. if follow:
  1877. self.solid_geometry = poly_buffer
  1878. return
  1879. log.warn("Joining %d polygons." % len(poly_buffer))
  1880. if self.use_buffer_for_union:
  1881. log.debug("Union by buffer...")
  1882. new_poly = MultiPolygon(poly_buffer)
  1883. new_poly = new_poly.buffer(0.00000001)
  1884. new_poly = new_poly.buffer(-0.00000001)
  1885. log.warn("Union(buffer) done.")
  1886. else:
  1887. log.debug("Union by union()...")
  1888. new_poly = cascaded_union(poly_buffer)
  1889. new_poly = new_poly.buffer(0)
  1890. log.warn("Union done.")
  1891. if current_polarity == 'D':
  1892. self.solid_geometry = self.solid_geometry.union(new_poly)
  1893. else:
  1894. self.solid_geometry = self.solid_geometry.difference(new_poly)
  1895. except Exception, err:
  1896. ex_type, ex, tb = sys.exc_info()
  1897. traceback.print_tb(tb)
  1898. #print traceback.format_exc()
  1899. log.error("PARSING FAILED. Line %d: %s" % (line_num, gline))
  1900. raise ParseError("Line %d: %s" % (line_num, gline), repr(err))
  1901. @staticmethod
  1902. def create_flash_geometry(location, aperture):
  1903. log.debug('Flashing @%s, Aperture: %s' % (location, aperture))
  1904. if type(location) == list:
  1905. location = Point(location)
  1906. if aperture['type'] == 'C': # Circles
  1907. return location.buffer(aperture['size'] / 2)
  1908. if aperture['type'] == 'R': # Rectangles
  1909. loc = location.coords[0]
  1910. width = aperture['width']
  1911. height = aperture['height']
  1912. minx = loc[0] - width / 2
  1913. maxx = loc[0] + width / 2
  1914. miny = loc[1] - height / 2
  1915. maxy = loc[1] + height / 2
  1916. return shply_box(minx, miny, maxx, maxy)
  1917. if aperture['type'] == 'O': # Obround
  1918. loc = location.coords[0]
  1919. width = aperture['width']
  1920. height = aperture['height']
  1921. if width > height:
  1922. p1 = Point(loc[0] + 0.5 * (width - height), loc[1])
  1923. p2 = Point(loc[0] - 0.5 * (width - height), loc[1])
  1924. c1 = p1.buffer(height * 0.5)
  1925. c2 = p2.buffer(height * 0.5)
  1926. else:
  1927. p1 = Point(loc[0], loc[1] + 0.5 * (height - width))
  1928. p2 = Point(loc[0], loc[1] - 0.5 * (height - width))
  1929. c1 = p1.buffer(width * 0.5)
  1930. c2 = p2.buffer(width * 0.5)
  1931. return cascaded_union([c1, c2]).convex_hull
  1932. if aperture['type'] == 'P': # Regular polygon
  1933. loc = location.coords[0]
  1934. diam = aperture['diam']
  1935. n_vertices = aperture['nVertices']
  1936. points = []
  1937. for i in range(0, n_vertices):
  1938. x = loc[0] + 0.5 * diam * (cos(2 * pi * i / n_vertices))
  1939. y = loc[1] + 0.5 * diam * (sin(2 * pi * i / n_vertices))
  1940. points.append((x, y))
  1941. ply = Polygon(points)
  1942. if 'rotation' in aperture:
  1943. ply = affinity.rotate(ply, aperture['rotation'])
  1944. return ply
  1945. if aperture['type'] == 'AM': # Aperture Macro
  1946. loc = location.coords[0]
  1947. flash_geo = aperture['macro'].make_geometry(aperture['modifiers'])
  1948. if flash_geo.is_empty:
  1949. log.warning("Empty geometry for Aperture Macro: %s" % str(aperture['macro'].name))
  1950. return affinity.translate(flash_geo, xoff=loc[0], yoff=loc[1])
  1951. log.warning("Unknown aperture type: %s" % aperture['type'])
  1952. return None
  1953. def create_geometry(self):
  1954. """
  1955. Geometry from a Gerber file is made up entirely of polygons.
  1956. Every stroke (linear or circular) has an aperture which gives
  1957. it thickness. Additionally, aperture strokes have non-zero area,
  1958. and regions naturally do as well.
  1959. :rtype : None
  1960. :return: None
  1961. """
  1962. # self.buffer_paths()
  1963. #
  1964. # self.fix_regions()
  1965. #
  1966. # self.do_flashes()
  1967. #
  1968. # self.solid_geometry = cascaded_union(self.buffered_paths +
  1969. # [poly['polygon'] for poly in self.regions] +
  1970. # self.flash_geometry)
  1971. def get_bounding_box(self, margin=0.0, rounded=False):
  1972. """
  1973. Creates and returns a rectangular polygon bounding at a distance of
  1974. margin from the object's ``solid_geometry``. If margin > 0, the polygon
  1975. can optionally have rounded corners of radius equal to margin.
  1976. :param margin: Distance to enlarge the rectangular bounding
  1977. box in both positive and negative, x and y axes.
  1978. :type margin: float
  1979. :param rounded: Wether or not to have rounded corners.
  1980. :type rounded: bool
  1981. :return: The bounding box.
  1982. :rtype: Shapely.Polygon
  1983. """
  1984. bbox = self.solid_geometry.envelope.buffer(margin)
  1985. if not rounded:
  1986. bbox = bbox.envelope
  1987. return bbox
  1988. class Excellon(Geometry):
  1989. """
  1990. *ATTRIBUTES*
  1991. * ``tools`` (dict): The key is the tool name and the value is
  1992. a dictionary specifying the tool:
  1993. ================ ====================================
  1994. Key Value
  1995. ================ ====================================
  1996. C Diameter of the tool
  1997. Others Not supported (Ignored).
  1998. ================ ====================================
  1999. * ``drills`` (list): Each is a dictionary:
  2000. ================ ====================================
  2001. Key Value
  2002. ================ ====================================
  2003. point (Shapely.Point) Where to drill
  2004. tool (str) A key in ``tools``
  2005. ================ ====================================
  2006. """
  2007. defaults = {
  2008. "zeros": "L"
  2009. }
  2010. def __init__(self, zeros=None):
  2011. """
  2012. The constructor takes no parameters.
  2013. :return: Excellon object.
  2014. :rtype: Excellon
  2015. """
  2016. Geometry.__init__(self)
  2017. self.tools = {}
  2018. self.drills = []
  2019. ## IN|MM -> Units are inherited from Geometry
  2020. #self.units = units
  2021. # Trailing "T" or leading "L" (default)
  2022. #self.zeros = "T"
  2023. self.zeros = zeros or self.defaults["zeros"]
  2024. # Attributes to be included in serialization
  2025. # Always append to it because it carries contents
  2026. # from Geometry.
  2027. self.ser_attrs += ['tools', 'drills', 'zeros']
  2028. #### Patterns ####
  2029. # Regex basics:
  2030. # ^ - beginning
  2031. # $ - end
  2032. # *: 0 or more, +: 1 or more, ?: 0 or 1
  2033. # M48 - Beggining of Part Program Header
  2034. self.hbegin_re = re.compile(r'^M48$')
  2035. # M95 or % - End of Part Program Header
  2036. # NOTE: % has different meaning in the body
  2037. self.hend_re = re.compile(r'^(?:M95|%)$')
  2038. # FMAT Excellon format
  2039. # Ignored in the parser
  2040. #self.fmat_re = re.compile(r'^FMAT,([12])$')
  2041. # Number format and units
  2042. # INCH uses 6 digits
  2043. # METRIC uses 5/6
  2044. self.units_re = re.compile(r'^(INCH|METRIC)(?:,([TL])Z)?$')
  2045. # Tool definition/parameters (?= is look-ahead
  2046. # NOTE: This might be an overkill!
  2047. # self.toolset_re = re.compile(r'^T(0?\d|\d\d)(?=.*C(\d*\.?\d*))?' +
  2048. # r'(?=.*F(\d*\.?\d*))?(?=.*S(\d*\.?\d*))?' +
  2049. # r'(?=.*B(\d*\.?\d*))?(?=.*H(\d*\.?\d*))?' +
  2050. # r'(?=.*Z([-\+]?\d*\.?\d*))?[CFSBHT]')
  2051. self.toolset_re = re.compile(r'^T(\d+)(?=.*C(\d*\.?\d*))?' +
  2052. r'(?=.*F(\d*\.?\d*))?(?=.*S(\d*\.?\d*))?' +
  2053. r'(?=.*B(\d*\.?\d*))?(?=.*H(\d*\.?\d*))?' +
  2054. r'(?=.*Z([-\+]?\d*\.?\d*))?[CFSBHT]')
  2055. # Tool select
  2056. # Can have additional data after tool number but
  2057. # is ignored if present in the header.
  2058. # Warning: This will match toolset_re too.
  2059. # self.toolsel_re = re.compile(r'^T((?:\d\d)|(?:\d))')
  2060. self.toolsel_re = re.compile(r'^T(\d+)')
  2061. # Comment
  2062. self.comm_re = re.compile(r'^;(.*)$')
  2063. # Absolute/Incremental G90/G91
  2064. self.absinc_re = re.compile(r'^G9([01])$')
  2065. # Modes of operation
  2066. # 1-linear, 2-circCW, 3-cirCCW, 4-vardwell, 5-Drill
  2067. self.modes_re = re.compile(r'^G0([012345])')
  2068. # Measuring mode
  2069. # 1-metric, 2-inch
  2070. self.meas_re = re.compile(r'^M7([12])$')
  2071. # Coordinates
  2072. #self.xcoord_re = re.compile(r'^X(\d*\.?\d*)(?:Y\d*\.?\d*)?$')
  2073. #self.ycoord_re = re.compile(r'^(?:X\d*\.?\d*)?Y(\d*\.?\d*)$')
  2074. self.coordsperiod_re = re.compile(r'(?=.*X([-\+]?\d*\.\d*))?(?=.*Y([-\+]?\d*\.\d*))?[XY]')
  2075. self.coordsnoperiod_re = re.compile(r'(?!.*\.)(?=.*X([-\+]?\d*))?(?=.*Y([-\+]?\d*))?[XY]')
  2076. # R - Repeat hole (# times, X offset, Y offset)
  2077. self.rep_re = re.compile(r'^R(\d+)(?=.*[XY])+(?:X([-\+]?\d*\.?\d*))?(?:Y([-\+]?\d*\.?\d*))?$')
  2078. # Various stop/pause commands
  2079. self.stop_re = re.compile(r'^((G04)|(M09)|(M06)|(M00)|(M30))')
  2080. # Parse coordinates
  2081. self.leadingzeros_re = re.compile(r'^[-\+]?(0*)(\d*)')
  2082. def parse_file(self, filename):
  2083. """
  2084. Reads the specified file as array of lines as
  2085. passes it to ``parse_lines()``.
  2086. :param filename: The file to be read and parsed.
  2087. :type filename: str
  2088. :return: None
  2089. """
  2090. efile = open(filename, 'r')
  2091. estr = efile.readlines()
  2092. efile.close()
  2093. self.parse_lines(estr)
  2094. def parse_lines(self, elines):
  2095. """
  2096. Main Excellon parser.
  2097. :param elines: List of strings, each being a line of Excellon code.
  2098. :type elines: list
  2099. :return: None
  2100. """
  2101. # State variables
  2102. current_tool = ""
  2103. in_header = False
  2104. current_x = None
  2105. current_y = None
  2106. #### Parsing starts here ####
  2107. line_num = 0 # Line number
  2108. eline = ""
  2109. try:
  2110. for eline in elines:
  2111. line_num += 1
  2112. #log.debug("%3d %s" % (line_num, str(eline)))
  2113. ### Cleanup lines
  2114. eline = eline.strip(' \r\n')
  2115. ## Header Begin (M48) ##
  2116. if self.hbegin_re.search(eline):
  2117. in_header = True
  2118. continue
  2119. ## Header End ##
  2120. if self.hend_re.search(eline):
  2121. in_header = False
  2122. continue
  2123. ## Alternative units format M71/M72
  2124. # Supposed to be just in the body (yes, the body)
  2125. # but some put it in the header (PADS for example).
  2126. # Will detect anywhere. Occurrence will change the
  2127. # object's units.
  2128. match = self.meas_re.match(eline)
  2129. if match:
  2130. #self.units = {"1": "MM", "2": "IN"}[match.group(1)]
  2131. # Modified for issue #80
  2132. self.convert_units({"1": "MM", "2": "IN"}[match.group(1)])
  2133. log.debug(" Units: %s" % self.units)
  2134. continue
  2135. #### Body ####
  2136. if not in_header:
  2137. ## Tool change ##
  2138. match = self.toolsel_re.search(eline)
  2139. if match:
  2140. current_tool = str(int(match.group(1)))
  2141. log.debug("Tool change: %s" % current_tool)
  2142. continue
  2143. ## Coordinates without period ##
  2144. match = self.coordsnoperiod_re.search(eline)
  2145. if match:
  2146. try:
  2147. #x = float(match.group(1))/10000
  2148. x = self.parse_number(match.group(1))
  2149. current_x = x
  2150. except TypeError:
  2151. x = current_x
  2152. try:
  2153. #y = float(match.group(2))/10000
  2154. y = self.parse_number(match.group(2))
  2155. current_y = y
  2156. except TypeError:
  2157. y = current_y
  2158. if x is None or y is None:
  2159. log.error("Missing coordinates")
  2160. continue
  2161. self.drills.append({'point': Point((x, y)), 'tool': current_tool})
  2162. log.debug("{:15} {:8} {:8}".format(eline, x, y))
  2163. continue
  2164. ## Coordinates with period: Use literally. ##
  2165. match = self.coordsperiod_re.search(eline)
  2166. if match:
  2167. try:
  2168. x = float(match.group(1))
  2169. current_x = x
  2170. except TypeError:
  2171. x = current_x
  2172. try:
  2173. y = float(match.group(2))
  2174. current_y = y
  2175. except TypeError:
  2176. y = current_y
  2177. if x is None or y is None:
  2178. log.error("Missing coordinates")
  2179. continue
  2180. self.drills.append({'point': Point((x, y)), 'tool': current_tool})
  2181. log.debug("{:15} {:8} {:8}".format(eline, x, y))
  2182. continue
  2183. #### Header ####
  2184. if in_header:
  2185. ## Tool definitions ##
  2186. match = self.toolset_re.search(eline)
  2187. if match:
  2188. name = str(int(match.group(1)))
  2189. spec = {
  2190. "C": float(match.group(2)),
  2191. # "F": float(match.group(3)),
  2192. # "S": float(match.group(4)),
  2193. # "B": float(match.group(5)),
  2194. # "H": float(match.group(6)),
  2195. # "Z": float(match.group(7))
  2196. }
  2197. self.tools[name] = spec
  2198. log.debug(" Tool definition: %s %s" % (name, spec))
  2199. continue
  2200. ## Units and number format ##
  2201. match = self.units_re.match(eline)
  2202. if match:
  2203. self.zeros = match.group(2) or self.zeros # "T" or "L". Might be empty
  2204. #self.units = {"INCH": "IN", "METRIC": "MM"}[match.group(1)]
  2205. # Modified for issue #80
  2206. self.convert_units({"INCH": "IN", "METRIC": "MM"}[match.group(1)])
  2207. log.debug(" Units/Format: %s %s" % (self.units, self.zeros))
  2208. continue
  2209. log.warning("Line ignored: %s" % eline)
  2210. log.info("Zeros: %s, Units %s." % (self.zeros, self.units))
  2211. except Exception as e:
  2212. log.error("PARSING FAILED. Line %d: %s" % (line_num, eline))
  2213. raise
  2214. def parse_number(self, number_str):
  2215. """
  2216. Parses coordinate numbers without period.
  2217. :param number_str: String representing the numerical value.
  2218. :type number_str: str
  2219. :return: Floating point representation of the number
  2220. :rtype: foat
  2221. """
  2222. if self.zeros == "L":
  2223. # With leading zeros, when you type in a coordinate,
  2224. # the leading zeros must always be included. Trailing zeros
  2225. # are unneeded and may be left off. The CNC-7 will automatically add them.
  2226. # r'^[-\+]?(0*)(\d*)'
  2227. # 6 digits are divided by 10^4
  2228. # If less than size digits, they are automatically added,
  2229. # 5 digits then are divided by 10^3 and so on.
  2230. match = self.leadingzeros_re.search(number_str)
  2231. if self.units.lower() == "in":
  2232. return float(number_str) / \
  2233. (10 ** (len(match.group(1)) + len(match.group(2)) - 2))
  2234. else:
  2235. return float(number_str) / \
  2236. (10 ** (len(match.group(1)) + len(match.group(2)) - 3))
  2237. else: # Trailing
  2238. # You must show all zeros to the right of the number and can omit
  2239. # all zeros to the left of the number. The CNC-7 will count the number
  2240. # of digits you typed and automatically fill in the missing zeros.
  2241. if self.units.lower() == "in": # Inches is 00.0000
  2242. return float(number_str) / 10000
  2243. else:
  2244. return float(number_str) / 1000 # Metric is 000.000
  2245. def create_geometry(self):
  2246. """
  2247. Creates circles of the tool diameter at every point
  2248. specified in ``self.drills``.
  2249. :return: None
  2250. """
  2251. self.solid_geometry = []
  2252. for drill in self.drills:
  2253. # poly = drill['point'].buffer(self.tools[drill['tool']]["C"]/2.0)
  2254. tooldia = self.tools[drill['tool']]['C']
  2255. poly = drill['point'].buffer(tooldia / 2.0)
  2256. self.solid_geometry.append(poly)
  2257. def scale(self, factor):
  2258. """
  2259. Scales geometry on the XY plane in the object by a given factor.
  2260. Tool sizes, feedrates an Z-plane dimensions are untouched.
  2261. :param factor: Number by which to scale the object.
  2262. :type factor: float
  2263. :return: None
  2264. :rtype: NOne
  2265. """
  2266. # Drills
  2267. for drill in self.drills:
  2268. drill['point'] = affinity.scale(drill['point'], factor, factor, origin=(0, 0))
  2269. self.create_geometry()
  2270. def offset(self, vect):
  2271. """
  2272. Offsets geometry on the XY plane in the object by a given vector.
  2273. :param vect: (x, y) offset vector.
  2274. :type vect: tuple
  2275. :return: None
  2276. """
  2277. dx, dy = vect
  2278. # Drills
  2279. for drill in self.drills:
  2280. drill['point'] = affinity.translate(drill['point'], xoff=dx, yoff=dy)
  2281. # Recreate geometry
  2282. self.create_geometry()
  2283. def mirror(self, axis, point):
  2284. """
  2285. :param axis: "X" or "Y" indicates around which axis to mirror.
  2286. :type axis: str
  2287. :param point: [x, y] point belonging to the mirror axis.
  2288. :type point: list
  2289. :return: None
  2290. """
  2291. px, py = point
  2292. xscale, yscale = {"X": (1.0, -1.0), "Y": (-1.0, 1.0)}[axis]
  2293. # Modify data
  2294. for drill in self.drills:
  2295. drill['point'] = affinity.scale(drill['point'], xscale, yscale, origin=(px, py))
  2296. # Recreate geometry
  2297. self.create_geometry()
  2298. def convert_units(self, units):
  2299. factor = Geometry.convert_units(self, units)
  2300. # Tools
  2301. for tname in self.tools:
  2302. self.tools[tname]["C"] *= factor
  2303. self.create_geometry()
  2304. return factor
  2305. class CNCjob(Geometry):
  2306. """
  2307. Represents work to be done by a CNC machine.
  2308. *ATTRIBUTES*
  2309. * ``gcode_parsed`` (list): Each is a dictionary:
  2310. ===================== =========================================
  2311. Key Value
  2312. ===================== =========================================
  2313. geom (Shapely.LineString) Tool path (XY plane)
  2314. kind (string) "AB", A is "T" (travel) or
  2315. "C" (cut). B is "F" (fast) or "S" (slow).
  2316. ===================== =========================================
  2317. """
  2318. defaults = {
  2319. "zdownrate": None,
  2320. "coordinate_format": "X%.4fY%.4f"
  2321. }
  2322. def __init__(self,
  2323. units="in",
  2324. kind="generic",
  2325. z_move=0.1,
  2326. feedrate=3.0,
  2327. z_cut=-0.002,
  2328. tooldia=0.0,
  2329. zdownrate=None,
  2330. spindlespeed=None):
  2331. Geometry.__init__(self)
  2332. self.kind = kind
  2333. self.units = units
  2334. self.z_cut = z_cut
  2335. self.z_move = z_move
  2336. self.feedrate = feedrate
  2337. self.tooldia = tooldia
  2338. self.unitcode = {"IN": "G20", "MM": "G21"}
  2339. # TODO: G04 Does not exist. It's G4 and now we are handling in postprocessing.
  2340. #self.pausecode = "G04 P1"
  2341. self.feedminutecode = "G94"
  2342. self.absolutecode = "G90"
  2343. self.gcode = ""
  2344. self.input_geometry_bounds = None
  2345. self.gcode_parsed = None
  2346. self.steps_per_circ = 20 # Used when parsing G-code arcs
  2347. if zdownrate is not None:
  2348. self.zdownrate = float(zdownrate)
  2349. elif CNCjob.defaults["zdownrate"] is not None:
  2350. self.zdownrate = float(CNCjob.defaults["zdownrate"])
  2351. else:
  2352. self.zdownrate = None
  2353. self.spindlespeed = spindlespeed
  2354. # Attributes to be included in serialization
  2355. # Always append to it because it carries contents
  2356. # from Geometry.
  2357. self.ser_attrs += ['kind', 'z_cut', 'z_move', 'feedrate', 'tooldia',
  2358. 'gcode', 'input_geometry_bounds', 'gcode_parsed',
  2359. 'steps_per_circ']
  2360. def convert_units(self, units):
  2361. factor = Geometry.convert_units(self, units)
  2362. log.debug("CNCjob.convert_units()")
  2363. self.z_cut *= factor
  2364. self.z_move *= factor
  2365. self.feedrate *= factor
  2366. self.tooldia *= factor
  2367. return factor
  2368. def generate_from_excellon_by_tool(self, exobj, tools="all",
  2369. toolchange=False, toolchangez=0.1):
  2370. """
  2371. Creates gcode for this object from an Excellon object
  2372. for the specified tools.
  2373. :param exobj: Excellon object to process
  2374. :type exobj: Excellon
  2375. :param tools: Comma separated tool names
  2376. :type: tools: str
  2377. :return: None
  2378. :rtype: None
  2379. """
  2380. log.debug("Creating CNC Job from Excellon...")
  2381. # Tools
  2382. # sort the tools list by the second item in tuple (here we have a dict with diameter of the tool)
  2383. # so we actually are sorting the tools by diameter
  2384. sorted_tools = sorted(exobj.tools.items(), key = lambda x: x[1])
  2385. if tools == "all":
  2386. tools = [i[0] for i in sorted_tools] # we get a array of ordered tools
  2387. log.debug("Tools 'all' and sorted are: %s" % str(tools))
  2388. else:
  2389. selected_tools = [x.strip() for x in tools.split(",")] # we strip spaces and also separate the tools by ','
  2390. selected_tools = filter(lambda i: i in selected_tools, selected_tools)
  2391. # Create a sorted list of selected tools from the sorted_tools list
  2392. tools = [i for i, j in sorted_tools for k in selected_tools if i == k]
  2393. log.debug("Tools selected and sorted are: %s" % str(tools))
  2394. # Points (Group by tool)
  2395. points = {}
  2396. for drill in exobj.drills:
  2397. if drill['tool'] in tools:
  2398. try:
  2399. points[drill['tool']].append(drill['point'])
  2400. except KeyError:
  2401. points[drill['tool']] = [drill['point']]
  2402. #log.debug("Found %d drills." % len(points))
  2403. self.gcode = []
  2404. # Basic G-Code macros
  2405. t = "G00 " + CNCjob.defaults["coordinate_format"] + "\n"
  2406. down = "G01 Z%.4f\n" % self.z_cut
  2407. up = "G00 Z%.4f\n" % self.z_move
  2408. up_to_zero = "G01 Z0\n"
  2409. # Initialization
  2410. gcode = self.unitcode[self.units.upper()] + "\n"
  2411. gcode += self.absolutecode + "\n"
  2412. gcode += self.feedminutecode + "\n"
  2413. gcode += "F%.2f\n" % self.feedrate
  2414. gcode += "G00 Z%.4f\n" % self.z_move # Move to travel height
  2415. if self.spindlespeed is not None:
  2416. # Spindle start with configured speed
  2417. gcode += "M03 S%d\n" % int(self.spindlespeed)
  2418. else:
  2419. gcode += "M03\n" # Spindle start
  2420. #gcode += self.pausecode + "\n"
  2421. for tool in tools:
  2422. # Only if tool has points.
  2423. if tool in points:
  2424. # Tool change sequence (optional)
  2425. if toolchange:
  2426. gcode += "G00 Z%.4f\n" % toolchangez
  2427. gcode += "T%d\n" % int(tool) # Indicate tool slot (for automatic tool changer)
  2428. gcode += "M5\n" # Spindle Stop
  2429. gcode += "M6\n" # Tool change
  2430. gcode += "(MSG, Change to tool dia=%.4f)\n" % exobj.tools[tool]["C"]
  2431. gcode += "M0\n" # Temporary machine stop
  2432. if self.spindlespeed is not None:
  2433. # Spindle start with configured speed
  2434. gcode += "M03 S%d\n" % int(self.spindlespeed)
  2435. else:
  2436. gcode += "M03\n" # Spindle start
  2437. # Drillling!
  2438. for point in points[tool]:
  2439. x, y = point.coords.xy
  2440. gcode += t % (x[0], y[0])
  2441. gcode += down + up_to_zero + up
  2442. gcode += t % (0, 0)
  2443. gcode += "M05\n" # Spindle stop
  2444. self.gcode = gcode
  2445. def generate_from_geometry_2(self,
  2446. geometry,
  2447. append=True,
  2448. tooldia=None,
  2449. tolerance=0,
  2450. multidepth=False,
  2451. depthpercut=None):
  2452. """
  2453. Second algorithm to generate from Geometry.
  2454. ALgorithm description:
  2455. ----------------------
  2456. Uses RTree to find the nearest path to follow.
  2457. :param geometry:
  2458. :param append:
  2459. :param tooldia:
  2460. :param tolerance:
  2461. :param multidepth: If True, use multiple passes to reach
  2462. the desired depth.
  2463. :param depthpercut: Maximum depth in each pass.
  2464. :return: None
  2465. """
  2466. assert isinstance(geometry, Geometry), \
  2467. "Expected a Geometry, got %s" % type(geometry)
  2468. log.debug("generate_from_geometry_2()")
  2469. ## Flatten the geometry
  2470. # Only linear elements (no polygons) remain.
  2471. flat_geometry = geometry.flatten(pathonly=True)
  2472. log.debug("%d paths" % len(flat_geometry))
  2473. ## Index first and last points in paths
  2474. # What points to index.
  2475. def get_pts(o):
  2476. return [o.coords[0], o.coords[-1]]
  2477. # Create the indexed storage.
  2478. storage = FlatCAMRTreeStorage()
  2479. storage.get_points = get_pts
  2480. # Store the geometry
  2481. log.debug("Indexing geometry before generating G-Code...")
  2482. for shape in flat_geometry:
  2483. if shape is not None: # TODO: This shouldn't have happened.
  2484. storage.insert(shape)
  2485. if tooldia is not None:
  2486. self.tooldia = tooldia
  2487. # self.input_geometry_bounds = geometry.bounds()
  2488. if not append:
  2489. self.gcode = ""
  2490. # Initial G-Code
  2491. self.gcode = self.unitcode[self.units.upper()] + "\n"
  2492. self.gcode += self.absolutecode + "\n"
  2493. self.gcode += self.feedminutecode + "\n"
  2494. self.gcode += "F%.2f\n" % self.feedrate
  2495. self.gcode += "G00 Z%.4f\n" % self.z_move # Move (up) to travel height
  2496. if self.spindlespeed is not None:
  2497. self.gcode += "M03 S%d\n" % int(self.spindlespeed) # Spindle start with configured speed
  2498. else:
  2499. self.gcode += "M03\n" # Spindle start
  2500. #self.gcode += self.pausecode + "\n"
  2501. ## Iterate over geometry paths getting the nearest each time.
  2502. log.debug("Starting G-Code...")
  2503. path_count = 0
  2504. current_pt = (0, 0)
  2505. pt, geo = storage.nearest(current_pt)
  2506. try:
  2507. while True:
  2508. path_count += 1
  2509. #print "Current: ", "(%.3f, %.3f)" % current_pt
  2510. # Remove before modifying, otherwise
  2511. # deletion will fail.
  2512. storage.remove(geo)
  2513. # If last point in geometry is the nearest
  2514. # but prefer the first one if last point == first point
  2515. # then reverse coordinates.
  2516. if pt != geo.coords[0] and pt == geo.coords[-1]:
  2517. geo.coords = list(geo.coords)[::-1]
  2518. #---------- Single depth/pass --------
  2519. if not multidepth:
  2520. # G-code
  2521. # Note: self.linear2gcode() and self.point2gcode() will
  2522. # lower and raise the tool every time.
  2523. if type(geo) == LineString or type(geo) == LinearRing:
  2524. self.gcode += self.linear2gcode(geo, tolerance=tolerance)
  2525. elif type(geo) == Point:
  2526. self.gcode += self.point2gcode(geo)
  2527. else:
  2528. log.warning("G-code generation not implemented for %s" % (str(type(geo))))
  2529. #--------- Multi-pass ---------
  2530. else:
  2531. if isinstance(self.z_cut, Decimal):
  2532. z_cut = self.z_cut
  2533. else:
  2534. z_cut = Decimal(self.z_cut).quantize(Decimal('0.000000001'))
  2535. if depthpercut is None:
  2536. depthpercut = z_cut
  2537. elif not isinstance(depthpercut, Decimal):
  2538. depthpercut = Decimal(depthpercut).quantize(Decimal('0.000000001'))
  2539. depth = 0
  2540. reverse = False
  2541. while depth > z_cut:
  2542. # Increase depth. Limit to z_cut.
  2543. depth -= depthpercut
  2544. if depth < z_cut:
  2545. depth = z_cut
  2546. # Cut at specific depth and do not lift the tool.
  2547. # Note: linear2gcode() will use G00 to move to the
  2548. # first point in the path, but it should be already
  2549. # at the first point if the tool is down (in the material).
  2550. # So, an extra G00 should show up but is inconsequential.
  2551. if type(geo) == LineString or type(geo) == LinearRing:
  2552. self.gcode += self.linear2gcode(geo, tolerance=tolerance,
  2553. zcut=depth,
  2554. up=False)
  2555. # Ignore multi-pass for points.
  2556. elif type(geo) == Point:
  2557. self.gcode += self.point2gcode(geo)
  2558. break # Ignoring ...
  2559. else:
  2560. log.warning("G-code generation not implemented for %s" % (str(type(geo))))
  2561. # Reverse coordinates if not a loop so we can continue
  2562. # cutting without returning to the beginhing.
  2563. if type(geo) == LineString:
  2564. geo.coords = list(geo.coords)[::-1]
  2565. reverse = True
  2566. # If geometry is reversed, revert.
  2567. if reverse:
  2568. if type(geo) == LineString:
  2569. geo.coords = list(geo.coords)[::-1]
  2570. # Lift the tool
  2571. self.gcode += "G00 Z%.4f\n" % self.z_move
  2572. # self.gcode += "( End of path. )\n"
  2573. # Did deletion at the beginning.
  2574. # Delete from index, update current location and continue.
  2575. #rti.delete(hits[0], geo.coords[0])
  2576. #rti.delete(hits[0], geo.coords[-1])
  2577. current_pt = geo.coords[-1]
  2578. # Next
  2579. pt, geo = storage.nearest(current_pt)
  2580. except StopIteration: # Nothing found in storage.
  2581. pass
  2582. log.debug("%s paths traced." % path_count)
  2583. # Finish
  2584. self.gcode += "G00 Z%.4f\n" % self.z_move # Stop cutting
  2585. self.gcode += "G00 X0Y0\n"
  2586. self.gcode += "M05\n" # Spindle stop
  2587. @staticmethod
  2588. def codes_split(gline):
  2589. """
  2590. Parses a line of G-Code such as "G01 X1234 Y987" into
  2591. a dictionary: {'G': 1.0, 'X': 1234.0, 'Y': 987.0}
  2592. :param gline: G-Code line string
  2593. :return: Dictionary with parsed line.
  2594. """
  2595. command = {}
  2596. match = re.search(r'^\s*([A-Z])\s*([\+\-\.\d\s]+)', gline)
  2597. while match:
  2598. command[match.group(1)] = float(match.group(2).replace(" ", ""))
  2599. gline = gline[match.end():]
  2600. match = re.search(r'^\s*([A-Z])\s*([\+\-\.\d\s]+)', gline)
  2601. return command
  2602. def gcode_parse(self):
  2603. """
  2604. G-Code parser (from self.gcode). Generates dictionary with
  2605. single-segment LineString's and "kind" indicating cut or travel,
  2606. fast or feedrate speed.
  2607. """
  2608. kind = ["C", "F"] # T=travel, C=cut, F=fast, S=slow
  2609. # Results go here
  2610. geometry = []
  2611. # Last known instruction
  2612. current = {'X': 0.0, 'Y': 0.0, 'Z': 0.0, 'G': 0}
  2613. # Current path: temporary storage until tool is
  2614. # lifted or lowered.
  2615. path = [(0, 0)]
  2616. # Process every instruction
  2617. for line in StringIO(self.gcode):
  2618. gobj = self.codes_split(line)
  2619. ## Units
  2620. if 'G' in gobj and (gobj['G'] == 20.0 or gobj['G'] == 21.0):
  2621. self.units = {20.0: "IN", 21.0: "MM"}[gobj['G']]
  2622. continue
  2623. ## Changing height
  2624. if 'Z' in gobj:
  2625. if ('X' in gobj or 'Y' in gobj) and gobj['Z'] != current['Z']:
  2626. log.warning("Non-orthogonal motion: From %s" % str(current))
  2627. log.warning(" To: %s" % str(gobj))
  2628. current['Z'] = gobj['Z']
  2629. # Store the path into geometry and reset path
  2630. if len(path) > 1:
  2631. geometry.append({"geom": LineString(path),
  2632. "kind": kind})
  2633. path = [path[-1]] # Start with the last point of last path.
  2634. if 'G' in gobj:
  2635. current['G'] = int(gobj['G'])
  2636. if 'X' in gobj or 'Y' in gobj:
  2637. if 'X' in gobj:
  2638. x = gobj['X']
  2639. else:
  2640. x = current['X']
  2641. if 'Y' in gobj:
  2642. y = gobj['Y']
  2643. else:
  2644. y = current['Y']
  2645. kind = ["C", "F"] # T=travel, C=cut, F=fast, S=slow
  2646. if current['Z'] > 0:
  2647. kind[0] = 'T'
  2648. if current['G'] > 0:
  2649. kind[1] = 'S'
  2650. arcdir = [None, None, "cw", "ccw"]
  2651. if current['G'] in [0, 1]: # line
  2652. path.append((x, y))
  2653. if current['G'] in [2, 3]: # arc
  2654. center = [gobj['I'] + current['X'], gobj['J'] + current['Y']]
  2655. radius = sqrt(gobj['I']**2 + gobj['J']**2)
  2656. start = arctan2(-gobj['J'], -gobj['I'])
  2657. stop = arctan2(-center[1] + y, -center[0] + x)
  2658. path += arc(center, radius, start, stop,
  2659. arcdir[current['G']],
  2660. self.steps_per_circ)
  2661. # Update current instruction
  2662. for code in gobj:
  2663. current[code] = gobj[code]
  2664. # There might not be a change in height at the
  2665. # end, therefore, see here too if there is
  2666. # a final path.
  2667. if len(path) > 1:
  2668. geometry.append({"geom": LineString(path),
  2669. "kind": kind})
  2670. self.gcode_parsed = geometry
  2671. return geometry
  2672. # def plot(self, tooldia=None, dpi=75, margin=0.1,
  2673. # color={"T": ["#F0E24D", "#B5AB3A"], "C": ["#5E6CFF", "#4650BD"]},
  2674. # alpha={"T": 0.3, "C": 1.0}):
  2675. # """
  2676. # Creates a Matplotlib figure with a plot of the
  2677. # G-code job.
  2678. # """
  2679. # if tooldia is None:
  2680. # tooldia = self.tooldia
  2681. #
  2682. # fig = Figure(dpi=dpi)
  2683. # ax = fig.add_subplot(111)
  2684. # ax.set_aspect(1)
  2685. # xmin, ymin, xmax, ymax = self.input_geometry_bounds
  2686. # ax.set_xlim(xmin-margin, xmax+margin)
  2687. # ax.set_ylim(ymin-margin, ymax+margin)
  2688. #
  2689. # if tooldia == 0:
  2690. # for geo in self.gcode_parsed:
  2691. # linespec = '--'
  2692. # linecolor = color[geo['kind'][0]][1]
  2693. # if geo['kind'][0] == 'C':
  2694. # linespec = 'k-'
  2695. # x, y = geo['geom'].coords.xy
  2696. # ax.plot(x, y, linespec, color=linecolor)
  2697. # else:
  2698. # for geo in self.gcode_parsed:
  2699. # poly = geo['geom'].buffer(tooldia/2.0)
  2700. # patch = PolygonPatch(poly, facecolor=color[geo['kind'][0]][0],
  2701. # edgecolor=color[geo['kind'][0]][1],
  2702. # alpha=alpha[geo['kind'][0]], zorder=2)
  2703. # ax.add_patch(patch)
  2704. #
  2705. # return fig
  2706. def plot2(self, axes, tooldia=None, dpi=75, margin=0.1,
  2707. color={"T": ["#F0E24D", "#B5AB3A"], "C": ["#5E6CFF", "#4650BD"]},
  2708. alpha={"T": 0.3, "C": 1.0}, tool_tolerance=0.0005):
  2709. """
  2710. Plots the G-code job onto the given axes.
  2711. :param axes: Matplotlib axes on which to plot.
  2712. :param tooldia: Tool diameter.
  2713. :param dpi: Not used!
  2714. :param margin: Not used!
  2715. :param color: Color specification.
  2716. :param alpha: Transparency specification.
  2717. :param tool_tolerance: Tolerance when drawing the toolshape.
  2718. :return: None
  2719. """
  2720. path_num = 0
  2721. if tooldia is None:
  2722. tooldia = self.tooldia
  2723. if tooldia == 0:
  2724. for geo in self.gcode_parsed:
  2725. linespec = '--'
  2726. linecolor = color[geo['kind'][0]][1]
  2727. if geo['kind'][0] == 'C':
  2728. linespec = 'k-'
  2729. x, y = geo['geom'].coords.xy
  2730. axes.plot(x, y, linespec, color=linecolor)
  2731. else:
  2732. for geo in self.gcode_parsed:
  2733. path_num += 1
  2734. axes.annotate(str(path_num), xy=geo['geom'].coords[0],
  2735. xycoords='data')
  2736. poly = geo['geom'].buffer(tooldia / 2.0).simplify(tool_tolerance)
  2737. patch = PolygonPatch(poly, facecolor=color[geo['kind'][0]][0],
  2738. edgecolor=color[geo['kind'][0]][1],
  2739. alpha=alpha[geo['kind'][0]], zorder=2)
  2740. axes.add_patch(patch)
  2741. def create_geometry(self):
  2742. # TODO: This takes forever. Too much data?
  2743. self.solid_geometry = cascaded_union([geo['geom'] for geo in self.gcode_parsed])
  2744. def linear2gcode(self, linear, tolerance=0, down=True, up=True,
  2745. zcut=None, ztravel=None, downrate=None,
  2746. feedrate=None, cont=False):
  2747. """
  2748. Generates G-code to cut along the linear feature.
  2749. :param linear: The path to cut along.
  2750. :type: Shapely.LinearRing or Shapely.Linear String
  2751. :param tolerance: All points in the simplified object will be within the
  2752. tolerance distance of the original geometry.
  2753. :type tolerance: float
  2754. :return: G-code to cut along the linear feature.
  2755. :rtype: str
  2756. """
  2757. if zcut is None:
  2758. zcut = self.z_cut
  2759. if ztravel is None:
  2760. ztravel = self.z_move
  2761. if downrate is None:
  2762. downrate = self.zdownrate
  2763. if feedrate is None:
  2764. feedrate = self.feedrate
  2765. t = "G0%d " + CNCjob.defaults["coordinate_format"] + "\n"
  2766. # Simplify paths?
  2767. if tolerance > 0:
  2768. target_linear = linear.simplify(tolerance)
  2769. else:
  2770. target_linear = linear
  2771. gcode = ""
  2772. path = list(target_linear.coords)
  2773. # Move fast to 1st point
  2774. if not cont:
  2775. gcode += t % (0, path[0][0], path[0][1]) # Move to first point
  2776. # Move down to cutting depth
  2777. if down:
  2778. # Different feedrate for vertical cut?
  2779. if self.zdownrate is not None:
  2780. gcode += "F%.2f\n" % downrate
  2781. gcode += "G01 Z%.4f\n" % zcut # Start cutting
  2782. gcode += "F%.2f\n" % feedrate # Restore feedrate
  2783. else:
  2784. gcode += "G01 Z%.4f\n" % zcut # Start cutting
  2785. # Cutting...
  2786. for pt in path[1:]:
  2787. gcode += t % (1, pt[0], pt[1]) # Linear motion to point
  2788. # Up to travelling height.
  2789. if up:
  2790. gcode += "G00 Z%.4f\n" % ztravel # Stop cutting
  2791. return gcode
  2792. def point2gcode(self, point):
  2793. gcode = ""
  2794. #t = "G0%d X%.4fY%.4f\n"
  2795. t = "G0%d " + CNCjob.defaults["coordinate_format"] + "\n"
  2796. path = list(point.coords)
  2797. gcode += t % (0, path[0][0], path[0][1]) # Move to first point
  2798. if self.zdownrate is not None:
  2799. gcode += "F%.2f\n" % self.zdownrate
  2800. gcode += "G01 Z%.4f\n" % self.z_cut # Start cutting
  2801. gcode += "F%.2f\n" % self.feedrate
  2802. else:
  2803. gcode += "G01 Z%.4f\n" % self.z_cut # Start cutting
  2804. gcode += "G00 Z%.4f\n" % self.z_move # Stop cutting
  2805. return gcode
  2806. def scale(self, factor):
  2807. """
  2808. Scales all the geometry on the XY plane in the object by the
  2809. given factor. Tool sizes, feedrates, or Z-axis dimensions are
  2810. not altered.
  2811. :param factor: Number by which to scale the object.
  2812. :type factor: float
  2813. :return: None
  2814. :rtype: None
  2815. """
  2816. for g in self.gcode_parsed:
  2817. g['geom'] = affinity.scale(g['geom'], factor, factor, origin=(0, 0))
  2818. self.create_geometry()
  2819. def offset(self, vect):
  2820. """
  2821. Offsets all the geometry on the XY plane in the object by the
  2822. given vector.
  2823. :param vect: (x, y) offset vector.
  2824. :type vect: tuple
  2825. :return: None
  2826. """
  2827. dx, dy = vect
  2828. for g in self.gcode_parsed:
  2829. g['geom'] = affinity.translate(g['geom'], xoff=dx, yoff=dy)
  2830. self.create_geometry()
  2831. def export_svg(self, scale_factor=0.00):
  2832. """
  2833. Exports the CNC Job as a SVG Element
  2834. :scale_factor: float
  2835. :return: SVG Element string
  2836. """
  2837. # scale_factor is a multiplication factor for the SVG stroke-width used within shapely's svg export
  2838. # If not specified then try and use the tool diameter
  2839. # This way what is on screen will match what is outputed for the svg
  2840. # This is quite a useful feature for svg's used with visicut
  2841. if scale_factor <= 0:
  2842. scale_factor = self.options['tooldia'] / 2
  2843. # If still 0 then defailt to 0.05
  2844. # This value appears to work for zooming, and getting the output svg line width
  2845. # to match that viewed on screen with FlatCam
  2846. if scale_factor == 0:
  2847. scale_factor = 0.05
  2848. # Seperate the list of cuts and travels into 2 distinct lists
  2849. # This way we can add different formatting / colors to both
  2850. cuts = []
  2851. travels = []
  2852. for g in self.gcode_parsed:
  2853. if g['kind'][0] == 'C': cuts.append(g)
  2854. if g['kind'][0] == 'T': travels.append(g)
  2855. # Used to determine the overall board size
  2856. self.solid_geometry = cascaded_union([geo['geom'] for geo in self.gcode_parsed])
  2857. # Convert the cuts and travels into single geometry objects we can render as svg xml
  2858. if travels:
  2859. travelsgeom = cascaded_union([geo['geom'] for geo in travels])
  2860. if cuts:
  2861. cutsgeom = cascaded_union([geo['geom'] for geo in cuts])
  2862. # Render the SVG Xml
  2863. # The scale factor affects the size of the lines, and the stroke color adds different formatting for each set
  2864. # It's better to have the travels sitting underneath the cuts for visicut
  2865. svg_elem = ""
  2866. if travels:
  2867. svg_elem = travelsgeom.svg(scale_factor=scale_factor, stroke_color="#F0E24D")
  2868. if cuts:
  2869. svg_elem += cutsgeom.svg(scale_factor=scale_factor, stroke_color="#5E6CFF")
  2870. return svg_elem
  2871. # def get_bounds(geometry_set):
  2872. # xmin = Inf
  2873. # ymin = Inf
  2874. # xmax = -Inf
  2875. # ymax = -Inf
  2876. #
  2877. # #print "Getting bounds of:", str(geometry_set)
  2878. # for gs in geometry_set:
  2879. # try:
  2880. # gxmin, gymin, gxmax, gymax = geometry_set[gs].bounds()
  2881. # xmin = min([xmin, gxmin])
  2882. # ymin = min([ymin, gymin])
  2883. # xmax = max([xmax, gxmax])
  2884. # ymax = max([ymax, gymax])
  2885. # except:
  2886. # print "DEV WARNING: Tried to get bounds of empty geometry."
  2887. #
  2888. # return [xmin, ymin, xmax, ymax]
  2889. def get_bounds(geometry_list):
  2890. xmin = Inf
  2891. ymin = Inf
  2892. xmax = -Inf
  2893. ymax = -Inf
  2894. #print "Getting bounds of:", str(geometry_set)
  2895. for gs in geometry_list:
  2896. try:
  2897. gxmin, gymin, gxmax, gymax = gs.bounds()
  2898. xmin = min([xmin, gxmin])
  2899. ymin = min([ymin, gymin])
  2900. xmax = max([xmax, gxmax])
  2901. ymax = max([ymax, gymax])
  2902. except:
  2903. log.warning("DEVELOPMENT: Tried to get bounds of empty geometry.")
  2904. return [xmin, ymin, xmax, ymax]
  2905. def arc(center, radius, start, stop, direction, steps_per_circ):
  2906. """
  2907. Creates a list of point along the specified arc.
  2908. :param center: Coordinates of the center [x, y]
  2909. :type center: list
  2910. :param radius: Radius of the arc.
  2911. :type radius: float
  2912. :param start: Starting angle in radians
  2913. :type start: float
  2914. :param stop: End angle in radians
  2915. :type stop: float
  2916. :param direction: Orientation of the arc, "CW" or "CCW"
  2917. :type direction: string
  2918. :param steps_per_circ: Number of straight line segments to
  2919. represent a circle.
  2920. :type steps_per_circ: int
  2921. :return: The desired arc, as list of tuples
  2922. :rtype: list
  2923. """
  2924. # TODO: Resolution should be established by maximum error from the exact arc.
  2925. da_sign = {"cw": -1.0, "ccw": 1.0}
  2926. points = []
  2927. if direction == "ccw" and stop <= start:
  2928. stop += 2 * pi
  2929. if direction == "cw" and stop >= start:
  2930. stop -= 2 * pi
  2931. angle = abs(stop - start)
  2932. #angle = stop-start
  2933. steps = max([int(ceil(angle / (2 * pi) * steps_per_circ)), 2])
  2934. delta_angle = da_sign[direction] * angle * 1.0 / steps
  2935. for i in range(steps + 1):
  2936. theta = start + delta_angle * i
  2937. points.append((center[0] + radius * cos(theta), center[1] + radius * sin(theta)))
  2938. return points
  2939. def arc2(p1, p2, center, direction, steps_per_circ):
  2940. r = sqrt((center[0] - p1[0]) ** 2 + (center[1] - p1[1]) ** 2)
  2941. start = arctan2(p1[1] - center[1], p1[0] - center[0])
  2942. stop = arctan2(p2[1] - center[1], p2[0] - center[0])
  2943. return arc(center, r, start, stop, direction, steps_per_circ)
  2944. def arc_angle(start, stop, direction):
  2945. if direction == "ccw" and stop <= start:
  2946. stop += 2 * pi
  2947. if direction == "cw" and stop >= start:
  2948. stop -= 2 * pi
  2949. angle = abs(stop - start)
  2950. return angle
  2951. # def find_polygon(poly, point):
  2952. # """
  2953. # Find an object that object.contains(Point(point)) in
  2954. # poly, which can can be iterable, contain iterable of, or
  2955. # be itself an implementer of .contains().
  2956. #
  2957. # :param poly: See description
  2958. # :return: Polygon containing point or None.
  2959. # """
  2960. #
  2961. # if poly is None:
  2962. # return None
  2963. #
  2964. # try:
  2965. # for sub_poly in poly:
  2966. # p = find_polygon(sub_poly, point)
  2967. # if p is not None:
  2968. # return p
  2969. # except TypeError:
  2970. # try:
  2971. # if poly.contains(Point(point)):
  2972. # return poly
  2973. # except AttributeError:
  2974. # return None
  2975. #
  2976. # return None
  2977. def to_dict(obj):
  2978. """
  2979. Makes the following types into serializable form:
  2980. * ApertureMacro
  2981. * BaseGeometry
  2982. :param obj: Shapely geometry.
  2983. :type obj: BaseGeometry
  2984. :return: Dictionary with serializable form if ``obj`` was
  2985. BaseGeometry or ApertureMacro, otherwise returns ``obj``.
  2986. """
  2987. if isinstance(obj, ApertureMacro):
  2988. return {
  2989. "__class__": "ApertureMacro",
  2990. "__inst__": obj.to_dict()
  2991. }
  2992. if isinstance(obj, BaseGeometry):
  2993. return {
  2994. "__class__": "Shply",
  2995. "__inst__": sdumps(obj)
  2996. }
  2997. return obj
  2998. def dict2obj(d):
  2999. """
  3000. Default deserializer.
  3001. :param d: Serializable dictionary representation of an object
  3002. to be reconstructed.
  3003. :return: Reconstructed object.
  3004. """
  3005. if '__class__' in d and '__inst__' in d:
  3006. if d['__class__'] == "Shply":
  3007. return sloads(d['__inst__'])
  3008. if d['__class__'] == "ApertureMacro":
  3009. am = ApertureMacro()
  3010. am.from_dict(d['__inst__'])
  3011. return am
  3012. return d
  3013. else:
  3014. return d
  3015. def plotg(geo, solid_poly=False, color="black"):
  3016. try:
  3017. _ = iter(geo)
  3018. except:
  3019. geo = [geo]
  3020. for g in geo:
  3021. if type(g) == Polygon:
  3022. if solid_poly:
  3023. patch = PolygonPatch(g,
  3024. facecolor="#BBF268",
  3025. edgecolor="#006E20",
  3026. alpha=0.75,
  3027. zorder=2)
  3028. ax = subplot(111)
  3029. ax.add_patch(patch)
  3030. else:
  3031. x, y = g.exterior.coords.xy
  3032. plot(x, y, color=color)
  3033. for ints in g.interiors:
  3034. x, y = ints.coords.xy
  3035. plot(x, y, color=color)
  3036. continue
  3037. if type(g) == LineString or type(g) == LinearRing:
  3038. x, y = g.coords.xy
  3039. plot(x, y, color=color)
  3040. continue
  3041. if type(g) == Point:
  3042. x, y = g.coords.xy
  3043. plot(x, y, 'o')
  3044. continue
  3045. try:
  3046. _ = iter(g)
  3047. plotg(g, color=color)
  3048. except:
  3049. log.error("Cannot plot: " + str(type(g)))
  3050. continue
  3051. def parse_gerber_number(strnumber, frac_digits):
  3052. """
  3053. Parse a single number of Gerber coordinates.
  3054. :param strnumber: String containing a number in decimal digits
  3055. from a coordinate data block, possibly with a leading sign.
  3056. :type strnumber: str
  3057. :param frac_digits: Number of digits used for the fractional
  3058. part of the number
  3059. :type frac_digits: int
  3060. :return: The number in floating point.
  3061. :rtype: float
  3062. """
  3063. return int(strnumber) * (10 ** (-frac_digits))
  3064. # def voronoi(P):
  3065. # """
  3066. # Returns a list of all edges of the voronoi diagram for the given input points.
  3067. # """
  3068. # delauny = Delaunay(P)
  3069. # triangles = delauny.points[delauny.vertices]
  3070. #
  3071. # circum_centers = np.array([triangle_csc(tri) for tri in triangles])
  3072. # long_lines_endpoints = []
  3073. #
  3074. # lineIndices = []
  3075. # for i, triangle in enumerate(triangles):
  3076. # circum_center = circum_centers[i]
  3077. # for j, neighbor in enumerate(delauny.neighbors[i]):
  3078. # if neighbor != -1:
  3079. # lineIndices.append((i, neighbor))
  3080. # else:
  3081. # ps = triangle[(j+1)%3] - triangle[(j-1)%3]
  3082. # ps = np.array((ps[1], -ps[0]))
  3083. #
  3084. # middle = (triangle[(j+1)%3] + triangle[(j-1)%3]) * 0.5
  3085. # di = middle - triangle[j]
  3086. #
  3087. # ps /= np.linalg.norm(ps)
  3088. # di /= np.linalg.norm(di)
  3089. #
  3090. # if np.dot(di, ps) < 0.0:
  3091. # ps *= -1000.0
  3092. # else:
  3093. # ps *= 1000.0
  3094. #
  3095. # long_lines_endpoints.append(circum_center + ps)
  3096. # lineIndices.append((i, len(circum_centers) + len(long_lines_endpoints)-1))
  3097. #
  3098. # vertices = np.vstack((circum_centers, long_lines_endpoints))
  3099. #
  3100. # # filter out any duplicate lines
  3101. # lineIndicesSorted = np.sort(lineIndices) # make (1,2) and (2,1) both (1,2)
  3102. # lineIndicesTupled = [tuple(row) for row in lineIndicesSorted]
  3103. # lineIndicesUnique = np.unique(lineIndicesTupled)
  3104. #
  3105. # return vertices, lineIndicesUnique
  3106. #
  3107. #
  3108. # def triangle_csc(pts):
  3109. # rows, cols = pts.shape
  3110. #
  3111. # A = np.bmat([[2 * np.dot(pts, pts.T), np.ones((rows, 1))],
  3112. # [np.ones((1, rows)), np.zeros((1, 1))]])
  3113. #
  3114. # b = np.hstack((np.sum(pts * pts, axis=1), np.ones((1))))
  3115. # x = np.linalg.solve(A,b)
  3116. # bary_coords = x[:-1]
  3117. # return np.sum(pts * np.tile(bary_coords.reshape((pts.shape[0], 1)), (1, pts.shape[1])), axis=0)
  3118. #
  3119. #
  3120. # def voronoi_cell_lines(points, vertices, lineIndices):
  3121. # """
  3122. # Returns a mapping from a voronoi cell to its edges.
  3123. #
  3124. # :param points: shape (m,2)
  3125. # :param vertices: shape (n,2)
  3126. # :param lineIndices: shape (o,2)
  3127. # :rtype: dict point index -> list of shape (n,2) with vertex indices
  3128. # """
  3129. # kd = KDTree(points)
  3130. #
  3131. # cells = collections.defaultdict(list)
  3132. # for i1, i2 in lineIndices:
  3133. # v1, v2 = vertices[i1], vertices[i2]
  3134. # mid = (v1+v2)/2
  3135. # _, (p1Idx, p2Idx) = kd.query(mid, 2)
  3136. # cells[p1Idx].append((i1, i2))
  3137. # cells[p2Idx].append((i1, i2))
  3138. #
  3139. # return cells
  3140. #
  3141. #
  3142. # def voronoi_edges2polygons(cells):
  3143. # """
  3144. # Transforms cell edges into polygons.
  3145. #
  3146. # :param cells: as returned from voronoi_cell_lines
  3147. # :rtype: dict point index -> list of vertex indices which form a polygon
  3148. # """
  3149. #
  3150. # # first, close the outer cells
  3151. # for pIdx, lineIndices_ in cells.items():
  3152. # dangling_lines = []
  3153. # for i1, i2 in lineIndices_:
  3154. # connections = filter(lambda (i1_, i2_): (i1, i2) != (i1_, i2_) and (i1 == i1_ or i1 == i2_ or i2 == i1_ or i2 == i2_), lineIndices_)
  3155. # assert 1 <= len(connections) <= 2
  3156. # if len(connections) == 1:
  3157. # dangling_lines.append((i1, i2))
  3158. # assert len(dangling_lines) in [0, 2]
  3159. # if len(dangling_lines) == 2:
  3160. # (i11, i12), (i21, i22) = dangling_lines
  3161. #
  3162. # # determine which line ends are unconnected
  3163. # connected = filter(lambda (i1,i2): (i1,i2) != (i11,i12) and (i1 == i11 or i2 == i11), lineIndices_)
  3164. # i11Unconnected = len(connected) == 0
  3165. #
  3166. # connected = filter(lambda (i1,i2): (i1,i2) != (i21,i22) and (i1 == i21 or i2 == i21), lineIndices_)
  3167. # i21Unconnected = len(connected) == 0
  3168. #
  3169. # startIdx = i11 if i11Unconnected else i12
  3170. # endIdx = i21 if i21Unconnected else i22
  3171. #
  3172. # cells[pIdx].append((startIdx, endIdx))
  3173. #
  3174. # # then, form polygons by storing vertex indices in (counter-)clockwise order
  3175. # polys = dict()
  3176. # for pIdx, lineIndices_ in cells.items():
  3177. # # get a directed graph which contains both directions and arbitrarily follow one of both
  3178. # directedGraph = lineIndices_ + [(i2, i1) for (i1, i2) in lineIndices_]
  3179. # directedGraphMap = collections.defaultdict(list)
  3180. # for (i1, i2) in directedGraph:
  3181. # directedGraphMap[i1].append(i2)
  3182. # orderedEdges = []
  3183. # currentEdge = directedGraph[0]
  3184. # while len(orderedEdges) < len(lineIndices_):
  3185. # i1 = currentEdge[1]
  3186. # i2 = directedGraphMap[i1][0] if directedGraphMap[i1][0] != currentEdge[0] else directedGraphMap[i1][1]
  3187. # nextEdge = (i1, i2)
  3188. # orderedEdges.append(nextEdge)
  3189. # currentEdge = nextEdge
  3190. #
  3191. # polys[pIdx] = [i1 for (i1, i2) in orderedEdges]
  3192. #
  3193. # return polys
  3194. #
  3195. #
  3196. # def voronoi_polygons(points):
  3197. # """
  3198. # Returns the voronoi polygon for each input point.
  3199. #
  3200. # :param points: shape (n,2)
  3201. # :rtype: list of n polygons where each polygon is an array of vertices
  3202. # """
  3203. # vertices, lineIndices = voronoi(points)
  3204. # cells = voronoi_cell_lines(points, vertices, lineIndices)
  3205. # polys = voronoi_edges2polygons(cells)
  3206. # polylist = []
  3207. # for i in xrange(len(points)):
  3208. # poly = vertices[np.asarray(polys[i])]
  3209. # polylist.append(poly)
  3210. # return polylist
  3211. #
  3212. #
  3213. # class Zprofile:
  3214. # def __init__(self):
  3215. #
  3216. # # data contains lists of [x, y, z]
  3217. # self.data = []
  3218. #
  3219. # # Computed voronoi polygons (shapely)
  3220. # self.polygons = []
  3221. # pass
  3222. #
  3223. # def plot_polygons(self):
  3224. # axes = plt.subplot(1, 1, 1)
  3225. #
  3226. # plt.axis([-0.05, 1.05, -0.05, 1.05])
  3227. #
  3228. # for poly in self.polygons:
  3229. # p = PolygonPatch(poly, facecolor=np.random.rand(3, 1), alpha=0.3)
  3230. # axes.add_patch(p)
  3231. #
  3232. # def init_from_csv(self, filename):
  3233. # pass
  3234. #
  3235. # def init_from_string(self, zpstring):
  3236. # pass
  3237. #
  3238. # def init_from_list(self, zplist):
  3239. # self.data = zplist
  3240. #
  3241. # def generate_polygons(self):
  3242. # self.polygons = [Polygon(p) for p in voronoi_polygons(array([[x[0], x[1]] for x in self.data]))]
  3243. #
  3244. # def normalize(self, origin):
  3245. # pass
  3246. #
  3247. # def paste(self, path):
  3248. # """
  3249. # Return a list of dictionaries containing the parts of the original
  3250. # path and their z-axis offset.
  3251. # """
  3252. #
  3253. # # At most one region/polygon will contain the path
  3254. # containing = [i for i in range(len(self.polygons)) if self.polygons[i].contains(path)]
  3255. #
  3256. # if len(containing) > 0:
  3257. # return [{"path": path, "z": self.data[containing[0]][2]}]
  3258. #
  3259. # # All region indexes that intersect with the path
  3260. # crossing = [i for i in range(len(self.polygons)) if self.polygons[i].intersects(path)]
  3261. #
  3262. # return [{"path": path.intersection(self.polygons[i]),
  3263. # "z": self.data[i][2]} for i in crossing]
  3264. def autolist(obj):
  3265. try:
  3266. _ = iter(obj)
  3267. return obj
  3268. except TypeError:
  3269. return [obj]
  3270. def three_point_circle(p1, p2, p3):
  3271. """
  3272. Computes the center and radius of a circle from
  3273. 3 points on its circumference.
  3274. :param p1: Point 1
  3275. :param p2: Point 2
  3276. :param p3: Point 3
  3277. :return: center, radius
  3278. """
  3279. # Midpoints
  3280. a1 = (p1 + p2) / 2.0
  3281. a2 = (p2 + p3) / 2.0
  3282. # Normals
  3283. b1 = dot((p2 - p1), array([[0, -1], [1, 0]], dtype=float32))
  3284. b2 = dot((p3 - p2), array([[0, 1], [-1, 0]], dtype=float32))
  3285. # Params
  3286. T = solve(transpose(array([-b1, b2])), a1 - a2)
  3287. # Center
  3288. center = a1 + b1 * T[0]
  3289. # Radius
  3290. radius = norm(center - p1)
  3291. return center, radius, T[0]
  3292. def distance(pt1, pt2):
  3293. return sqrt((pt1[0] - pt2[0]) ** 2 + (pt1[1] - pt2[1]) ** 2)
  3294. class FlatCAMRTree(object):
  3295. """
  3296. Indexes geometry (Any object with "cooords" property containing
  3297. a list of tuples with x, y values). Objects are indexed by
  3298. all their points by default. To index by arbitrary points,
  3299. override self.points2obj.
  3300. """
  3301. def __init__(self):
  3302. # Python RTree Index
  3303. self.rti = rtindex.Index()
  3304. ## Track object-point relationship
  3305. # Each is list of points in object.
  3306. self.obj2points = []
  3307. # Index is index in rtree, value is index of
  3308. # object in obj2points.
  3309. self.points2obj = []
  3310. self.get_points = lambda go: go.coords
  3311. def grow_obj2points(self, idx):
  3312. """
  3313. Increases the size of self.obj2points to fit
  3314. idx + 1 items.
  3315. :param idx: Index to fit into list.
  3316. :return: None
  3317. """
  3318. if len(self.obj2points) > idx:
  3319. # len == 2, idx == 1, ok.
  3320. return
  3321. else:
  3322. # len == 2, idx == 2, need 1 more.
  3323. # range(2, 3)
  3324. for i in range(len(self.obj2points), idx + 1):
  3325. self.obj2points.append([])
  3326. def insert(self, objid, obj):
  3327. self.grow_obj2points(objid)
  3328. self.obj2points[objid] = []
  3329. for pt in self.get_points(obj):
  3330. self.rti.insert(len(self.points2obj), (pt[0], pt[1], pt[0], pt[1]), obj=objid)
  3331. self.obj2points[objid].append(len(self.points2obj))
  3332. self.points2obj.append(objid)
  3333. def remove_obj(self, objid, obj):
  3334. # Use all ptids to delete from index
  3335. for i, pt in enumerate(self.get_points(obj)):
  3336. self.rti.delete(self.obj2points[objid][i], (pt[0], pt[1], pt[0], pt[1]))
  3337. def nearest(self, pt):
  3338. """
  3339. Will raise StopIteration if no items are found.
  3340. :param pt:
  3341. :return:
  3342. """
  3343. return self.rti.nearest(pt, objects=True).next()
  3344. class FlatCAMRTreeStorage(FlatCAMRTree):
  3345. """
  3346. Just like FlatCAMRTree it indexes geometry, but also serves
  3347. as storage for the geometry.
  3348. """
  3349. def __init__(self):
  3350. super(FlatCAMRTreeStorage, self).__init__()
  3351. self.objects = []
  3352. # Optimization attempt!
  3353. self.indexes = {}
  3354. def insert(self, obj):
  3355. self.objects.append(obj)
  3356. idx = len(self.objects) - 1
  3357. # Note: Shapely objects are not hashable any more, althought
  3358. # there seem to be plans to re-introduce the feature in
  3359. # version 2.0. For now, we will index using the object's id,
  3360. # but it's important to remember that shapely geometry is
  3361. # mutable, ie. it can be modified to a totally different shape
  3362. # and continue to have the same id.
  3363. # self.indexes[obj] = idx
  3364. self.indexes[id(obj)] = idx
  3365. super(FlatCAMRTreeStorage, self).insert(idx, obj)
  3366. #@profile
  3367. def remove(self, obj):
  3368. # See note about self.indexes in insert().
  3369. # objidx = self.indexes[obj]
  3370. objidx = self.indexes[id(obj)]
  3371. # Remove from list
  3372. self.objects[objidx] = None
  3373. # Remove from index
  3374. self.remove_obj(objidx, obj)
  3375. def get_objects(self):
  3376. return (o for o in self.objects if o is not None)
  3377. def nearest(self, pt):
  3378. """
  3379. Returns the nearest matching points and the object
  3380. it belongs to.
  3381. :param pt: Query point.
  3382. :return: (match_x, match_y), Object owner of
  3383. matching point.
  3384. :rtype: tuple
  3385. """
  3386. tidx = super(FlatCAMRTreeStorage, self).nearest(pt)
  3387. return (tidx.bbox[0], tidx.bbox[1]), self.objects[tidx.object]
  3388. # class myO:
  3389. # def __init__(self, coords):
  3390. # self.coords = coords
  3391. #
  3392. #
  3393. # def test_rti():
  3394. #
  3395. # o1 = myO([(0, 0), (0, 1), (1, 1)])
  3396. # o2 = myO([(2, 0), (2, 1), (2, 1)])
  3397. # o3 = myO([(2, 0), (2, 1), (3, 1)])
  3398. #
  3399. # os = [o1, o2]
  3400. #
  3401. # idx = FlatCAMRTree()
  3402. #
  3403. # for o in range(len(os)):
  3404. # idx.insert(o, os[o])
  3405. #
  3406. # print [x.bbox for x in idx.rti.nearest((0, 0), num_results=20, objects=True)]
  3407. #
  3408. # idx.remove_obj(0, o1)
  3409. #
  3410. # print [x.bbox for x in idx.rti.nearest((0, 0), num_results=20, objects=True)]
  3411. #
  3412. # idx.remove_obj(1, o2)
  3413. #
  3414. # print [x.bbox for x in idx.rti.nearest((0, 0), num_results=20, objects=True)]
  3415. #
  3416. #
  3417. # def test_rtis():
  3418. #
  3419. # o1 = myO([(0, 0), (0, 1), (1, 1)])
  3420. # o2 = myO([(2, 0), (2, 1), (2, 1)])
  3421. # o3 = myO([(2, 0), (2, 1), (3, 1)])
  3422. #
  3423. # os = [o1, o2]
  3424. #
  3425. # idx = FlatCAMRTreeStorage()
  3426. #
  3427. # for o in range(len(os)):
  3428. # idx.insert(os[o])
  3429. #
  3430. # #os = None
  3431. # #o1 = None
  3432. # #o2 = None
  3433. #
  3434. # print [x.bbox for x in idx.rti.nearest((0, 0), num_results=20, objects=True)]
  3435. #
  3436. # idx.remove(idx.nearest((2,0))[1])
  3437. #
  3438. # print [x.bbox for x in idx.rti.nearest((0, 0), num_results=20, objects=True)]
  3439. #
  3440. # idx.remove(idx.nearest((0,0))[1])
  3441. #
  3442. # print [x.bbox for x in idx.rti.nearest((0, 0), num_results=20, objects=True)]