camlib.py 124 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626
  1. ############################################################
  2. # FlatCAM: 2D Post-processing for Manufacturing #
  3. # http://flatcam.org #
  4. # Author: Juan Pablo Caram (c) #
  5. # Date: 2/5/2014 #
  6. # MIT Licence #
  7. ############################################################
  8. #from __future__ import division
  9. #from scipy import optimize
  10. #import traceback
  11. from numpy import arctan2, Inf, array, sqrt, pi, ceil, sin, cos, dot, float32, \
  12. transpose
  13. from numpy.linalg import solve, norm
  14. from matplotlib.figure import Figure
  15. import re
  16. import collections
  17. import numpy as np
  18. import matplotlib
  19. #import matplotlib.pyplot as plt
  20. #from scipy.spatial import Delaunay, KDTree
  21. from rtree import index as rtindex
  22. # See: http://toblerity.org/shapely/manual.html
  23. from shapely.geometry import Polygon, LineString, Point, LinearRing
  24. from shapely.geometry import MultiPoint, MultiPolygon
  25. from shapely.geometry import box as shply_box
  26. from shapely.ops import cascaded_union
  27. import shapely.affinity as affinity
  28. from shapely.wkt import loads as sloads
  29. from shapely.wkt import dumps as sdumps
  30. from shapely.geometry.base import BaseGeometry
  31. # Used for solid polygons in Matplotlib
  32. from descartes.patch import PolygonPatch
  33. import simplejson as json
  34. # TODO: Commented for FlatCAM packaging with cx_freeze
  35. from matplotlib.pyplot import plot, subplot
  36. import logging
  37. log = logging.getLogger('base2')
  38. #log.setLevel(logging.DEBUG)
  39. log.setLevel(logging.WARNING)
  40. #log.setLevel(logging.INFO)
  41. formatter = logging.Formatter('[%(levelname)s] %(message)s')
  42. handler = logging.StreamHandler()
  43. handler.setFormatter(formatter)
  44. log.addHandler(handler)
  45. class ParseError(Exception):
  46. pass
  47. class Geometry(object):
  48. """
  49. Base geometry class.
  50. """
  51. defaults = {
  52. "init_units": 'in'
  53. }
  54. def __init__(self):
  55. # Units (in or mm)
  56. self.units = Geometry.defaults["init_units"]
  57. # Final geometry: MultiPolygon or list (of geometry constructs)
  58. self.solid_geometry = None
  59. # Attributes to be included in serialization
  60. self.ser_attrs = ['units', 'solid_geometry']
  61. # Flattened geometry (list of paths only)
  62. self.flat_geometry = []
  63. def add_circle(self, origin, radius):
  64. """
  65. Adds a circle to the object.
  66. :param origin: Center of the circle.
  67. :param radius: Radius of the circle.
  68. :return: None
  69. """
  70. # TODO: Decide what solid_geometry is supposed to be and how we append to it.
  71. if self.solid_geometry is None:
  72. self.solid_geometry = []
  73. if type(self.solid_geometry) is list:
  74. self.solid_geometry.append(Point(origin).buffer(radius))
  75. return
  76. try:
  77. self.solid_geometry = self.solid_geometry.union(Point(origin).buffer(radius))
  78. except:
  79. #print "Failed to run union on polygons."
  80. log.error("Failed to run union on polygons.")
  81. raise
  82. def add_polygon(self, points):
  83. """
  84. Adds a polygon to the object (by union)
  85. :param points: The vertices of the polygon.
  86. :return: None
  87. """
  88. if self.solid_geometry is None:
  89. self.solid_geometry = []
  90. if type(self.solid_geometry) is list:
  91. self.solid_geometry.append(Polygon(points))
  92. return
  93. try:
  94. self.solid_geometry = self.solid_geometry.union(Polygon(points))
  95. except:
  96. #print "Failed to run union on polygons."
  97. log.error("Failed to run union on polygons.")
  98. raise
  99. def bounds(self):
  100. """
  101. Returns coordinates of rectangular bounds
  102. of geometry: (xmin, ymin, xmax, ymax).
  103. """
  104. log.debug("Geometry->bounds()")
  105. if self.solid_geometry is None:
  106. log.debug("solid_geometry is None")
  107. return 0, 0, 0, 0
  108. if type(self.solid_geometry) is list:
  109. # TODO: This can be done faster. See comment from Shapely mailing lists.
  110. if len(self.solid_geometry) == 0:
  111. log.debug('solid_geometry is empty []')
  112. return 0, 0, 0, 0
  113. return cascaded_union(self.solid_geometry).bounds
  114. else:
  115. return self.solid_geometry.bounds
  116. def find_polygon(self, point, geoset=None):
  117. """
  118. Find an object that object.contains(Point(point)) in
  119. poly, which can can be iterable, contain iterable of, or
  120. be itself an implementer of .contains().
  121. :param poly: See description
  122. :return: Polygon containing point or None.
  123. """
  124. if geoset is None:
  125. geoset = self.solid_geometry
  126. try: # Iterable
  127. for sub_geo in geoset:
  128. p = self.find_polygon(point, geoset=sub_geo)
  129. if p is not None:
  130. return p
  131. except TypeError: # Non-iterable
  132. try: # Implements .contains()
  133. if geoset.contains(Point(point)):
  134. return geoset
  135. except AttributeError: # Does not implement .contains()
  136. return None
  137. return None
  138. def flatten(self, geometry=None, reset=True, pathonly=False):
  139. """
  140. Creates a list of non-iterable linear geometry objects.
  141. Polygons are expanded into its exterior and interiors if specified.
  142. Results are placed in self.flat_geoemtry
  143. :param geometry: Shapely type or list or list of list of such.
  144. :param reset: Clears the contents of self.flat_geometry.
  145. :param pathonly: Expands polygons into linear elements.
  146. """
  147. if geometry is None:
  148. geometry = self.solid_geometry
  149. if reset:
  150. self.flat_geometry = []
  151. ## If iterable, expand recursively.
  152. try:
  153. for geo in geometry:
  154. self.flatten(geometry=geo,
  155. reset=False,
  156. pathonly=pathonly)
  157. ## Not iterable, do the actual indexing and add.
  158. except TypeError:
  159. if pathonly and type(geometry) == Polygon:
  160. self.flat_geometry.append(geometry.exterior)
  161. self.flatten(geometry=geometry.interiors,
  162. reset=False,
  163. pathonly=True)
  164. else:
  165. self.flat_geometry.append(geometry)
  166. return self.flat_geometry
  167. # def make2Dstorage(self):
  168. #
  169. # self.flatten()
  170. #
  171. # def get_pts(o):
  172. # pts = []
  173. # if type(o) == Polygon:
  174. # g = o.exterior
  175. # pts += list(g.coords)
  176. # for i in o.interiors:
  177. # pts += list(i.coords)
  178. # else:
  179. # pts += list(o.coords)
  180. # return pts
  181. #
  182. # storage = FlatCAMRTreeStorage()
  183. # storage.get_points = get_pts
  184. # for shape in self.flat_geometry:
  185. # storage.insert(shape)
  186. # return storage
  187. # def flatten_to_paths(self, geometry=None, reset=True):
  188. # """
  189. # Creates a list of non-iterable linear geometry elements and
  190. # indexes them in rtree.
  191. #
  192. # :param geometry: Iterable geometry
  193. # :param reset: Wether to clear (True) or append (False) to self.flat_geometry
  194. # :return: self.flat_geometry, self.flat_geometry_rtree
  195. # """
  196. #
  197. # if geometry is None:
  198. # geometry = self.solid_geometry
  199. #
  200. # if reset:
  201. # self.flat_geometry = []
  202. #
  203. # ## If iterable, expand recursively.
  204. # try:
  205. # for geo in geometry:
  206. # self.flatten_to_paths(geometry=geo, reset=False)
  207. #
  208. # ## Not iterable, do the actual indexing and add.
  209. # except TypeError:
  210. # if type(geometry) == Polygon:
  211. # g = geometry.exterior
  212. # self.flat_geometry.append(g)
  213. #
  214. # ## Add first and last points of the path to the index.
  215. # self.flat_geometry_rtree.insert(len(self.flat_geometry) - 1, g.coords[0])
  216. # self.flat_geometry_rtree.insert(len(self.flat_geometry) - 1, g.coords[-1])
  217. #
  218. # for interior in geometry.interiors:
  219. # g = interior
  220. # self.flat_geometry.append(g)
  221. # self.flat_geometry_rtree.insert(len(self.flat_geometry) - 1, g.coords[0])
  222. # self.flat_geometry_rtree.insert(len(self.flat_geometry) - 1, g.coords[-1])
  223. # else:
  224. # g = geometry
  225. # self.flat_geometry.append(g)
  226. # self.flat_geometry_rtree.insert(len(self.flat_geometry) - 1, g.coords[0])
  227. # self.flat_geometry_rtree.insert(len(self.flat_geometry) - 1, g.coords[-1])
  228. #
  229. # return self.flat_geometry, self.flat_geometry_rtree
  230. def isolation_geometry(self, offset):
  231. """
  232. Creates contours around geometry at a given
  233. offset distance.
  234. :param offset: Offset distance.
  235. :type offset: float
  236. :return: The buffered geometry.
  237. :rtype: Shapely.MultiPolygon or Shapely.Polygon
  238. """
  239. return self.solid_geometry.buffer(offset)
  240. def is_empty(self):
  241. if self.solid_geometry is None:
  242. return True
  243. if type(self.solid_geometry) is list and len(self.solid_geometry) == 0:
  244. return True
  245. return False
  246. def size(self):
  247. """
  248. Returns (width, height) of rectangular
  249. bounds of geometry.
  250. """
  251. if self.solid_geometry is None:
  252. log.warning("Solid_geometry not computed yet.")
  253. return 0
  254. bounds = self.bounds()
  255. return bounds[2] - bounds[0], bounds[3] - bounds[1]
  256. def get_empty_area(self, boundary=None):
  257. """
  258. Returns the complement of self.solid_geometry within
  259. the given boundary polygon. If not specified, it defaults to
  260. the rectangular bounding box of self.solid_geometry.
  261. """
  262. if boundary is None:
  263. boundary = self.solid_geometry.envelope
  264. return boundary.difference(self.solid_geometry)
  265. @staticmethod
  266. def clear_polygon(polygon, tooldia, overlap=0.15):
  267. """
  268. Creates geometry inside a polygon for a tool to cover
  269. the whole area.
  270. This algorithm shrinks the edges of the polygon and takes
  271. the resulting edges as toolpaths.
  272. :param polygon: Polygon to clear.
  273. :param tooldia: Diameter of the tool.
  274. :param overlap: Overlap of toolpasses.
  275. :return:
  276. """
  277. log.debug("camlib.clear_polygon()")
  278. assert type(polygon) == Polygon
  279. ## The toolpaths
  280. # Index first and last points in paths
  281. def get_pts(o):
  282. return [o.coords[0], o.coords[-1]]
  283. geoms = FlatCAMRTreeStorage()
  284. geoms.get_points = get_pts
  285. # Can only result in a Polygon or MultiPolygon
  286. current = polygon.buffer(-tooldia / 2.0)
  287. # current can be a MultiPolygon
  288. try:
  289. for p in current:
  290. geoms.insert(p.exterior)
  291. for i in p.interiors:
  292. geoms.insert(i)
  293. # Not a Multipolygon. Must be a Polygon
  294. except TypeError:
  295. geoms.insert(current.exterior)
  296. for i in current.interiors:
  297. geoms.insert(i)
  298. while True:
  299. # Can only result in a Polygon or MultiPolygon
  300. current = current.buffer(-tooldia * (1 - overlap))
  301. if current.area > 0:
  302. # current can be a MultiPolygon
  303. try:
  304. for p in current:
  305. geoms.insert(p.exterior)
  306. for i in p.interiors:
  307. geoms.insert(i)
  308. # Not a Multipolygon. Must be a Polygon
  309. except TypeError:
  310. geoms.insert(current.exterior)
  311. for i in current.interiors:
  312. geoms.insert(i)
  313. else:
  314. break
  315. # Optimization: Reduce lifts
  316. log.debug("Reducing tool lifts...")
  317. geoms = Geometry.paint_connect(geoms, polygon, tooldia)
  318. return geoms
  319. @staticmethod
  320. def clear_polygon2(polygon, tooldia, seedpoint=None, overlap=0.15):
  321. """
  322. Creates geometry inside a polygon for a tool to cover
  323. the whole area.
  324. This algorithm starts with a seed point inside the polygon
  325. and draws circles around it. Arcs inside the polygons are
  326. valid cuts. Finalizes by cutting around the inside edge of
  327. the polygon.
  328. :param polygon: Shapely.geometry.Polygon
  329. :param tooldia: Diameter of the tool
  330. :param seedpoint: Shapely.geometry.Point or None
  331. :param overlap: Tool fraction overlap bewteen passes
  332. :return: List of toolpaths covering polygon.
  333. """
  334. log.debug("camlib.clear_polygon2()")
  335. # Current buffer radius
  336. radius = tooldia / 2 * (1 - overlap)
  337. ## The toolpaths
  338. # Index first and last points in paths
  339. def get_pts(o):
  340. return [o.coords[0], o.coords[-1]]
  341. geoms = FlatCAMRTreeStorage()
  342. geoms.get_points = get_pts
  343. # Path margin
  344. path_margin = polygon.buffer(-tooldia / 2)
  345. # Estimate good seedpoint if not provided.
  346. if seedpoint is None:
  347. seedpoint = path_margin.representative_point()
  348. # Grow from seed until outside the box. The polygons will
  349. # never have an interior, so take the exterior LinearRing.
  350. while 1:
  351. path = Point(seedpoint).buffer(radius).exterior
  352. path = path.intersection(path_margin)
  353. # Touches polygon?
  354. if path.is_empty:
  355. break
  356. else:
  357. #geoms.append(path)
  358. #geoms.insert(path)
  359. # path can be a collection of paths.
  360. try:
  361. for p in path:
  362. geoms.insert(p)
  363. except TypeError:
  364. geoms.insert(path)
  365. radius += tooldia * (1 - overlap)
  366. # Clean inside edges of the original polygon
  367. outer_edges = [x.exterior for x in autolist(polygon.buffer(-tooldia / 2))]
  368. inner_edges = []
  369. for x in autolist(polygon.buffer(-tooldia / 2)): # Over resulting polygons
  370. for y in x.interiors: # Over interiors of each polygon
  371. inner_edges.append(y)
  372. #geoms += outer_edges + inner_edges
  373. for g in outer_edges + inner_edges:
  374. geoms.insert(g)
  375. # Optimization connect touching paths
  376. # log.debug("Connecting paths...")
  377. # geoms = Geometry.path_connect(geoms)
  378. # Optimization: Reduce lifts
  379. log.debug("Reducing tool lifts...")
  380. geoms = Geometry.paint_connect(geoms, polygon, tooldia)
  381. return geoms
  382. def scale(self, factor):
  383. """
  384. Scales all of the object's geometry by a given factor. Override
  385. this method.
  386. :param factor: Number by which to scale.
  387. :type factor: float
  388. :return: None
  389. :rtype: None
  390. """
  391. return
  392. def offset(self, vect):
  393. """
  394. Offset the geometry by the given vector. Override this method.
  395. :param vect: (x, y) vector by which to offset the object.
  396. :type vect: tuple
  397. :return: None
  398. """
  399. return
  400. @staticmethod
  401. def paint_connect(storage, boundary, tooldia, max_walk=None):
  402. """
  403. Connects paths that results in a connection segment that is
  404. within the paint area. This avoids unnecessary tool lifting.
  405. :param storage: Geometry to be optimized.
  406. :type storage: FlatCAMRTreeStorage
  407. :param boundary: Polygon defining the limits of the paintable area.
  408. :type boundary: Polygon
  409. :param max_walk: Maximum allowable distance without lifting tool.
  410. :type max_walk: float or None
  411. :return: Optimized geometry.
  412. :rtype: FlatCAMRTreeStorage
  413. """
  414. # If max_walk is not specified, the maximum allowed is
  415. # 10 times the tool diameter
  416. max_walk = max_walk or 10 * tooldia
  417. # Assuming geolist is a flat list of flat elements
  418. ## Index first and last points in paths
  419. def get_pts(o):
  420. return [o.coords[0], o.coords[-1]]
  421. # storage = FlatCAMRTreeStorage()
  422. # storage.get_points = get_pts
  423. #
  424. # for shape in geolist:
  425. # if shape is not None: # TODO: This shouldn't have happened.
  426. # # Make LlinearRings into linestrings otherwise
  427. # # When chaining the coordinates path is messed up.
  428. # storage.insert(LineString(shape))
  429. # #storage.insert(shape)
  430. ## Iterate over geometry paths getting the nearest each time.
  431. #optimized_paths = []
  432. optimized_paths = FlatCAMRTreeStorage()
  433. optimized_paths.get_points = get_pts
  434. path_count = 0
  435. current_pt = (0, 0)
  436. pt, geo = storage.nearest(current_pt)
  437. storage.remove(geo)
  438. geo = LineString(geo)
  439. current_pt = geo.coords[-1]
  440. try:
  441. while True:
  442. path_count += 1
  443. #log.debug("Path %d" % path_count)
  444. pt, candidate = storage.nearest(current_pt)
  445. storage.remove(candidate)
  446. candidate = LineString(candidate)
  447. # If last point in geometry is the nearest
  448. # then reverse coordinates.
  449. if list(pt) == list(candidate.coords[-1]):
  450. candidate.coords = list(candidate.coords)[::-1]
  451. # Straight line from current_pt to pt.
  452. # Is the toolpath inside the geometry?
  453. walk_path = LineString([current_pt, pt])
  454. walk_cut = walk_path.buffer(tooldia / 2)
  455. if walk_cut.within(boundary) and walk_path.length < max_walk:
  456. #log.debug("Walk to path #%d is inside. Joining." % path_count)
  457. # Completely inside. Append...
  458. geo.coords = list(geo.coords) + list(candidate.coords)
  459. # try:
  460. # last = optimized_paths[-1]
  461. # last.coords = list(last.coords) + list(geo.coords)
  462. # except IndexError:
  463. # optimized_paths.append(geo)
  464. else:
  465. # Have to lift tool. End path.
  466. #log.debug("Path #%d not within boundary. Next." % path_count)
  467. #optimized_paths.append(geo)
  468. optimized_paths.insert(geo)
  469. geo = candidate
  470. current_pt = geo.coords[-1]
  471. # Next
  472. #pt, geo = storage.nearest(current_pt)
  473. except StopIteration: # Nothing left in storage.
  474. #pass
  475. optimized_paths.insert(geo)
  476. return optimized_paths
  477. @staticmethod
  478. def path_connect(storage, origin=(0, 0)):
  479. """
  480. :return: None
  481. """
  482. log.debug("path_connect()")
  483. ## Index first and last points in paths
  484. def get_pts(o):
  485. return [o.coords[0], o.coords[-1]]
  486. #
  487. # storage = FlatCAMRTreeStorage()
  488. # storage.get_points = get_pts
  489. #
  490. # for shape in pathlist:
  491. # if shape is not None: # TODO: This shouldn't have happened.
  492. # storage.insert(shape)
  493. path_count = 0
  494. pt, geo = storage.nearest(origin)
  495. storage.remove(geo)
  496. #optimized_geometry = [geo]
  497. optimized_geometry = FlatCAMRTreeStorage()
  498. optimized_geometry.get_points = get_pts
  499. #optimized_geometry.insert(geo)
  500. try:
  501. while True:
  502. path_count += 1
  503. #print "geo is", geo
  504. _, left = storage.nearest(geo.coords[0])
  505. #print "left is", left
  506. # If left touches geo, remove left from original
  507. # storage and append to geo.
  508. if type(left) == LineString:
  509. if left.coords[0] == geo.coords[0]:
  510. storage.remove(left)
  511. geo.coords = list(geo.coords)[::-1] + list(left.coords)
  512. continue
  513. if left.coords[-1] == geo.coords[0]:
  514. storage.remove(left)
  515. geo.coords = list(left.coords) + list(geo.coords)
  516. continue
  517. if left.coords[0] == geo.coords[-1]:
  518. storage.remove(left)
  519. geo.coords = list(geo.coords) + list(left.coords)
  520. continue
  521. if left.coords[-1] == geo.coords[-1]:
  522. storage.remove(left)
  523. geo.coords = list(geo.coords) + list(left.coords)[::-1]
  524. continue
  525. _, right = storage.nearest(geo.coords[-1])
  526. #print "right is", right
  527. # If right touches geo, remove left from original
  528. # storage and append to geo.
  529. if type(right) == LineString:
  530. if right.coords[0] == geo.coords[-1]:
  531. storage.remove(right)
  532. geo.coords = list(geo.coords) + list(right.coords)
  533. continue
  534. if right.coords[-1] == geo.coords[-1]:
  535. storage.remove(right)
  536. geo.coords = list(geo.coords) + list(right.coords)[::-1]
  537. continue
  538. if right.coords[0] == geo.coords[0]:
  539. storage.remove(right)
  540. geo.coords = list(geo.coords)[::-1] + list(right.coords)
  541. continue
  542. if right.coords[-1] == geo.coords[0]:
  543. storage.remove(right)
  544. geo.coords = list(left.coords) + list(geo.coords)
  545. continue
  546. # right is either a LinearRing or it does not connect
  547. # to geo (nothing left to connect to geo), so we continue
  548. # with right as geo.
  549. storage.remove(right)
  550. if type(right) == LinearRing:
  551. optimized_geometry.insert(right)
  552. else:
  553. # Cannot exteng geo any further. Put it away.
  554. optimized_geometry.insert(geo)
  555. # Continue with right.
  556. geo = right
  557. except StopIteration: # Nothing found in storage.
  558. optimized_geometry.insert(geo)
  559. #print path_count
  560. log.debug("path_count = %d" % path_count)
  561. return optimized_geometry
  562. def convert_units(self, units):
  563. """
  564. Converts the units of the object to ``units`` by scaling all
  565. the geometry appropriately. This call ``scale()``. Don't call
  566. it again in descendents.
  567. :param units: "IN" or "MM"
  568. :type units: str
  569. :return: Scaling factor resulting from unit change.
  570. :rtype: float
  571. """
  572. log.debug("Geometry.convert_units()")
  573. if units.upper() == self.units.upper():
  574. return 1.0
  575. if units.upper() == "MM":
  576. factor = 25.4
  577. elif units.upper() == "IN":
  578. factor = 1 / 25.4
  579. else:
  580. log.error("Unsupported units: %s" % str(units))
  581. return 1.0
  582. self.units = units
  583. self.scale(factor)
  584. return factor
  585. def to_dict(self):
  586. """
  587. Returns a respresentation of the object as a dictionary.
  588. Attributes to include are listed in ``self.ser_attrs``.
  589. :return: A dictionary-encoded copy of the object.
  590. :rtype: dict
  591. """
  592. d = {}
  593. for attr in self.ser_attrs:
  594. d[attr] = getattr(self, attr)
  595. return d
  596. def from_dict(self, d):
  597. """
  598. Sets object's attributes from a dictionary.
  599. Attributes to include are listed in ``self.ser_attrs``.
  600. This method will look only for only and all the
  601. attributes in ``self.ser_attrs``. They must all
  602. be present. Use only for deserializing saved
  603. objects.
  604. :param d: Dictionary of attributes to set in the object.
  605. :type d: dict
  606. :return: None
  607. """
  608. for attr in self.ser_attrs:
  609. setattr(self, attr, d[attr])
  610. def union(self):
  611. """
  612. Runs a cascaded union on the list of objects in
  613. solid_geometry.
  614. :return: None
  615. """
  616. self.solid_geometry = [cascaded_union(self.solid_geometry)]
  617. class ApertureMacro:
  618. """
  619. Syntax of aperture macros.
  620. <AM command>: AM<Aperture macro name>*<Macro content>
  621. <Macro content>: {{<Variable definition>*}{<Primitive>*}}
  622. <Variable definition>: $K=<Arithmetic expression>
  623. <Primitive>: <Primitive code>,<Modifier>{,<Modifier>}|<Comment>
  624. <Modifier>: $M|< Arithmetic expression>
  625. <Comment>: 0 <Text>
  626. """
  627. ## Regular expressions
  628. am1_re = re.compile(r'^%AM([^\*]+)\*(.+)?(%)?$')
  629. am2_re = re.compile(r'(.*)%$')
  630. amcomm_re = re.compile(r'^0(.*)')
  631. amprim_re = re.compile(r'^[1-9].*')
  632. amvar_re = re.compile(r'^\$([0-9a-zA-z]+)=(.*)')
  633. def __init__(self, name=None):
  634. self.name = name
  635. self.raw = ""
  636. ## These below are recomputed for every aperture
  637. ## definition, in other words, are temporary variables.
  638. self.primitives = []
  639. self.locvars = {}
  640. self.geometry = None
  641. def to_dict(self):
  642. """
  643. Returns the object in a serializable form. Only the name and
  644. raw are required.
  645. :return: Dictionary representing the object. JSON ready.
  646. :rtype: dict
  647. """
  648. return {
  649. 'name': self.name,
  650. 'raw': self.raw
  651. }
  652. def from_dict(self, d):
  653. """
  654. Populates the object from a serial representation created
  655. with ``self.to_dict()``.
  656. :param d: Serial representation of an ApertureMacro object.
  657. :return: None
  658. """
  659. for attr in ['name', 'raw']:
  660. setattr(self, attr, d[attr])
  661. def parse_content(self):
  662. """
  663. Creates numerical lists for all primitives in the aperture
  664. macro (in ``self.raw``) by replacing all variables by their
  665. values iteratively and evaluating expressions. Results
  666. are stored in ``self.primitives``.
  667. :return: None
  668. """
  669. # Cleanup
  670. self.raw = self.raw.replace('\n', '').replace('\r', '').strip(" *")
  671. self.primitives = []
  672. # Separate parts
  673. parts = self.raw.split('*')
  674. #### Every part in the macro ####
  675. for part in parts:
  676. ### Comments. Ignored.
  677. match = ApertureMacro.amcomm_re.search(part)
  678. if match:
  679. continue
  680. ### Variables
  681. # These are variables defined locally inside the macro. They can be
  682. # numerical constant or defind in terms of previously define
  683. # variables, which can be defined locally or in an aperture
  684. # definition. All replacements ocurr here.
  685. match = ApertureMacro.amvar_re.search(part)
  686. if match:
  687. var = match.group(1)
  688. val = match.group(2)
  689. # Replace variables in value
  690. for v in self.locvars:
  691. val = re.sub(r'\$'+str(v)+r'(?![0-9a-zA-Z])', str(self.locvars[v]), val)
  692. # Make all others 0
  693. val = re.sub(r'\$[0-9a-zA-Z](?![0-9a-zA-Z])', "0", val)
  694. # Change x with *
  695. val = re.sub(r'[xX]', "*", val)
  696. # Eval() and store.
  697. self.locvars[var] = eval(val)
  698. continue
  699. ### Primitives
  700. # Each is an array. The first identifies the primitive, while the
  701. # rest depend on the primitive. All are strings representing a
  702. # number and may contain variable definition. The values of these
  703. # variables are defined in an aperture definition.
  704. match = ApertureMacro.amprim_re.search(part)
  705. if match:
  706. ## Replace all variables
  707. for v in self.locvars:
  708. part = re.sub(r'\$' + str(v) + r'(?![0-9a-zA-Z])', str(self.locvars[v]), part)
  709. # Make all others 0
  710. part = re.sub(r'\$[0-9a-zA-Z](?![0-9a-zA-Z])', "0", part)
  711. # Change x with *
  712. part = re.sub(r'[xX]', "*", part)
  713. ## Store
  714. elements = part.split(",")
  715. self.primitives.append([eval(x) for x in elements])
  716. continue
  717. log.warning("Unknown syntax of aperture macro part: %s" % str(part))
  718. def append(self, data):
  719. """
  720. Appends a string to the raw macro.
  721. :param data: Part of the macro.
  722. :type data: str
  723. :return: None
  724. """
  725. self.raw += data
  726. @staticmethod
  727. def default2zero(n, mods):
  728. """
  729. Pads the ``mods`` list with zeros resulting in an
  730. list of length n.
  731. :param n: Length of the resulting list.
  732. :type n: int
  733. :param mods: List to be padded.
  734. :type mods: list
  735. :return: Zero-padded list.
  736. :rtype: list
  737. """
  738. x = [0.0] * n
  739. na = len(mods)
  740. x[0:na] = mods
  741. return x
  742. @staticmethod
  743. def make_circle(mods):
  744. """
  745. :param mods: (Exposure 0/1, Diameter >=0, X-coord, Y-coord)
  746. :return:
  747. """
  748. pol, dia, x, y = ApertureMacro.default2zero(4, mods)
  749. return {"pol": int(pol), "geometry": Point(x, y).buffer(dia/2)}
  750. @staticmethod
  751. def make_vectorline(mods):
  752. """
  753. :param mods: (Exposure 0/1, Line width >= 0, X-start, Y-start, X-end, Y-end,
  754. rotation angle around origin in degrees)
  755. :return:
  756. """
  757. pol, width, xs, ys, xe, ye, angle = ApertureMacro.default2zero(7, mods)
  758. line = LineString([(xs, ys), (xe, ye)])
  759. box = line.buffer(width/2, cap_style=2)
  760. box_rotated = affinity.rotate(box, angle, origin=(0, 0))
  761. return {"pol": int(pol), "geometry": box_rotated}
  762. @staticmethod
  763. def make_centerline(mods):
  764. """
  765. :param mods: (Exposure 0/1, width >=0, height >=0, x-center, y-center,
  766. rotation angle around origin in degrees)
  767. :return:
  768. """
  769. pol, width, height, x, y, angle = ApertureMacro.default2zero(6, mods)
  770. box = shply_box(x-width/2, y-height/2, x+width/2, y+height/2)
  771. box_rotated = affinity.rotate(box, angle, origin=(0, 0))
  772. return {"pol": int(pol), "geometry": box_rotated}
  773. @staticmethod
  774. def make_lowerleftline(mods):
  775. """
  776. :param mods: (exposure 0/1, width >=0, height >=0, x-lowerleft, y-lowerleft,
  777. rotation angle around origin in degrees)
  778. :return:
  779. """
  780. pol, width, height, x, y, angle = ApertureMacro.default2zero(6, mods)
  781. box = shply_box(x, y, x+width, y+height)
  782. box_rotated = affinity.rotate(box, angle, origin=(0, 0))
  783. return {"pol": int(pol), "geometry": box_rotated}
  784. @staticmethod
  785. def make_outline(mods):
  786. """
  787. :param mods:
  788. :return:
  789. """
  790. pol = mods[0]
  791. n = mods[1]
  792. points = [(0, 0)]*(n+1)
  793. for i in range(n+1):
  794. points[i] = mods[2*i + 2:2*i + 4]
  795. angle = mods[2*n + 4]
  796. poly = Polygon(points)
  797. poly_rotated = affinity.rotate(poly, angle, origin=(0, 0))
  798. return {"pol": int(pol), "geometry": poly_rotated}
  799. @staticmethod
  800. def make_polygon(mods):
  801. """
  802. Note: Specs indicate that rotation is only allowed if the center
  803. (x, y) == (0, 0). I will tolerate breaking this rule.
  804. :param mods: (exposure 0/1, n_verts 3<=n<=12, x-center, y-center,
  805. diameter of circumscribed circle >=0, rotation angle around origin)
  806. :return:
  807. """
  808. pol, nverts, x, y, dia, angle = ApertureMacro.default2zero(6, mods)
  809. points = [(0, 0)]*nverts
  810. for i in range(nverts):
  811. points[i] = (x + 0.5 * dia * cos(2*pi * i/nverts),
  812. y + 0.5 * dia * sin(2*pi * i/nverts))
  813. poly = Polygon(points)
  814. poly_rotated = affinity.rotate(poly, angle, origin=(0, 0))
  815. return {"pol": int(pol), "geometry": poly_rotated}
  816. @staticmethod
  817. def make_moire(mods):
  818. """
  819. Note: Specs indicate that rotation is only allowed if the center
  820. (x, y) == (0, 0). I will tolerate breaking this rule.
  821. :param mods: (x-center, y-center, outer_dia_outer_ring, ring thickness,
  822. gap, max_rings, crosshair_thickness, crosshair_len, rotation
  823. angle around origin in degrees)
  824. :return:
  825. """
  826. x, y, dia, thickness, gap, nrings, cross_th, cross_len, angle = ApertureMacro.default2zero(9, mods)
  827. r = dia/2 - thickness/2
  828. result = Point((x, y)).buffer(r).exterior.buffer(thickness/2.0)
  829. ring = Point((x, y)).buffer(r).exterior.buffer(thickness/2.0) # Need a copy!
  830. i = 1 # Number of rings created so far
  831. ## If the ring does not have an interior it means that it is
  832. ## a disk. Then stop.
  833. while len(ring.interiors) > 0 and i < nrings:
  834. r -= thickness + gap
  835. if r <= 0:
  836. break
  837. ring = Point((x, y)).buffer(r).exterior.buffer(thickness/2.0)
  838. result = cascaded_union([result, ring])
  839. i += 1
  840. ## Crosshair
  841. hor = LineString([(x - cross_len, y), (x + cross_len, y)]).buffer(cross_th/2.0, cap_style=2)
  842. ver = LineString([(x, y-cross_len), (x, y + cross_len)]).buffer(cross_th/2.0, cap_style=2)
  843. result = cascaded_union([result, hor, ver])
  844. return {"pol": 1, "geometry": result}
  845. @staticmethod
  846. def make_thermal(mods):
  847. """
  848. Note: Specs indicate that rotation is only allowed if the center
  849. (x, y) == (0, 0). I will tolerate breaking this rule.
  850. :param mods: [x-center, y-center, diameter-outside, diameter-inside,
  851. gap-thickness, rotation angle around origin]
  852. :return:
  853. """
  854. x, y, dout, din, t, angle = ApertureMacro.default2zero(6, mods)
  855. ring = Point((x, y)).buffer(dout/2.0).difference(Point((x, y)).buffer(din/2.0))
  856. hline = LineString([(x - dout/2.0, y), (x + dout/2.0, y)]).buffer(t/2.0, cap_style=3)
  857. vline = LineString([(x, y - dout/2.0), (x, y + dout/2.0)]).buffer(t/2.0, cap_style=3)
  858. thermal = ring.difference(hline.union(vline))
  859. return {"pol": 1, "geometry": thermal}
  860. def make_geometry(self, modifiers):
  861. """
  862. Runs the macro for the given modifiers and generates
  863. the corresponding geometry.
  864. :param modifiers: Modifiers (parameters) for this macro
  865. :type modifiers: list
  866. """
  867. ## Primitive makers
  868. makers = {
  869. "1": ApertureMacro.make_circle,
  870. "2": ApertureMacro.make_vectorline,
  871. "20": ApertureMacro.make_vectorline,
  872. "21": ApertureMacro.make_centerline,
  873. "22": ApertureMacro.make_lowerleftline,
  874. "4": ApertureMacro.make_outline,
  875. "5": ApertureMacro.make_polygon,
  876. "6": ApertureMacro.make_moire,
  877. "7": ApertureMacro.make_thermal
  878. }
  879. ## Store modifiers as local variables
  880. modifiers = modifiers or []
  881. modifiers = [float(m) for m in modifiers]
  882. self.locvars = {}
  883. for i in range(0, len(modifiers)):
  884. self.locvars[str(i+1)] = modifiers[i]
  885. ## Parse
  886. self.primitives = [] # Cleanup
  887. self.geometry = None
  888. self.parse_content()
  889. ## Make the geometry
  890. for primitive in self.primitives:
  891. # Make the primitive
  892. prim_geo = makers[str(int(primitive[0]))](primitive[1:])
  893. # Add it (according to polarity)
  894. if self.geometry is None and prim_geo['pol'] == 1:
  895. self.geometry = prim_geo['geometry']
  896. continue
  897. if prim_geo['pol'] == 1:
  898. self.geometry = self.geometry.union(prim_geo['geometry'])
  899. continue
  900. if prim_geo['pol'] == 0:
  901. self.geometry = self.geometry.difference(prim_geo['geometry'])
  902. continue
  903. return self.geometry
  904. class Gerber (Geometry):
  905. """
  906. **ATTRIBUTES**
  907. * ``apertures`` (dict): The keys are names/identifiers of each aperture.
  908. The values are dictionaries key/value pairs which describe the aperture. The
  909. type key is always present and the rest depend on the key:
  910. +-----------+-----------------------------------+
  911. | Key | Value |
  912. +===========+===================================+
  913. | type | (str) "C", "R", "O", "P", or "AP" |
  914. +-----------+-----------------------------------+
  915. | others | Depend on ``type`` |
  916. +-----------+-----------------------------------+
  917. * ``aperture_macros`` (dictionary): Are predefined geometrical structures
  918. that can be instanciated with different parameters in an aperture
  919. definition. See ``apertures`` above. The key is the name of the macro,
  920. and the macro itself, the value, is a ``Aperture_Macro`` object.
  921. * ``flash_geometry`` (list): List of (Shapely) geometric object resulting
  922. from ``flashes``. These are generated from ``flashes`` in ``do_flashes()``.
  923. * ``buffered_paths`` (list): List of (Shapely) polygons resulting from
  924. *buffering* (or thickening) the ``paths`` with the aperture. These are
  925. generated from ``paths`` in ``buffer_paths()``.
  926. **USAGE**::
  927. g = Gerber()
  928. g.parse_file(filename)
  929. g.create_geometry()
  930. do_something(s.solid_geometry)
  931. """
  932. defaults = {
  933. "steps_per_circle": 40
  934. }
  935. def __init__(self, steps_per_circle=None):
  936. """
  937. The constructor takes no parameters. Use ``gerber.parse_files()``
  938. or ``gerber.parse_lines()`` to populate the object from Gerber source.
  939. :return: Gerber object
  940. :rtype: Gerber
  941. """
  942. # Initialize parent
  943. Geometry.__init__(self)
  944. self.solid_geometry = Polygon()
  945. # Number format
  946. self.int_digits = 3
  947. """Number of integer digits in Gerber numbers. Used during parsing."""
  948. self.frac_digits = 4
  949. """Number of fraction digits in Gerber numbers. Used during parsing."""
  950. ## Gerber elements ##
  951. # Apertures {'id':{'type':chr,
  952. # ['size':float], ['width':float],
  953. # ['height':float]}, ...}
  954. self.apertures = {}
  955. # Aperture Macros
  956. self.aperture_macros = {}
  957. # Attributes to be included in serialization
  958. # Always append to it because it carries contents
  959. # from Geometry.
  960. self.ser_attrs += ['int_digits', 'frac_digits', 'apertures',
  961. 'aperture_macros', 'solid_geometry']
  962. #### Parser patterns ####
  963. # FS - Format Specification
  964. # The format of X and Y must be the same!
  965. # L-omit leading zeros, T-omit trailing zeros
  966. # A-absolute notation, I-incremental notation
  967. self.fmt_re = re.compile(r'%FS([LT])([AI])X(\d)(\d)Y\d\d\*%$')
  968. # Mode (IN/MM)
  969. self.mode_re = re.compile(r'^%MO(IN|MM)\*%$')
  970. # Comment G04|G4
  971. self.comm_re = re.compile(r'^G0?4(.*)$')
  972. # AD - Aperture definition
  973. self.ad_re = re.compile(r'^%ADD(\d\d+)([a-zA-Z_$\.][a-zA-Z0-9_$\.]*)(?:,(.*))?\*%$')
  974. # AM - Aperture Macro
  975. # Beginning of macro (Ends with *%):
  976. #self.am_re = re.compile(r'^%AM([a-zA-Z0-9]*)\*')
  977. # Tool change
  978. # May begin with G54 but that is deprecated
  979. self.tool_re = re.compile(r'^(?:G54)?D(\d\d+)\*$')
  980. # G01... - Linear interpolation plus flashes with coordinates
  981. # Operation code (D0x) missing is deprecated... oh well I will support it.
  982. self.lin_re = re.compile(r'^(?:G0?(1))?(?=.*X(-?\d+))?(?=.*Y(-?\d+))?[XY][^DIJ]*(?:D0?([123]))?\*$')
  983. # Operation code alone, usually just D03 (Flash)
  984. self.opcode_re = re.compile(r'^D0?([123])\*$')
  985. # G02/3... - Circular interpolation with coordinates
  986. # 2-clockwise, 3-counterclockwise
  987. # Operation code (D0x) missing is deprecated... oh well I will support it.
  988. # Optional start with G02 or G03, optional end with D01 or D02 with
  989. # optional coordinates but at least one in any order.
  990. self.circ_re = re.compile(r'^(?:G0?([23]))?(?=.*X(-?\d+))?(?=.*Y(-?\d+))' +
  991. '?(?=.*I(-?\d+))?(?=.*J(-?\d+))?[XYIJ][^D]*(?:D0([12]))?\*$')
  992. # G01/2/3 Occurring without coordinates
  993. self.interp_re = re.compile(r'^(?:G0?([123]))\*')
  994. # Single D74 or multi D75 quadrant for circular interpolation
  995. self.quad_re = re.compile(r'^G7([45])\*$')
  996. # Region mode on
  997. # In region mode, D01 starts a region
  998. # and D02 ends it. A new region can be started again
  999. # with D01. All contours must be closed before
  1000. # D02 or G37.
  1001. self.regionon_re = re.compile(r'^G36\*$')
  1002. # Region mode off
  1003. # Will end a region and come off region mode.
  1004. # All contours must be closed before D02 or G37.
  1005. self.regionoff_re = re.compile(r'^G37\*$')
  1006. # End of file
  1007. self.eof_re = re.compile(r'^M02\*')
  1008. # IP - Image polarity
  1009. self.pol_re = re.compile(r'^%IP(POS|NEG)\*%$')
  1010. # LP - Level polarity
  1011. self.lpol_re = re.compile(r'^%LP([DC])\*%$')
  1012. # Units (OBSOLETE)
  1013. self.units_re = re.compile(r'^G7([01])\*$')
  1014. # Absolute/Relative G90/1 (OBSOLETE)
  1015. self.absrel_re = re.compile(r'^G9([01])\*$')
  1016. # Aperture macros
  1017. self.am1_re = re.compile(r'^%AM([^\*]+)\*([^%]+)?(%)?$')
  1018. self.am2_re = re.compile(r'(.*)%$')
  1019. # How to discretize a circle.
  1020. self.steps_per_circ = steps_per_circle or Gerber.defaults['steps_per_circle']
  1021. def scale(self, factor):
  1022. """
  1023. Scales the objects' geometry on the XY plane by a given factor.
  1024. These are:
  1025. * ``buffered_paths``
  1026. * ``flash_geometry``
  1027. * ``solid_geometry``
  1028. * ``regions``
  1029. NOTE:
  1030. Does not modify the data used to create these elements. If these
  1031. are recreated, the scaling will be lost. This behavior was modified
  1032. because of the complexity reached in this class.
  1033. :param factor: Number by which to scale.
  1034. :type factor: float
  1035. :rtype : None
  1036. """
  1037. ## solid_geometry ???
  1038. # It's a cascaded union of objects.
  1039. self.solid_geometry = affinity.scale(self.solid_geometry, factor,
  1040. factor, origin=(0, 0))
  1041. # # Now buffered_paths, flash_geometry and solid_geometry
  1042. # self.create_geometry()
  1043. def offset(self, vect):
  1044. """
  1045. Offsets the objects' geometry on the XY plane by a given vector.
  1046. These are:
  1047. * ``buffered_paths``
  1048. * ``flash_geometry``
  1049. * ``solid_geometry``
  1050. * ``regions``
  1051. NOTE:
  1052. Does not modify the data used to create these elements. If these
  1053. are recreated, the scaling will be lost. This behavior was modified
  1054. because of the complexity reached in this class.
  1055. :param vect: (x, y) offset vector.
  1056. :type vect: tuple
  1057. :return: None
  1058. """
  1059. dx, dy = vect
  1060. ## Solid geometry
  1061. self.solid_geometry = affinity.translate(self.solid_geometry, xoff=dx, yoff=dy)
  1062. def mirror(self, axis, point):
  1063. """
  1064. Mirrors the object around a specified axis passign through
  1065. the given point. What is affected:
  1066. * ``buffered_paths``
  1067. * ``flash_geometry``
  1068. * ``solid_geometry``
  1069. * ``regions``
  1070. NOTE:
  1071. Does not modify the data used to create these elements. If these
  1072. are recreated, the scaling will be lost. This behavior was modified
  1073. because of the complexity reached in this class.
  1074. :param axis: "X" or "Y" indicates around which axis to mirror.
  1075. :type axis: str
  1076. :param point: [x, y] point belonging to the mirror axis.
  1077. :type point: list
  1078. :return: None
  1079. """
  1080. px, py = point
  1081. xscale, yscale = {"X": (1.0, -1.0), "Y": (-1.0, 1.0)}[axis]
  1082. ## solid_geometry ???
  1083. # It's a cascaded union of objects.
  1084. self.solid_geometry = affinity.scale(self.solid_geometry,
  1085. xscale, yscale, origin=(px, py))
  1086. def aperture_parse(self, apertureId, apertureType, apParameters):
  1087. """
  1088. Parse gerber aperture definition into dictionary of apertures.
  1089. The following kinds and their attributes are supported:
  1090. * *Circular (C)*: size (float)
  1091. * *Rectangle (R)*: width (float), height (float)
  1092. * *Obround (O)*: width (float), height (float).
  1093. * *Polygon (P)*: diameter(float), vertices(int), [rotation(float)]
  1094. * *Aperture Macro (AM)*: macro (ApertureMacro), modifiers (list)
  1095. :param apertureId: Id of the aperture being defined.
  1096. :param apertureType: Type of the aperture.
  1097. :param apParameters: Parameters of the aperture.
  1098. :type apertureId: str
  1099. :type apertureType: str
  1100. :type apParameters: str
  1101. :return: Identifier of the aperture.
  1102. :rtype: str
  1103. """
  1104. # Found some Gerber with a leading zero in the aperture id and the
  1105. # referenced it without the zero, so this is a hack to handle that.
  1106. apid = str(int(apertureId))
  1107. try: # Could be empty for aperture macros
  1108. paramList = apParameters.split('X')
  1109. except:
  1110. paramList = None
  1111. if apertureType == "C": # Circle, example: %ADD11C,0.1*%
  1112. self.apertures[apid] = {"type": "C",
  1113. "size": float(paramList[0])}
  1114. return apid
  1115. if apertureType == "R": # Rectangle, example: %ADD15R,0.05X0.12*%
  1116. self.apertures[apid] = {"type": "R",
  1117. "width": float(paramList[0]),
  1118. "height": float(paramList[1]),
  1119. "size": sqrt(float(paramList[0])**2 + float(paramList[1])**2)} # Hack
  1120. return apid
  1121. if apertureType == "O": # Obround
  1122. self.apertures[apid] = {"type": "O",
  1123. "width": float(paramList[0]),
  1124. "height": float(paramList[1]),
  1125. "size": sqrt(float(paramList[0])**2 + float(paramList[1])**2)} # Hack
  1126. return apid
  1127. if apertureType == "P": # Polygon (regular)
  1128. self.apertures[apid] = {"type": "P",
  1129. "diam": float(paramList[0]),
  1130. "nVertices": int(paramList[1]),
  1131. "size": float(paramList[0])} # Hack
  1132. if len(paramList) >= 3:
  1133. self.apertures[apid]["rotation"] = float(paramList[2])
  1134. return apid
  1135. if apertureType in self.aperture_macros:
  1136. self.apertures[apid] = {"type": "AM",
  1137. "macro": self.aperture_macros[apertureType],
  1138. "modifiers": paramList}
  1139. return apid
  1140. log.warning("Aperture not implemented: %s" % str(apertureType))
  1141. return None
  1142. def parse_file(self, filename, follow=False):
  1143. """
  1144. Calls Gerber.parse_lines() with array of lines
  1145. read from the given file.
  1146. :param filename: Gerber file to parse.
  1147. :type filename: str
  1148. :param follow: If true, will not create polygons, just lines
  1149. following the gerber path.
  1150. :type follow: bool
  1151. :return: None
  1152. """
  1153. gfile = open(filename, 'r')
  1154. gstr = gfile.readlines()
  1155. gfile.close()
  1156. self.parse_lines(gstr, follow=follow)
  1157. #@profile
  1158. def parse_lines(self, glines, follow=False):
  1159. """
  1160. Main Gerber parser. Reads Gerber and populates ``self.paths``, ``self.apertures``,
  1161. ``self.flashes``, ``self.regions`` and ``self.units``.
  1162. :param glines: Gerber code as list of strings, each element being
  1163. one line of the source file.
  1164. :type glines: list
  1165. :param follow: If true, will not create polygons, just lines
  1166. following the gerber path.
  1167. :type follow: bool
  1168. :return: None
  1169. :rtype: None
  1170. """
  1171. # Coordinates of the current path, each is [x, y]
  1172. path = []
  1173. # Polygons are stored here until there is a change in polarity.
  1174. # Only then they are combined via cascaded_union and added or
  1175. # subtracted from solid_geometry. This is ~100 times faster than
  1176. # applyng a union for every new polygon.
  1177. poly_buffer = []
  1178. last_path_aperture = None
  1179. current_aperture = None
  1180. # 1,2 or 3 from "G01", "G02" or "G03"
  1181. current_interpolation_mode = None
  1182. # 1 or 2 from "D01" or "D02"
  1183. # Note this is to support deprecated Gerber not putting
  1184. # an operation code at the end of every coordinate line.
  1185. current_operation_code = None
  1186. # Current coordinates
  1187. current_x = None
  1188. current_y = None
  1189. # Absolute or Relative/Incremental coordinates
  1190. # Not implemented
  1191. absolute = True
  1192. # How to interpret circular interpolation: SINGLE or MULTI
  1193. quadrant_mode = None
  1194. # Indicates we are parsing an aperture macro
  1195. current_macro = None
  1196. # Indicates the current polarity: D-Dark, C-Clear
  1197. current_polarity = 'D'
  1198. # If a region is being defined
  1199. making_region = False
  1200. #### Parsing starts here ####
  1201. line_num = 0
  1202. gline = ""
  1203. try:
  1204. for gline in glines:
  1205. line_num += 1
  1206. ### Cleanup
  1207. gline = gline.strip(' \r\n')
  1208. #log.debug("%3s %s" % (line_num, gline))
  1209. ### Aperture Macros
  1210. # Having this at the beggining will slow things down
  1211. # but macros can have complicated statements than could
  1212. # be caught by other patterns.
  1213. if current_macro is None: # No macro started yet
  1214. match = self.am1_re.search(gline)
  1215. # Start macro if match, else not an AM, carry on.
  1216. if match:
  1217. log.info("Starting macro. Line %d: %s" % (line_num, gline))
  1218. current_macro = match.group(1)
  1219. self.aperture_macros[current_macro] = ApertureMacro(name=current_macro)
  1220. if match.group(2): # Append
  1221. self.aperture_macros[current_macro].append(match.group(2))
  1222. if match.group(3): # Finish macro
  1223. #self.aperture_macros[current_macro].parse_content()
  1224. current_macro = None
  1225. log.info("Macro complete in 1 line.")
  1226. continue
  1227. else: # Continue macro
  1228. log.info("Continuing macro. Line %d." % line_num)
  1229. match = self.am2_re.search(gline)
  1230. if match: # Finish macro
  1231. log.info("End of macro. Line %d." % line_num)
  1232. self.aperture_macros[current_macro].append(match.group(1))
  1233. #self.aperture_macros[current_macro].parse_content()
  1234. current_macro = None
  1235. else: # Append
  1236. self.aperture_macros[current_macro].append(gline)
  1237. continue
  1238. ### G01 - Linear interpolation plus flashes
  1239. # Operation code (D0x) missing is deprecated... oh well I will support it.
  1240. # REGEX: r'^(?:G0?(1))?(?:X(-?\d+))?(?:Y(-?\d+))?(?:D0([123]))?\*$'
  1241. match = self.lin_re.search(gline)
  1242. if match:
  1243. # Dxx alone?
  1244. # if match.group(1) is None and match.group(2) is None and match.group(3) is None:
  1245. # try:
  1246. # current_operation_code = int(match.group(4))
  1247. # except:
  1248. # pass # A line with just * will match too.
  1249. # continue
  1250. # NOTE: Letting it continue allows it to react to the
  1251. # operation code.
  1252. # Parse coordinates
  1253. if match.group(2) is not None:
  1254. current_x = parse_gerber_number(match.group(2), self.frac_digits)
  1255. if match.group(3) is not None:
  1256. current_y = parse_gerber_number(match.group(3), self.frac_digits)
  1257. # Parse operation code
  1258. if match.group(4) is not None:
  1259. current_operation_code = int(match.group(4))
  1260. # Pen down: add segment
  1261. if current_operation_code == 1:
  1262. path.append([current_x, current_y])
  1263. last_path_aperture = current_aperture
  1264. elif current_operation_code == 2:
  1265. if len(path) > 1:
  1266. ## --- BUFFERED ---
  1267. if making_region:
  1268. geo = Polygon(path)
  1269. else:
  1270. if last_path_aperture is None:
  1271. log.warning("No aperture defined for curent path. (%d)" % line_num)
  1272. width = self.apertures[last_path_aperture]["size"] # TODO: WARNING this should fail!
  1273. #log.debug("Line %d: Setting aperture to %s before buffering." % (line_num, last_path_aperture))
  1274. if follow:
  1275. geo = LineString(path)
  1276. else:
  1277. geo = LineString(path).buffer(width / 2)
  1278. poly_buffer.append(geo)
  1279. path = [[current_x, current_y]] # Start new path
  1280. # Flash
  1281. elif current_operation_code == 3:
  1282. # --- BUFFERED ---
  1283. flash = Gerber.create_flash_geometry(Point([current_x, current_y]),
  1284. self.apertures[current_aperture])
  1285. poly_buffer.append(flash)
  1286. continue
  1287. ### G02/3 - Circular interpolation
  1288. # 2-clockwise, 3-counterclockwise
  1289. match = self.circ_re.search(gline)
  1290. if match:
  1291. arcdir = [None, None, "cw", "ccw"]
  1292. mode, x, y, i, j, d = match.groups()
  1293. try:
  1294. x = parse_gerber_number(x, self.frac_digits)
  1295. except:
  1296. x = current_x
  1297. try:
  1298. y = parse_gerber_number(y, self.frac_digits)
  1299. except:
  1300. y = current_y
  1301. try:
  1302. i = parse_gerber_number(i, self.frac_digits)
  1303. except:
  1304. i = 0
  1305. try:
  1306. j = parse_gerber_number(j, self.frac_digits)
  1307. except:
  1308. j = 0
  1309. if quadrant_mode is None:
  1310. log.error("Found arc without preceding quadrant specification G74 or G75. (%d)" % line_num)
  1311. log.error(gline)
  1312. continue
  1313. if mode is None and current_interpolation_mode not in [2, 3]:
  1314. log.error("Found arc without circular interpolation mode defined. (%d)" % line_num)
  1315. log.error(gline)
  1316. continue
  1317. elif mode is not None:
  1318. current_interpolation_mode = int(mode)
  1319. # Set operation code if provided
  1320. if d is not None:
  1321. current_operation_code = int(d)
  1322. # Nothing created! Pen Up.
  1323. if current_operation_code == 2:
  1324. log.warning("Arc with D2. (%d)" % line_num)
  1325. if len(path) > 1:
  1326. if last_path_aperture is None:
  1327. log.warning("No aperture defined for curent path. (%d)" % line_num)
  1328. # --- BUFFERED ---
  1329. width = self.apertures[last_path_aperture]["size"]
  1330. buffered = LineString(path).buffer(width / 2)
  1331. poly_buffer.append(buffered)
  1332. current_x = x
  1333. current_y = y
  1334. path = [[current_x, current_y]] # Start new path
  1335. continue
  1336. # Flash should not happen here
  1337. if current_operation_code == 3:
  1338. log.error("Trying to flash within arc. (%d)" % line_num)
  1339. continue
  1340. if quadrant_mode == 'MULTI':
  1341. center = [i + current_x, j + current_y]
  1342. radius = sqrt(i ** 2 + j ** 2)
  1343. start = arctan2(-j, -i) # Start angle
  1344. # Numerical errors might prevent start == stop therefore
  1345. # we check ahead of time. This should result in a
  1346. # 360 degree arc.
  1347. if current_x == x and current_y == y:
  1348. stop = start
  1349. else:
  1350. stop = arctan2(-center[1] + y, -center[0] + x) # Stop angle
  1351. this_arc = arc(center, radius, start, stop,
  1352. arcdir[current_interpolation_mode],
  1353. self.steps_per_circ)
  1354. # Last point in path is current point
  1355. current_x = this_arc[-1][0]
  1356. current_y = this_arc[-1][1]
  1357. # Append
  1358. path += this_arc
  1359. last_path_aperture = current_aperture
  1360. continue
  1361. if quadrant_mode == 'SINGLE':
  1362. center_candidates = [
  1363. [i + current_x, j + current_y],
  1364. [-i + current_x, j + current_y],
  1365. [i + current_x, -j + current_y],
  1366. [-i + current_x, -j + current_y]
  1367. ]
  1368. valid = False
  1369. log.debug("I: %f J: %f" % (i, j))
  1370. for center in center_candidates:
  1371. radius = sqrt(i ** 2 + j ** 2)
  1372. # Make sure radius to start is the same as radius to end.
  1373. radius2 = sqrt((center[0] - x) ** 2 + (center[1] - y) ** 2)
  1374. if radius2 < radius * 0.95 or radius2 > radius * 1.05:
  1375. continue # Not a valid center.
  1376. # Correct i and j and continue as with multi-quadrant.
  1377. i = center[0] - current_x
  1378. j = center[1] - current_y
  1379. start = arctan2(-j, -i) # Start angle
  1380. stop = arctan2(-center[1] + y, -center[0] + x) # Stop angle
  1381. angle = abs(arc_angle(start, stop, arcdir[current_interpolation_mode]))
  1382. log.debug("ARC START: %f, %f CENTER: %f, %f STOP: %f, %f" %
  1383. (current_x, current_y, center[0], center[1], x, y))
  1384. log.debug("START Ang: %f, STOP Ang: %f, DIR: %s, ABS: %.12f <= %.12f: %s" %
  1385. (start * 180 / pi, stop * 180 / pi, arcdir[current_interpolation_mode],
  1386. angle * 180 / pi, pi / 2 * 180 / pi, angle <= (pi + 1e-6) / 2))
  1387. if angle <= (pi + 1e-6) / 2:
  1388. log.debug("########## ACCEPTING ARC ############")
  1389. this_arc = arc(center, radius, start, stop,
  1390. arcdir[current_interpolation_mode],
  1391. self.steps_per_circ)
  1392. current_x = this_arc[-1][0]
  1393. current_y = this_arc[-1][1]
  1394. path += this_arc
  1395. last_path_aperture = current_aperture
  1396. valid = True
  1397. break
  1398. if valid:
  1399. continue
  1400. else:
  1401. log.warning("Invalid arc in line %d." % line_num)
  1402. ### Operation code alone
  1403. # Operation code alone, usually just D03 (Flash)
  1404. # self.opcode_re = re.compile(r'^D0?([123])\*$')
  1405. match = self.opcode_re.search(gline)
  1406. if match:
  1407. current_operation_code = int(match.group(1))
  1408. if current_operation_code == 3:
  1409. ## --- Buffered ---
  1410. try:
  1411. log.debug("Bare op-code %d." % current_operation_code)
  1412. # flash = Gerber.create_flash_geometry(Point(path[-1]),
  1413. # self.apertures[current_aperture])
  1414. flash = Gerber.create_flash_geometry(Point(current_x, current_y),
  1415. self.apertures[current_aperture])
  1416. poly_buffer.append(flash)
  1417. except IndexError:
  1418. log.warning("Line %d: %s -> Nothing there to flash!" % (line_num, gline))
  1419. continue
  1420. ### G74/75* - Single or multiple quadrant arcs
  1421. match = self.quad_re.search(gline)
  1422. if match:
  1423. if match.group(1) == '4':
  1424. quadrant_mode = 'SINGLE'
  1425. else:
  1426. quadrant_mode = 'MULTI'
  1427. continue
  1428. ### G36* - Begin region
  1429. if self.regionon_re.search(gline):
  1430. if len(path) > 1:
  1431. # Take care of what is left in the path
  1432. ## --- Buffered ---
  1433. width = self.apertures[last_path_aperture]["size"]
  1434. geo = LineString(path).buffer(width/2)
  1435. poly_buffer.append(geo)
  1436. path = [path[-1]]
  1437. making_region = True
  1438. continue
  1439. ### G37* - End region
  1440. if self.regionoff_re.search(gline):
  1441. making_region = False
  1442. # Only one path defines region?
  1443. # This can happen if D02 happened before G37 and
  1444. # is not and error.
  1445. if len(path) < 3:
  1446. # print "ERROR: Path contains less than 3 points:"
  1447. # print path
  1448. # print "Line (%d): " % line_num, gline
  1449. # path = []
  1450. #path = [[current_x, current_y]]
  1451. continue
  1452. # For regions we may ignore an aperture that is None
  1453. # self.regions.append({"polygon": Polygon(path),
  1454. # "aperture": last_path_aperture})
  1455. # --- Buffered ---
  1456. region = Polygon(path)
  1457. if not region.is_valid:
  1458. region = region.buffer(0)
  1459. poly_buffer.append(region)
  1460. path = [[current_x, current_y]] # Start new path
  1461. continue
  1462. ### Aperture definitions %ADD...
  1463. match = self.ad_re.search(gline)
  1464. if match:
  1465. log.info("Found aperture definition. Line %d: %s" % (line_num, gline))
  1466. self.aperture_parse(match.group(1), match.group(2), match.group(3))
  1467. continue
  1468. ### G01/2/3* - Interpolation mode change
  1469. # Can occur along with coordinates and operation code but
  1470. # sometimes by itself (handled here).
  1471. # Example: G01*
  1472. match = self.interp_re.search(gline)
  1473. if match:
  1474. current_interpolation_mode = int(match.group(1))
  1475. continue
  1476. ### Tool/aperture change
  1477. # Example: D12*
  1478. match = self.tool_re.search(gline)
  1479. if match:
  1480. current_aperture = match.group(1)
  1481. log.debug("Line %d: Aperture change to (%s)" % (line_num, match.group(1)))
  1482. log.debug(self.apertures[current_aperture])
  1483. # Take care of the current path with the previous tool
  1484. if len(path) > 1:
  1485. # --- Buffered ----
  1486. width = self.apertures[last_path_aperture]["size"]
  1487. geo = LineString(path).buffer(width / 2)
  1488. poly_buffer.append(geo)
  1489. path = [path[-1]]
  1490. continue
  1491. ### Polarity change
  1492. # Example: %LPD*% or %LPC*%
  1493. # If polarity changes, creates geometry from current
  1494. # buffer, then adds or subtracts accordingly.
  1495. match = self.lpol_re.search(gline)
  1496. if match:
  1497. if len(path) > 1 and current_polarity != match.group(1):
  1498. # --- Buffered ----
  1499. width = self.apertures[last_path_aperture]["size"]
  1500. geo = LineString(path).buffer(width / 2)
  1501. poly_buffer.append(geo)
  1502. path = [path[-1]]
  1503. # --- Apply buffer ---
  1504. # If added for testing of bug #83
  1505. # TODO: Remove when bug fixed
  1506. if len(poly_buffer) > 0:
  1507. if current_polarity == 'D':
  1508. self.solid_geometry = self.solid_geometry.union(cascaded_union(poly_buffer))
  1509. else:
  1510. self.solid_geometry = self.solid_geometry.difference(cascaded_union(poly_buffer))
  1511. poly_buffer = []
  1512. current_polarity = match.group(1)
  1513. continue
  1514. ### Number format
  1515. # Example: %FSLAX24Y24*%
  1516. # TODO: This is ignoring most of the format. Implement the rest.
  1517. match = self.fmt_re.search(gline)
  1518. if match:
  1519. absolute = {'A': True, 'I': False}
  1520. self.int_digits = int(match.group(3))
  1521. self.frac_digits = int(match.group(4))
  1522. continue
  1523. ### Mode (IN/MM)
  1524. # Example: %MOIN*%
  1525. match = self.mode_re.search(gline)
  1526. if match:
  1527. #self.units = match.group(1)
  1528. # Changed for issue #80
  1529. self.convert_units(match.group(1))
  1530. continue
  1531. ### Units (G70/1) OBSOLETE
  1532. match = self.units_re.search(gline)
  1533. if match:
  1534. #self.units = {'0': 'IN', '1': 'MM'}[match.group(1)]
  1535. # Changed for issue #80
  1536. self.convert_units({'0': 'IN', '1': 'MM'}[match.group(1)])
  1537. continue
  1538. ### Absolute/relative coordinates G90/1 OBSOLETE
  1539. match = self.absrel_re.search(gline)
  1540. if match:
  1541. absolute = {'0': True, '1': False}[match.group(1)]
  1542. continue
  1543. #### Ignored lines
  1544. ## Comments
  1545. match = self.comm_re.search(gline)
  1546. if match:
  1547. continue
  1548. ## EOF
  1549. match = self.eof_re.search(gline)
  1550. if match:
  1551. continue
  1552. ### Line did not match any pattern. Warn user.
  1553. log.warning("Line ignored (%d): %s" % (line_num, gline))
  1554. if len(path) > 1:
  1555. # EOF, create shapely LineString if something still in path
  1556. ## --- Buffered ---
  1557. width = self.apertures[last_path_aperture]["size"]
  1558. geo = LineString(path).buffer(width / 2)
  1559. poly_buffer.append(geo)
  1560. # --- Apply buffer ---
  1561. log.warn("Joining %d polygons." % len(poly_buffer))
  1562. new_poly = cascaded_union(poly_buffer)
  1563. new_poly = new_poly.buffer(0)
  1564. if current_polarity == 'D':
  1565. self.solid_geometry = self.solid_geometry.union(new_poly)
  1566. else:
  1567. self.solid_geometry = self.solid_geometry.difference(new_poly)
  1568. except Exception, err:
  1569. #print traceback.format_exc()
  1570. log.error("PARSING FAILED. Line %d: %s" % (line_num, gline))
  1571. raise ParseError("%s\nLine %d: %s" % (repr(err), line_num, gline))
  1572. @staticmethod
  1573. def create_flash_geometry(location, aperture):
  1574. log.debug('Flashing @%s, Aperture: %s' % (location, aperture))
  1575. if type(location) == list:
  1576. location = Point(location)
  1577. if aperture['type'] == 'C': # Circles
  1578. return location.buffer(aperture['size'] / 2)
  1579. if aperture['type'] == 'R': # Rectangles
  1580. loc = location.coords[0]
  1581. width = aperture['width']
  1582. height = aperture['height']
  1583. minx = loc[0] - width / 2
  1584. maxx = loc[0] + width / 2
  1585. miny = loc[1] - height / 2
  1586. maxy = loc[1] + height / 2
  1587. return shply_box(minx, miny, maxx, maxy)
  1588. if aperture['type'] == 'O': # Obround
  1589. loc = location.coords[0]
  1590. width = aperture['width']
  1591. height = aperture['height']
  1592. if width > height:
  1593. p1 = Point(loc[0] + 0.5 * (width - height), loc[1])
  1594. p2 = Point(loc[0] - 0.5 * (width - height), loc[1])
  1595. c1 = p1.buffer(height * 0.5)
  1596. c2 = p2.buffer(height * 0.5)
  1597. else:
  1598. p1 = Point(loc[0], loc[1] + 0.5 * (height - width))
  1599. p2 = Point(loc[0], loc[1] - 0.5 * (height - width))
  1600. c1 = p1.buffer(width * 0.5)
  1601. c2 = p2.buffer(width * 0.5)
  1602. return cascaded_union([c1, c2]).convex_hull
  1603. if aperture['type'] == 'P': # Regular polygon
  1604. loc = location.coords[0]
  1605. diam = aperture['diam']
  1606. n_vertices = aperture['nVertices']
  1607. points = []
  1608. for i in range(0, n_vertices):
  1609. x = loc[0] + diam * (cos(2 * pi * i / n_vertices))
  1610. y = loc[1] + diam * (sin(2 * pi * i / n_vertices))
  1611. points.append((x, y))
  1612. ply = Polygon(points)
  1613. if 'rotation' in aperture:
  1614. ply = affinity.rotate(ply, aperture['rotation'])
  1615. return ply
  1616. if aperture['type'] == 'AM': # Aperture Macro
  1617. loc = location.coords[0]
  1618. flash_geo = aperture['macro'].make_geometry(aperture['modifiers'])
  1619. return affinity.translate(flash_geo, xoff=loc[0], yoff=loc[1])
  1620. return None
  1621. def create_geometry(self):
  1622. """
  1623. Geometry from a Gerber file is made up entirely of polygons.
  1624. Every stroke (linear or circular) has an aperture which gives
  1625. it thickness. Additionally, aperture strokes have non-zero area,
  1626. and regions naturally do as well.
  1627. :rtype : None
  1628. :return: None
  1629. """
  1630. # self.buffer_paths()
  1631. #
  1632. # self.fix_regions()
  1633. #
  1634. # self.do_flashes()
  1635. #
  1636. # self.solid_geometry = cascaded_union(self.buffered_paths +
  1637. # [poly['polygon'] for poly in self.regions] +
  1638. # self.flash_geometry)
  1639. def get_bounding_box(self, margin=0.0, rounded=False):
  1640. """
  1641. Creates and returns a rectangular polygon bounding at a distance of
  1642. margin from the object's ``solid_geometry``. If margin > 0, the polygon
  1643. can optionally have rounded corners of radius equal to margin.
  1644. :param margin: Distance to enlarge the rectangular bounding
  1645. box in both positive and negative, x and y axes.
  1646. :type margin: float
  1647. :param rounded: Wether or not to have rounded corners.
  1648. :type rounded: bool
  1649. :return: The bounding box.
  1650. :rtype: Shapely.Polygon
  1651. """
  1652. bbox = self.solid_geometry.envelope.buffer(margin)
  1653. if not rounded:
  1654. bbox = bbox.envelope
  1655. return bbox
  1656. class Excellon(Geometry):
  1657. """
  1658. *ATTRIBUTES*
  1659. * ``tools`` (dict): The key is the tool name and the value is
  1660. a dictionary specifying the tool:
  1661. ================ ====================================
  1662. Key Value
  1663. ================ ====================================
  1664. C Diameter of the tool
  1665. Others Not supported (Ignored).
  1666. ================ ====================================
  1667. * ``drills`` (list): Each is a dictionary:
  1668. ================ ====================================
  1669. Key Value
  1670. ================ ====================================
  1671. point (Shapely.Point) Where to drill
  1672. tool (str) A key in ``tools``
  1673. ================ ====================================
  1674. """
  1675. defaults = {
  1676. "zeros": "L"
  1677. }
  1678. def __init__(self, zeros=None):
  1679. """
  1680. The constructor takes no parameters.
  1681. :return: Excellon object.
  1682. :rtype: Excellon
  1683. """
  1684. Geometry.__init__(self)
  1685. self.tools = {}
  1686. self.drills = []
  1687. ## IN|MM -> Units are inherited from Geometry
  1688. #self.units = units
  1689. # Trailing "T" or leading "L" (default)
  1690. #self.zeros = "T"
  1691. self.zeros = zeros or self.defaults["zeros"]
  1692. # Attributes to be included in serialization
  1693. # Always append to it because it carries contents
  1694. # from Geometry.
  1695. self.ser_attrs += ['tools', 'drills', 'zeros']
  1696. #### Patterns ####
  1697. # Regex basics:
  1698. # ^ - beginning
  1699. # $ - end
  1700. # *: 0 or more, +: 1 or more, ?: 0 or 1
  1701. # M48 - Beggining of Part Program Header
  1702. self.hbegin_re = re.compile(r'^M48$')
  1703. # M95 or % - End of Part Program Header
  1704. # NOTE: % has different meaning in the body
  1705. self.hend_re = re.compile(r'^(?:M95|%)$')
  1706. # FMAT Excellon format
  1707. # Ignored in the parser
  1708. #self.fmat_re = re.compile(r'^FMAT,([12])$')
  1709. # Number format and units
  1710. # INCH uses 6 digits
  1711. # METRIC uses 5/6
  1712. self.units_re = re.compile(r'^(INCH|METRIC)(?:,([TL])Z)?$')
  1713. # Tool definition/parameters (?= is look-ahead
  1714. # NOTE: This might be an overkill!
  1715. # self.toolset_re = re.compile(r'^T(0?\d|\d\d)(?=.*C(\d*\.?\d*))?' +
  1716. # r'(?=.*F(\d*\.?\d*))?(?=.*S(\d*\.?\d*))?' +
  1717. # r'(?=.*B(\d*\.?\d*))?(?=.*H(\d*\.?\d*))?' +
  1718. # r'(?=.*Z([-\+]?\d*\.?\d*))?[CFSBHT]')
  1719. self.toolset_re = re.compile(r'^T(\d+)(?=.*C(\d*\.?\d*))?' +
  1720. r'(?=.*F(\d*\.?\d*))?(?=.*S(\d*\.?\d*))?' +
  1721. r'(?=.*B(\d*\.?\d*))?(?=.*H(\d*\.?\d*))?' +
  1722. r'(?=.*Z([-\+]?\d*\.?\d*))?[CFSBHT]')
  1723. # Tool select
  1724. # Can have additional data after tool number but
  1725. # is ignored if present in the header.
  1726. # Warning: This will match toolset_re too.
  1727. # self.toolsel_re = re.compile(r'^T((?:\d\d)|(?:\d))')
  1728. self.toolsel_re = re.compile(r'^T(\d+)')
  1729. # Comment
  1730. self.comm_re = re.compile(r'^;(.*)$')
  1731. # Absolute/Incremental G90/G91
  1732. self.absinc_re = re.compile(r'^G9([01])$')
  1733. # Modes of operation
  1734. # 1-linear, 2-circCW, 3-cirCCW, 4-vardwell, 5-Drill
  1735. self.modes_re = re.compile(r'^G0([012345])')
  1736. # Measuring mode
  1737. # 1-metric, 2-inch
  1738. self.meas_re = re.compile(r'^M7([12])$')
  1739. # Coordinates
  1740. #self.xcoord_re = re.compile(r'^X(\d*\.?\d*)(?:Y\d*\.?\d*)?$')
  1741. #self.ycoord_re = re.compile(r'^(?:X\d*\.?\d*)?Y(\d*\.?\d*)$')
  1742. self.coordsperiod_re = re.compile(r'(?=.*X([-\+]?\d*\.\d*))?(?=.*Y([-\+]?\d*\.\d*))?[XY]')
  1743. self.coordsnoperiod_re = re.compile(r'(?!.*\.)(?=.*X([-\+]?\d*))?(?=.*Y([-\+]?\d*))?[XY]')
  1744. # R - Repeat hole (# times, X offset, Y offset)
  1745. self.rep_re = re.compile(r'^R(\d+)(?=.*[XY])+(?:X([-\+]?\d*\.?\d*))?(?:Y([-\+]?\d*\.?\d*))?$')
  1746. # Various stop/pause commands
  1747. self.stop_re = re.compile(r'^((G04)|(M09)|(M06)|(M00)|(M30))')
  1748. # Parse coordinates
  1749. self.leadingzeros_re = re.compile(r'^[-\+]?(0*)(\d*)')
  1750. def parse_file(self, filename):
  1751. """
  1752. Reads the specified file as array of lines as
  1753. passes it to ``parse_lines()``.
  1754. :param filename: The file to be read and parsed.
  1755. :type filename: str
  1756. :return: None
  1757. """
  1758. efile = open(filename, 'r')
  1759. estr = efile.readlines()
  1760. efile.close()
  1761. self.parse_lines(estr)
  1762. def parse_lines(self, elines):
  1763. """
  1764. Main Excellon parser.
  1765. :param elines: List of strings, each being a line of Excellon code.
  1766. :type elines: list
  1767. :return: None
  1768. """
  1769. # State variables
  1770. current_tool = ""
  1771. in_header = False
  1772. current_x = None
  1773. current_y = None
  1774. #### Parsing starts here ####
  1775. line_num = 0 # Line number
  1776. eline = ""
  1777. try:
  1778. for eline in elines:
  1779. line_num += 1
  1780. #log.debug("%3d %s" % (line_num, str(eline)))
  1781. ### Cleanup lines
  1782. eline = eline.strip(' \r\n')
  1783. ## Header Begin (M48) ##
  1784. if self.hbegin_re.search(eline):
  1785. in_header = True
  1786. continue
  1787. ## Header End ##
  1788. if self.hend_re.search(eline):
  1789. in_header = False
  1790. continue
  1791. ## Alternative units format M71/M72
  1792. # Supposed to be just in the body (yes, the body)
  1793. # but some put it in the header (PADS for example).
  1794. # Will detect anywhere. Occurrence will change the
  1795. # object's units.
  1796. match = self.meas_re.match(eline)
  1797. if match:
  1798. #self.units = {"1": "MM", "2": "IN"}[match.group(1)]
  1799. # Modified for issue #80
  1800. self.convert_units({"1": "MM", "2": "IN"}[match.group(1)])
  1801. log.debug(" Units: %s" % self.units)
  1802. continue
  1803. #### Body ####
  1804. if not in_header:
  1805. ## Tool change ##
  1806. match = self.toolsel_re.search(eline)
  1807. if match:
  1808. current_tool = str(int(match.group(1)))
  1809. log.debug("Tool change: %s" % current_tool)
  1810. continue
  1811. ## Coordinates without period ##
  1812. match = self.coordsnoperiod_re.search(eline)
  1813. if match:
  1814. try:
  1815. #x = float(match.group(1))/10000
  1816. x = self.parse_number(match.group(1))
  1817. current_x = x
  1818. except TypeError:
  1819. x = current_x
  1820. try:
  1821. #y = float(match.group(2))/10000
  1822. y = self.parse_number(match.group(2))
  1823. current_y = y
  1824. except TypeError:
  1825. y = current_y
  1826. if x is None or y is None:
  1827. log.error("Missing coordinates")
  1828. continue
  1829. self.drills.append({'point': Point((x, y)), 'tool': current_tool})
  1830. log.debug("{:15} {:8} {:8}".format(eline, x, y))
  1831. continue
  1832. ## Coordinates with period: Use literally. ##
  1833. match = self.coordsperiod_re.search(eline)
  1834. if match:
  1835. try:
  1836. x = float(match.group(1))
  1837. current_x = x
  1838. except TypeError:
  1839. x = current_x
  1840. try:
  1841. y = float(match.group(2))
  1842. current_y = y
  1843. except TypeError:
  1844. y = current_y
  1845. if x is None or y is None:
  1846. log.error("Missing coordinates")
  1847. continue
  1848. self.drills.append({'point': Point((x, y)), 'tool': current_tool})
  1849. log.debug("{:15} {:8} {:8}".format(eline, x, y))
  1850. continue
  1851. #### Header ####
  1852. if in_header:
  1853. ## Tool definitions ##
  1854. match = self.toolset_re.search(eline)
  1855. if match:
  1856. name = str(int(match.group(1)))
  1857. spec = {
  1858. "C": float(match.group(2)),
  1859. # "F": float(match.group(3)),
  1860. # "S": float(match.group(4)),
  1861. # "B": float(match.group(5)),
  1862. # "H": float(match.group(6)),
  1863. # "Z": float(match.group(7))
  1864. }
  1865. self.tools[name] = spec
  1866. log.debug(" Tool definition: %s %s" % (name, spec))
  1867. continue
  1868. ## Units and number format ##
  1869. match = self.units_re.match(eline)
  1870. if match:
  1871. self.zeros = match.group(2) or self.zeros # "T" or "L". Might be empty
  1872. #self.units = {"INCH": "IN", "METRIC": "MM"}[match.group(1)]
  1873. # Modified for issue #80
  1874. self.convert_units({"INCH": "IN", "METRIC": "MM"}[match.group(1)])
  1875. log.debug(" Units/Format: %s %s" % (self.units, self.zeros))
  1876. continue
  1877. log.warning("Line ignored: %s" % eline)
  1878. log.info("Zeros: %s, Units %s." % (self.zeros, self.units))
  1879. except Exception as e:
  1880. log.error("PARSING FAILED. Line %d: %s" % (line_num, eline))
  1881. raise
  1882. def parse_number(self, number_str):
  1883. """
  1884. Parses coordinate numbers without period.
  1885. :param number_str: String representing the numerical value.
  1886. :type number_str: str
  1887. :return: Floating point representation of the number
  1888. :rtype: foat
  1889. """
  1890. if self.zeros == "L":
  1891. # With leading zeros, when you type in a coordinate,
  1892. # the leading zeros must always be included. Trailing zeros
  1893. # are unneeded and may be left off. The CNC-7 will automatically add them.
  1894. # r'^[-\+]?(0*)(\d*)'
  1895. # 6 digits are divided by 10^4
  1896. # If less than size digits, they are automatically added,
  1897. # 5 digits then are divided by 10^3 and so on.
  1898. match = self.leadingzeros_re.search(number_str)
  1899. if self.units.lower() == "in":
  1900. return float(number_str) / \
  1901. (10 ** (len(match.group(1)) + len(match.group(2)) - 2))
  1902. else:
  1903. return float(number_str) / \
  1904. (10 ** (len(match.group(1)) + len(match.group(2)) - 3))
  1905. else: # Trailing
  1906. # You must show all zeros to the right of the number and can omit
  1907. # all zeros to the left of the number. The CNC-7 will count the number
  1908. # of digits you typed and automatically fill in the missing zeros.
  1909. if self.units.lower() == "in": # Inches is 00.0000
  1910. return float(number_str) / 10000
  1911. else:
  1912. return float(number_str) / 1000 # Metric is 000.000
  1913. def create_geometry(self):
  1914. """
  1915. Creates circles of the tool diameter at every point
  1916. specified in ``self.drills``.
  1917. :return: None
  1918. """
  1919. self.solid_geometry = []
  1920. for drill in self.drills:
  1921. #poly = drill['point'].buffer(self.tools[drill['tool']]["C"]/2.0)
  1922. tooldia = self.tools[drill['tool']]['C']
  1923. poly = drill['point'].buffer(tooldia / 2.0)
  1924. self.solid_geometry.append(poly)
  1925. def scale(self, factor):
  1926. """
  1927. Scales geometry on the XY plane in the object by a given factor.
  1928. Tool sizes, feedrates an Z-plane dimensions are untouched.
  1929. :param factor: Number by which to scale the object.
  1930. :type factor: float
  1931. :return: None
  1932. :rtype: NOne
  1933. """
  1934. # Drills
  1935. for drill in self.drills:
  1936. drill['point'] = affinity.scale(drill['point'], factor, factor, origin=(0, 0))
  1937. self.create_geometry()
  1938. def offset(self, vect):
  1939. """
  1940. Offsets geometry on the XY plane in the object by a given vector.
  1941. :param vect: (x, y) offset vector.
  1942. :type vect: tuple
  1943. :return: None
  1944. """
  1945. dx, dy = vect
  1946. # Drills
  1947. for drill in self.drills:
  1948. drill['point'] = affinity.translate(drill['point'], xoff=dx, yoff=dy)
  1949. # Recreate geometry
  1950. self.create_geometry()
  1951. def mirror(self, axis, point):
  1952. """
  1953. :param axis: "X" or "Y" indicates around which axis to mirror.
  1954. :type axis: str
  1955. :param point: [x, y] point belonging to the mirror axis.
  1956. :type point: list
  1957. :return: None
  1958. """
  1959. px, py = point
  1960. xscale, yscale = {"X": (1.0, -1.0), "Y": (-1.0, 1.0)}[axis]
  1961. # Modify data
  1962. for drill in self.drills:
  1963. drill['point'] = affinity.scale(drill['point'], xscale, yscale, origin=(px, py))
  1964. # Recreate geometry
  1965. self.create_geometry()
  1966. def convert_units(self, units):
  1967. factor = Geometry.convert_units(self, units)
  1968. # Tools
  1969. for tname in self.tools:
  1970. self.tools[tname]["C"] *= factor
  1971. self.create_geometry()
  1972. return factor
  1973. class CNCjob(Geometry):
  1974. """
  1975. Represents work to be done by a CNC machine.
  1976. *ATTRIBUTES*
  1977. * ``gcode_parsed`` (list): Each is a dictionary:
  1978. ===================== =========================================
  1979. Key Value
  1980. ===================== =========================================
  1981. geom (Shapely.LineString) Tool path (XY plane)
  1982. kind (string) "AB", A is "T" (travel) or
  1983. "C" (cut). B is "F" (fast) or "S" (slow).
  1984. ===================== =========================================
  1985. """
  1986. defaults = {
  1987. "zdownrate": None,
  1988. "coordinate_format": "X%.4fY%.4f"
  1989. }
  1990. def __init__(self,
  1991. units="in",
  1992. kind="generic",
  1993. z_move=0.1,
  1994. feedrate=3.0,
  1995. z_cut=-0.002,
  1996. tooldia=0.0,
  1997. zdownrate=None):
  1998. Geometry.__init__(self)
  1999. self.kind = kind
  2000. self.units = units
  2001. self.z_cut = z_cut
  2002. self.z_move = z_move
  2003. self.feedrate = feedrate
  2004. self.tooldia = tooldia
  2005. self.unitcode = {"IN": "G20", "MM": "G21"}
  2006. self.pausecode = "G04 P1"
  2007. self.feedminutecode = "G94"
  2008. self.absolutecode = "G90"
  2009. self.gcode = ""
  2010. self.input_geometry_bounds = None
  2011. self.gcode_parsed = None
  2012. self.steps_per_circ = 20 # Used when parsing G-code arcs
  2013. if zdownrate is not None:
  2014. self.zdownrate = float(zdownrate)
  2015. elif CNCjob.defaults["zdownrate"] is not None:
  2016. self.zdownrate = float(CNCjob.defaults["zdownrate"])
  2017. else:
  2018. self.zdownrate = None
  2019. # Attributes to be included in serialization
  2020. # Always append to it because it carries contents
  2021. # from Geometry.
  2022. self.ser_attrs += ['kind', 'z_cut', 'z_move', 'feedrate', 'tooldia',
  2023. 'gcode', 'input_geometry_bounds', 'gcode_parsed',
  2024. 'steps_per_circ']
  2025. def convert_units(self, units):
  2026. factor = Geometry.convert_units(self, units)
  2027. log.debug("CNCjob.convert_units()")
  2028. self.z_cut *= factor
  2029. self.z_move *= factor
  2030. self.feedrate *= factor
  2031. self.tooldia *= factor
  2032. return factor
  2033. def generate_from_excellon_by_tool(self, exobj, tools="all",
  2034. toolchange=False, toolchangez=0.1):
  2035. """
  2036. Creates gcode for this object from an Excellon object
  2037. for the specified tools.
  2038. :param exobj: Excellon object to process
  2039. :type exobj: Excellon
  2040. :param tools: Comma separated tool names
  2041. :type: tools: str
  2042. :return: None
  2043. :rtype: None
  2044. """
  2045. log.debug("Creating CNC Job from Excellon...")
  2046. # Tools
  2047. if tools == "all":
  2048. tools = [tool for tool in exobj.tools]
  2049. else:
  2050. tools = [x.strip() for x in tools.split(",")]
  2051. tools = filter(lambda i: i in exobj.tools, tools)
  2052. log.debug("Tools are: %s" % str(tools))
  2053. # Points (Group by tool)
  2054. points = {}
  2055. for drill in exobj.drills:
  2056. if drill['tool'] in tools:
  2057. try:
  2058. points[drill['tool']].append(drill['point'])
  2059. except KeyError:
  2060. points[drill['tool']] = [drill['point']]
  2061. #log.debug("Found %d drills." % len(points))
  2062. self.gcode = []
  2063. # Basic G-Code macros
  2064. t = "G00 " + CNCjob.defaults["coordinate_format"] + "\n"
  2065. down = "G01 Z%.4f\n" % self.z_cut
  2066. up = "G01 Z%.4f\n" % self.z_move
  2067. # Initialization
  2068. gcode = self.unitcode[self.units.upper()] + "\n"
  2069. gcode += self.absolutecode + "\n"
  2070. gcode += self.feedminutecode + "\n"
  2071. gcode += "F%.2f\n" % self.feedrate
  2072. gcode += "G00 Z%.4f\n" % self.z_move # Move to travel height
  2073. gcode += "M03\n" # Spindle start
  2074. gcode += self.pausecode + "\n"
  2075. for tool in points:
  2076. # Tool change sequence (optional)
  2077. if toolchange:
  2078. gcode += "G00 Z%.4f\n" % toolchangez
  2079. gcode += "T%d\n" % int(tool) # Indicate tool slot (for automatic tool changer)
  2080. gcode += "M5\n" # Spindle Stop
  2081. gcode += "M6\n" # Tool change
  2082. gcode += "(MSG, Change to tool dia=%.4f)\n" % exobj.tools[tool]["C"]
  2083. gcode += "M0\n" # Temporary machine stop
  2084. gcode += "M3\n" # Spindle on clockwise
  2085. # Drillling!
  2086. for point in points[tool]:
  2087. x, y = point.coords.xy
  2088. gcode += t % (x[0], y[0])
  2089. gcode += down + up
  2090. gcode += t % (0, 0)
  2091. gcode += "M05\n" # Spindle stop
  2092. self.gcode = gcode
  2093. def generate_from_geometry_2(self, geometry, append=True, tooldia=None, tolerance=0):
  2094. """
  2095. Second algorithm to generate from Geometry.
  2096. ALgorithm description:
  2097. ----------------------
  2098. Uses RTree to find the nearest path to follow.
  2099. :param geometry:
  2100. :param append:
  2101. :param tooldia:
  2102. :param tolerance:
  2103. :return: None
  2104. """
  2105. assert isinstance(geometry, Geometry)
  2106. log.debug("generate_from_geometry_2()")
  2107. ## Flatten the geometry
  2108. # Only linear elements (no polygons) remain.
  2109. flat_geometry = geometry.flatten(pathonly=True)
  2110. log.debug("%d paths" % len(flat_geometry))
  2111. ## Index first and last points in paths
  2112. # What points to index.
  2113. def get_pts(o):
  2114. return [o.coords[0], o.coords[-1]]
  2115. # Create the indexed storage.
  2116. storage = FlatCAMRTreeStorage()
  2117. storage.get_points = get_pts
  2118. # Store the geometry
  2119. log.debug("Indexing geometry before generating G-Code...")
  2120. for shape in flat_geometry:
  2121. if shape is not None: # TODO: This shouldn't have happened.
  2122. storage.insert(shape)
  2123. if tooldia is not None:
  2124. self.tooldia = tooldia
  2125. # self.input_geometry_bounds = geometry.bounds()
  2126. if not append:
  2127. self.gcode = ""
  2128. # Initial G-Code
  2129. self.gcode = self.unitcode[self.units.upper()] + "\n"
  2130. self.gcode += self.absolutecode + "\n"
  2131. self.gcode += self.feedminutecode + "\n"
  2132. self.gcode += "F%.2f\n" % self.feedrate
  2133. self.gcode += "G00 Z%.4f\n" % self.z_move # Move (up) to travel height
  2134. self.gcode += "M03\n" # Spindle start
  2135. self.gcode += self.pausecode + "\n"
  2136. ## Iterate over geometry paths getting the nearest each time.
  2137. log.debug("Starting G-Code...")
  2138. path_count = 0
  2139. current_pt = (0, 0)
  2140. pt, geo = storage.nearest(current_pt)
  2141. try:
  2142. while True:
  2143. path_count += 1
  2144. #print "Current: ", "(%.3f, %.3f)" % current_pt
  2145. # Remove before modifying, otherwise
  2146. # deletion will fail.
  2147. storage.remove(geo)
  2148. # If last point in geometry is the nearest
  2149. # then reverse coordinates.
  2150. if list(pt) == list(geo.coords[-1]):
  2151. geo.coords = list(geo.coords)[::-1]
  2152. # G-code
  2153. # Note: self.linear2gcode() and self.point2gcode() will
  2154. # lower and raise the tool every time.
  2155. if type(geo) == LineString or type(geo) == LinearRing:
  2156. self.gcode += self.linear2gcode(geo, tolerance=tolerance)
  2157. elif type(geo) == Point:
  2158. self.gcode += self.point2gcode(geo)
  2159. else:
  2160. log.warning("G-code generation not implemented for %s" % (str(type(geo))))
  2161. # Delete from index, update current location and continue.
  2162. #rti.delete(hits[0], geo.coords[0])
  2163. #rti.delete(hits[0], geo.coords[-1])
  2164. current_pt = geo.coords[-1]
  2165. # Next
  2166. pt, geo = storage.nearest(current_pt)
  2167. except StopIteration: # Nothing found in storage.
  2168. pass
  2169. log.debug("%s paths traced." % path_count)
  2170. # Finish
  2171. self.gcode += "G00 Z%.4f\n" % self.z_move # Stop cutting
  2172. self.gcode += "G00 X0Y0\n"
  2173. self.gcode += "M05\n" # Spindle stop
  2174. def pre_parse(self, gtext):
  2175. """
  2176. Separates parts of the G-Code text into a list of dictionaries.
  2177. Used by ``self.gcode_parse()``.
  2178. :param gtext: A single string with g-code
  2179. """
  2180. # Units: G20-inches, G21-mm
  2181. units_re = re.compile(r'^G2([01])')
  2182. # TODO: This has to be re-done
  2183. gcmds = []
  2184. lines = gtext.split("\n") # TODO: This is probably a lot of work!
  2185. for line in lines:
  2186. # Clean up
  2187. line = line.strip()
  2188. # Remove comments
  2189. # NOTE: Limited to 1 bracket pair
  2190. op = line.find("(")
  2191. cl = line.find(")")
  2192. #if op > -1 and cl > op:
  2193. if cl > op > -1:
  2194. #comment = line[op+1:cl]
  2195. line = line[:op] + line[(cl+1):]
  2196. # Units
  2197. match = units_re.match(line)
  2198. if match:
  2199. self.units = {'0': "IN", '1': "MM"}[match.group(1)]
  2200. # Parse GCode
  2201. # 0 4 12
  2202. # G01 X-0.007 Y-0.057
  2203. # --> codes_idx = [0, 4, 12]
  2204. codes = "NMGXYZIJFP"
  2205. codes_idx = []
  2206. i = 0
  2207. for ch in line:
  2208. if ch in codes:
  2209. codes_idx.append(i)
  2210. i += 1
  2211. n_codes = len(codes_idx)
  2212. if n_codes == 0:
  2213. continue
  2214. # Separate codes in line
  2215. parts = []
  2216. for p in range(n_codes - 1):
  2217. parts.append(line[codes_idx[p]:codes_idx[p+1]].strip())
  2218. parts.append(line[codes_idx[-1]:].strip())
  2219. # Separate codes from values
  2220. cmds = {}
  2221. for part in parts:
  2222. cmds[part[0]] = float(part[1:])
  2223. gcmds.append(cmds)
  2224. return gcmds
  2225. def gcode_parse(self):
  2226. """
  2227. G-Code parser (from self.gcode). Generates dictionary with
  2228. single-segment LineString's and "kind" indicating cut or travel,
  2229. fast or feedrate speed.
  2230. """
  2231. kind = ["C", "F"] # T=travel, C=cut, F=fast, S=slow
  2232. # Results go here
  2233. geometry = []
  2234. # TODO: Merge into single parser?
  2235. gobjs = self.pre_parse(self.gcode)
  2236. # Last known instruction
  2237. current = {'X': 0.0, 'Y': 0.0, 'Z': 0.0, 'G': 0}
  2238. # Current path: temporary storage until tool is
  2239. # lifted or lowered.
  2240. path = [(0, 0)]
  2241. # Process every instruction
  2242. for gobj in gobjs:
  2243. ## Changing height
  2244. if 'Z' in gobj:
  2245. if ('X' in gobj or 'Y' in gobj) and gobj['Z'] != current['Z']:
  2246. log.warning("Non-orthogonal motion: From %s" % str(current))
  2247. log.warning(" To: %s" % str(gobj))
  2248. current['Z'] = gobj['Z']
  2249. # Store the path into geometry and reset path
  2250. if len(path) > 1:
  2251. geometry.append({"geom": LineString(path),
  2252. "kind": kind})
  2253. path = [path[-1]] # Start with the last point of last path.
  2254. if 'G' in gobj:
  2255. current['G'] = int(gobj['G'])
  2256. if 'X' in gobj or 'Y' in gobj:
  2257. if 'X' in gobj:
  2258. x = gobj['X']
  2259. else:
  2260. x = current['X']
  2261. if 'Y' in gobj:
  2262. y = gobj['Y']
  2263. else:
  2264. y = current['Y']
  2265. kind = ["C", "F"] # T=travel, C=cut, F=fast, S=slow
  2266. if current['Z'] > 0:
  2267. kind[0] = 'T'
  2268. if current['G'] > 0:
  2269. kind[1] = 'S'
  2270. arcdir = [None, None, "cw", "ccw"]
  2271. if current['G'] in [0, 1]: # line
  2272. path.append((x, y))
  2273. if current['G'] in [2, 3]: # arc
  2274. center = [gobj['I'] + current['X'], gobj['J'] + current['Y']]
  2275. radius = sqrt(gobj['I']**2 + gobj['J']**2)
  2276. start = arctan2(-gobj['J'], -gobj['I'])
  2277. stop = arctan2(-center[1]+y, -center[0]+x)
  2278. path += arc(center, radius, start, stop,
  2279. arcdir[current['G']],
  2280. self.steps_per_circ)
  2281. # Update current instruction
  2282. for code in gobj:
  2283. current[code] = gobj[code]
  2284. # There might not be a change in height at the
  2285. # end, therefore, see here too if there is
  2286. # a final path.
  2287. if len(path) > 1:
  2288. geometry.append({"geom": LineString(path),
  2289. "kind": kind})
  2290. self.gcode_parsed = geometry
  2291. return geometry
  2292. # def plot(self, tooldia=None, dpi=75, margin=0.1,
  2293. # color={"T": ["#F0E24D", "#B5AB3A"], "C": ["#5E6CFF", "#4650BD"]},
  2294. # alpha={"T": 0.3, "C": 1.0}):
  2295. # """
  2296. # Creates a Matplotlib figure with a plot of the
  2297. # G-code job.
  2298. # """
  2299. # if tooldia is None:
  2300. # tooldia = self.tooldia
  2301. #
  2302. # fig = Figure(dpi=dpi)
  2303. # ax = fig.add_subplot(111)
  2304. # ax.set_aspect(1)
  2305. # xmin, ymin, xmax, ymax = self.input_geometry_bounds
  2306. # ax.set_xlim(xmin-margin, xmax+margin)
  2307. # ax.set_ylim(ymin-margin, ymax+margin)
  2308. #
  2309. # if tooldia == 0:
  2310. # for geo in self.gcode_parsed:
  2311. # linespec = '--'
  2312. # linecolor = color[geo['kind'][0]][1]
  2313. # if geo['kind'][0] == 'C':
  2314. # linespec = 'k-'
  2315. # x, y = geo['geom'].coords.xy
  2316. # ax.plot(x, y, linespec, color=linecolor)
  2317. # else:
  2318. # for geo in self.gcode_parsed:
  2319. # poly = geo['geom'].buffer(tooldia/2.0)
  2320. # patch = PolygonPatch(poly, facecolor=color[geo['kind'][0]][0],
  2321. # edgecolor=color[geo['kind'][0]][1],
  2322. # alpha=alpha[geo['kind'][0]], zorder=2)
  2323. # ax.add_patch(patch)
  2324. #
  2325. # return fig
  2326. def plot2(self, axes, tooldia=None, dpi=75, margin=0.1,
  2327. color={"T": ["#F0E24D", "#B5AB3A"], "C": ["#5E6CFF", "#4650BD"]},
  2328. alpha={"T": 0.3, "C": 1.0}, tool_tolerance=0.0005):
  2329. """
  2330. Plots the G-code job onto the given axes.
  2331. :param axes: Matplotlib axes on which to plot.
  2332. :param tooldia: Tool diameter.
  2333. :param dpi: Not used!
  2334. :param margin: Not used!
  2335. :param color: Color specification.
  2336. :param alpha: Transparency specification.
  2337. :param tool_tolerance: Tolerance when drawing the toolshape.
  2338. :return: None
  2339. """
  2340. path_num = 0
  2341. if tooldia is None:
  2342. tooldia = self.tooldia
  2343. if tooldia == 0:
  2344. for geo in self.gcode_parsed:
  2345. linespec = '--'
  2346. linecolor = color[geo['kind'][0]][1]
  2347. if geo['kind'][0] == 'C':
  2348. linespec = 'k-'
  2349. x, y = geo['geom'].coords.xy
  2350. axes.plot(x, y, linespec, color=linecolor)
  2351. else:
  2352. for geo in self.gcode_parsed:
  2353. path_num += 1
  2354. axes.annotate(str(path_num), xy=geo['geom'].coords[0],
  2355. xycoords='data')
  2356. poly = geo['geom'].buffer(tooldia / 2.0).simplify(tool_tolerance)
  2357. patch = PolygonPatch(poly, facecolor=color[geo['kind'][0]][0],
  2358. edgecolor=color[geo['kind'][0]][1],
  2359. alpha=alpha[geo['kind'][0]], zorder=2)
  2360. axes.add_patch(patch)
  2361. def create_geometry(self):
  2362. # TODO: This takes forever. Too much data?
  2363. self.solid_geometry = cascaded_union([geo['geom'] for geo in self.gcode_parsed])
  2364. def linear2gcode(self, linear, tolerance=0):
  2365. """
  2366. Generates G-code to cut along the linear feature.
  2367. :param linear: The path to cut along.
  2368. :type: Shapely.LinearRing or Shapely.Linear String
  2369. :param tolerance: All points in the simplified object will be within the
  2370. tolerance distance of the original geometry.
  2371. :type tolerance: float
  2372. :return: G-code to cut alon the linear feature.
  2373. :rtype: str
  2374. """
  2375. if tolerance > 0:
  2376. target_linear = linear.simplify(tolerance)
  2377. else:
  2378. target_linear = linear
  2379. gcode = ""
  2380. #t = "G0%d X%.4fY%.4f\n"
  2381. t = "G0%d " + CNCjob.defaults["coordinate_format"] + "\n"
  2382. path = list(target_linear.coords)
  2383. gcode += t % (0, path[0][0], path[0][1]) # Move to first point
  2384. if self.zdownrate is not None:
  2385. gcode += "F%.2f\n" % self.zdownrate
  2386. gcode += "G01 Z%.4f\n" % self.z_cut # Start cutting
  2387. gcode += "F%.2f\n" % self.feedrate
  2388. else:
  2389. gcode += "G01 Z%.4f\n" % self.z_cut # Start cutting
  2390. for pt in path[1:]:
  2391. gcode += t % (1, pt[0], pt[1]) # Linear motion to point
  2392. gcode += "G00 Z%.4f\n" % self.z_move # Stop cutting
  2393. return gcode
  2394. def point2gcode(self, point):
  2395. gcode = ""
  2396. #t = "G0%d X%.4fY%.4f\n"
  2397. t = "G0%d " + CNCjob.defaults["coordinate_format"] + "\n"
  2398. path = list(point.coords)
  2399. gcode += t % (0, path[0][0], path[0][1]) # Move to first point
  2400. if self.zdownrate is not None:
  2401. gcode += "F%.2f\n" % self.zdownrate
  2402. gcode += "G01 Z%.4f\n" % self.z_cut # Start cutting
  2403. gcode += "F%.2f\n" % self.feedrate
  2404. else:
  2405. gcode += "G01 Z%.4f\n" % self.z_cut # Start cutting
  2406. gcode += "G00 Z%.4f\n" % self.z_move # Stop cutting
  2407. return gcode
  2408. def scale(self, factor):
  2409. """
  2410. Scales all the geometry on the XY plane in the object by the
  2411. given factor. Tool sizes, feedrates, or Z-axis dimensions are
  2412. not altered.
  2413. :param factor: Number by which to scale the object.
  2414. :type factor: float
  2415. :return: None
  2416. :rtype: None
  2417. """
  2418. for g in self.gcode_parsed:
  2419. g['geom'] = affinity.scale(g['geom'], factor, factor, origin=(0, 0))
  2420. self.create_geometry()
  2421. def offset(self, vect):
  2422. """
  2423. Offsets all the geometry on the XY plane in the object by the
  2424. given vector.
  2425. :param vect: (x, y) offset vector.
  2426. :type vect: tuple
  2427. :return: None
  2428. """
  2429. dx, dy = vect
  2430. for g in self.gcode_parsed:
  2431. g['geom'] = affinity.translate(g['geom'], xoff=dx, yoff=dy)
  2432. self.create_geometry()
  2433. # def get_bounds(geometry_set):
  2434. # xmin = Inf
  2435. # ymin = Inf
  2436. # xmax = -Inf
  2437. # ymax = -Inf
  2438. #
  2439. # #print "Getting bounds of:", str(geometry_set)
  2440. # for gs in geometry_set:
  2441. # try:
  2442. # gxmin, gymin, gxmax, gymax = geometry_set[gs].bounds()
  2443. # xmin = min([xmin, gxmin])
  2444. # ymin = min([ymin, gymin])
  2445. # xmax = max([xmax, gxmax])
  2446. # ymax = max([ymax, gymax])
  2447. # except:
  2448. # print "DEV WARNING: Tried to get bounds of empty geometry."
  2449. #
  2450. # return [xmin, ymin, xmax, ymax]
  2451. def get_bounds(geometry_list):
  2452. xmin = Inf
  2453. ymin = Inf
  2454. xmax = -Inf
  2455. ymax = -Inf
  2456. #print "Getting bounds of:", str(geometry_set)
  2457. for gs in geometry_list:
  2458. try:
  2459. gxmin, gymin, gxmax, gymax = gs.bounds()
  2460. xmin = min([xmin, gxmin])
  2461. ymin = min([ymin, gymin])
  2462. xmax = max([xmax, gxmax])
  2463. ymax = max([ymax, gymax])
  2464. except:
  2465. log.warning("DEVELOPMENT: Tried to get bounds of empty geometry.")
  2466. return [xmin, ymin, xmax, ymax]
  2467. def arc(center, radius, start, stop, direction, steps_per_circ):
  2468. """
  2469. Creates a list of point along the specified arc.
  2470. :param center: Coordinates of the center [x, y]
  2471. :type center: list
  2472. :param radius: Radius of the arc.
  2473. :type radius: float
  2474. :param start: Starting angle in radians
  2475. :type start: float
  2476. :param stop: End angle in radians
  2477. :type stop: float
  2478. :param direction: Orientation of the arc, "CW" or "CCW"
  2479. :type direction: string
  2480. :param steps_per_circ: Number of straight line segments to
  2481. represent a circle.
  2482. :type steps_per_circ: int
  2483. :return: The desired arc, as list of tuples
  2484. :rtype: list
  2485. """
  2486. # TODO: Resolution should be established by maximum error from the exact arc.
  2487. da_sign = {"cw": -1.0, "ccw": 1.0}
  2488. points = []
  2489. if direction == "ccw" and stop <= start:
  2490. stop += 2 * pi
  2491. if direction == "cw" and stop >= start:
  2492. stop -= 2 * pi
  2493. angle = abs(stop - start)
  2494. #angle = stop-start
  2495. steps = max([int(ceil(angle / (2 * pi) * steps_per_circ)), 2])
  2496. delta_angle = da_sign[direction] * angle * 1.0 / steps
  2497. for i in range(steps + 1):
  2498. theta = start + delta_angle * i
  2499. points.append((center[0] + radius * cos(theta), center[1] + radius * sin(theta)))
  2500. return points
  2501. def arc2(p1, p2, center, direction, steps_per_circ):
  2502. r = sqrt((center[0] - p1[0]) ** 2 + (center[1] - p1[1]) ** 2)
  2503. start = arctan2(p1[1] - center[1], p1[0] - center[0])
  2504. stop = arctan2(p2[1] - center[1], p2[0] - center[0])
  2505. return arc(center, r, start, stop, direction, steps_per_circ)
  2506. def arc_angle(start, stop, direction):
  2507. if direction == "ccw" and stop <= start:
  2508. stop += 2 * pi
  2509. if direction == "cw" and stop >= start:
  2510. stop -= 2 * pi
  2511. angle = abs(stop - start)
  2512. return angle
  2513. # def find_polygon(poly, point):
  2514. # """
  2515. # Find an object that object.contains(Point(point)) in
  2516. # poly, which can can be iterable, contain iterable of, or
  2517. # be itself an implementer of .contains().
  2518. #
  2519. # :param poly: See description
  2520. # :return: Polygon containing point or None.
  2521. # """
  2522. #
  2523. # if poly is None:
  2524. # return None
  2525. #
  2526. # try:
  2527. # for sub_poly in poly:
  2528. # p = find_polygon(sub_poly, point)
  2529. # if p is not None:
  2530. # return p
  2531. # except TypeError:
  2532. # try:
  2533. # if poly.contains(Point(point)):
  2534. # return poly
  2535. # except AttributeError:
  2536. # return None
  2537. #
  2538. # return None
  2539. def to_dict(obj):
  2540. """
  2541. Makes the following types into serializable form:
  2542. * ApertureMacro
  2543. * BaseGeometry
  2544. :param obj: Shapely geometry.
  2545. :type obj: BaseGeometry
  2546. :return: Dictionary with serializable form if ``obj`` was
  2547. BaseGeometry or ApertureMacro, otherwise returns ``obj``.
  2548. """
  2549. if isinstance(obj, ApertureMacro):
  2550. return {
  2551. "__class__": "ApertureMacro",
  2552. "__inst__": obj.to_dict()
  2553. }
  2554. if isinstance(obj, BaseGeometry):
  2555. return {
  2556. "__class__": "Shply",
  2557. "__inst__": sdumps(obj)
  2558. }
  2559. return obj
  2560. def dict2obj(d):
  2561. """
  2562. Default deserializer.
  2563. :param d: Serializable dictionary representation of an object
  2564. to be reconstructed.
  2565. :return: Reconstructed object.
  2566. """
  2567. if '__class__' in d and '__inst__' in d:
  2568. if d['__class__'] == "Shply":
  2569. return sloads(d['__inst__'])
  2570. if d['__class__'] == "ApertureMacro":
  2571. am = ApertureMacro()
  2572. am.from_dict(d['__inst__'])
  2573. return am
  2574. return d
  2575. else:
  2576. return d
  2577. def plotg(geo, solid_poly=False, color="black"):
  2578. try:
  2579. _ = iter(geo)
  2580. except:
  2581. geo = [geo]
  2582. for g in geo:
  2583. if type(g) == Polygon:
  2584. if solid_poly:
  2585. patch = PolygonPatch(g,
  2586. facecolor="#BBF268",
  2587. edgecolor="#006E20",
  2588. alpha=0.75,
  2589. zorder=2)
  2590. ax = subplot(111)
  2591. ax.add_patch(patch)
  2592. else:
  2593. x, y = g.exterior.coords.xy
  2594. plot(x, y, color=color)
  2595. for ints in g.interiors:
  2596. x, y = ints.coords.xy
  2597. plot(x, y, color=color)
  2598. continue
  2599. if type(g) == LineString or type(g) == LinearRing:
  2600. x, y = g.coords.xy
  2601. plot(x, y, color=color)
  2602. continue
  2603. if type(g) == Point:
  2604. x, y = g.coords.xy
  2605. plot(x, y, 'o')
  2606. continue
  2607. try:
  2608. _ = iter(g)
  2609. plotg(g, color=color)
  2610. except:
  2611. log.error("Cannot plot: " + str(type(g)))
  2612. continue
  2613. def parse_gerber_number(strnumber, frac_digits):
  2614. """
  2615. Parse a single number of Gerber coordinates.
  2616. :param strnumber: String containing a number in decimal digits
  2617. from a coordinate data block, possibly with a leading sign.
  2618. :type strnumber: str
  2619. :param frac_digits: Number of digits used for the fractional
  2620. part of the number
  2621. :type frac_digits: int
  2622. :return: The number in floating point.
  2623. :rtype: float
  2624. """
  2625. return int(strnumber) * (10 ** (-frac_digits))
  2626. # def voronoi(P):
  2627. # """
  2628. # Returns a list of all edges of the voronoi diagram for the given input points.
  2629. # """
  2630. # delauny = Delaunay(P)
  2631. # triangles = delauny.points[delauny.vertices]
  2632. #
  2633. # circum_centers = np.array([triangle_csc(tri) for tri in triangles])
  2634. # long_lines_endpoints = []
  2635. #
  2636. # lineIndices = []
  2637. # for i, triangle in enumerate(triangles):
  2638. # circum_center = circum_centers[i]
  2639. # for j, neighbor in enumerate(delauny.neighbors[i]):
  2640. # if neighbor != -1:
  2641. # lineIndices.append((i, neighbor))
  2642. # else:
  2643. # ps = triangle[(j+1)%3] - triangle[(j-1)%3]
  2644. # ps = np.array((ps[1], -ps[0]))
  2645. #
  2646. # middle = (triangle[(j+1)%3] + triangle[(j-1)%3]) * 0.5
  2647. # di = middle - triangle[j]
  2648. #
  2649. # ps /= np.linalg.norm(ps)
  2650. # di /= np.linalg.norm(di)
  2651. #
  2652. # if np.dot(di, ps) < 0.0:
  2653. # ps *= -1000.0
  2654. # else:
  2655. # ps *= 1000.0
  2656. #
  2657. # long_lines_endpoints.append(circum_center + ps)
  2658. # lineIndices.append((i, len(circum_centers) + len(long_lines_endpoints)-1))
  2659. #
  2660. # vertices = np.vstack((circum_centers, long_lines_endpoints))
  2661. #
  2662. # # filter out any duplicate lines
  2663. # lineIndicesSorted = np.sort(lineIndices) # make (1,2) and (2,1) both (1,2)
  2664. # lineIndicesTupled = [tuple(row) for row in lineIndicesSorted]
  2665. # lineIndicesUnique = np.unique(lineIndicesTupled)
  2666. #
  2667. # return vertices, lineIndicesUnique
  2668. #
  2669. #
  2670. # def triangle_csc(pts):
  2671. # rows, cols = pts.shape
  2672. #
  2673. # A = np.bmat([[2 * np.dot(pts, pts.T), np.ones((rows, 1))],
  2674. # [np.ones((1, rows)), np.zeros((1, 1))]])
  2675. #
  2676. # b = np.hstack((np.sum(pts * pts, axis=1), np.ones((1))))
  2677. # x = np.linalg.solve(A,b)
  2678. # bary_coords = x[:-1]
  2679. # return np.sum(pts * np.tile(bary_coords.reshape((pts.shape[0], 1)), (1, pts.shape[1])), axis=0)
  2680. #
  2681. #
  2682. # def voronoi_cell_lines(points, vertices, lineIndices):
  2683. # """
  2684. # Returns a mapping from a voronoi cell to its edges.
  2685. #
  2686. # :param points: shape (m,2)
  2687. # :param vertices: shape (n,2)
  2688. # :param lineIndices: shape (o,2)
  2689. # :rtype: dict point index -> list of shape (n,2) with vertex indices
  2690. # """
  2691. # kd = KDTree(points)
  2692. #
  2693. # cells = collections.defaultdict(list)
  2694. # for i1, i2 in lineIndices:
  2695. # v1, v2 = vertices[i1], vertices[i2]
  2696. # mid = (v1+v2)/2
  2697. # _, (p1Idx, p2Idx) = kd.query(mid, 2)
  2698. # cells[p1Idx].append((i1, i2))
  2699. # cells[p2Idx].append((i1, i2))
  2700. #
  2701. # return cells
  2702. #
  2703. #
  2704. # def voronoi_edges2polygons(cells):
  2705. # """
  2706. # Transforms cell edges into polygons.
  2707. #
  2708. # :param cells: as returned from voronoi_cell_lines
  2709. # :rtype: dict point index -> list of vertex indices which form a polygon
  2710. # """
  2711. #
  2712. # # first, close the outer cells
  2713. # for pIdx, lineIndices_ in cells.items():
  2714. # dangling_lines = []
  2715. # for i1, i2 in lineIndices_:
  2716. # connections = filter(lambda (i1_, i2_): (i1, i2) != (i1_, i2_) and (i1 == i1_ or i1 == i2_ or i2 == i1_ or i2 == i2_), lineIndices_)
  2717. # assert 1 <= len(connections) <= 2
  2718. # if len(connections) == 1:
  2719. # dangling_lines.append((i1, i2))
  2720. # assert len(dangling_lines) in [0, 2]
  2721. # if len(dangling_lines) == 2:
  2722. # (i11, i12), (i21, i22) = dangling_lines
  2723. #
  2724. # # determine which line ends are unconnected
  2725. # connected = filter(lambda (i1,i2): (i1,i2) != (i11,i12) and (i1 == i11 or i2 == i11), lineIndices_)
  2726. # i11Unconnected = len(connected) == 0
  2727. #
  2728. # connected = filter(lambda (i1,i2): (i1,i2) != (i21,i22) and (i1 == i21 or i2 == i21), lineIndices_)
  2729. # i21Unconnected = len(connected) == 0
  2730. #
  2731. # startIdx = i11 if i11Unconnected else i12
  2732. # endIdx = i21 if i21Unconnected else i22
  2733. #
  2734. # cells[pIdx].append((startIdx, endIdx))
  2735. #
  2736. # # then, form polygons by storing vertex indices in (counter-)clockwise order
  2737. # polys = dict()
  2738. # for pIdx, lineIndices_ in cells.items():
  2739. # # get a directed graph which contains both directions and arbitrarily follow one of both
  2740. # directedGraph = lineIndices_ + [(i2, i1) for (i1, i2) in lineIndices_]
  2741. # directedGraphMap = collections.defaultdict(list)
  2742. # for (i1, i2) in directedGraph:
  2743. # directedGraphMap[i1].append(i2)
  2744. # orderedEdges = []
  2745. # currentEdge = directedGraph[0]
  2746. # while len(orderedEdges) < len(lineIndices_):
  2747. # i1 = currentEdge[1]
  2748. # i2 = directedGraphMap[i1][0] if directedGraphMap[i1][0] != currentEdge[0] else directedGraphMap[i1][1]
  2749. # nextEdge = (i1, i2)
  2750. # orderedEdges.append(nextEdge)
  2751. # currentEdge = nextEdge
  2752. #
  2753. # polys[pIdx] = [i1 for (i1, i2) in orderedEdges]
  2754. #
  2755. # return polys
  2756. #
  2757. #
  2758. # def voronoi_polygons(points):
  2759. # """
  2760. # Returns the voronoi polygon for each input point.
  2761. #
  2762. # :param points: shape (n,2)
  2763. # :rtype: list of n polygons where each polygon is an array of vertices
  2764. # """
  2765. # vertices, lineIndices = voronoi(points)
  2766. # cells = voronoi_cell_lines(points, vertices, lineIndices)
  2767. # polys = voronoi_edges2polygons(cells)
  2768. # polylist = []
  2769. # for i in xrange(len(points)):
  2770. # poly = vertices[np.asarray(polys[i])]
  2771. # polylist.append(poly)
  2772. # return polylist
  2773. #
  2774. #
  2775. # class Zprofile:
  2776. # def __init__(self):
  2777. #
  2778. # # data contains lists of [x, y, z]
  2779. # self.data = []
  2780. #
  2781. # # Computed voronoi polygons (shapely)
  2782. # self.polygons = []
  2783. # pass
  2784. #
  2785. # def plot_polygons(self):
  2786. # axes = plt.subplot(1, 1, 1)
  2787. #
  2788. # plt.axis([-0.05, 1.05, -0.05, 1.05])
  2789. #
  2790. # for poly in self.polygons:
  2791. # p = PolygonPatch(poly, facecolor=np.random.rand(3, 1), alpha=0.3)
  2792. # axes.add_patch(p)
  2793. #
  2794. # def init_from_csv(self, filename):
  2795. # pass
  2796. #
  2797. # def init_from_string(self, zpstring):
  2798. # pass
  2799. #
  2800. # def init_from_list(self, zplist):
  2801. # self.data = zplist
  2802. #
  2803. # def generate_polygons(self):
  2804. # self.polygons = [Polygon(p) for p in voronoi_polygons(array([[x[0], x[1]] for x in self.data]))]
  2805. #
  2806. # def normalize(self, origin):
  2807. # pass
  2808. #
  2809. # def paste(self, path):
  2810. # """
  2811. # Return a list of dictionaries containing the parts of the original
  2812. # path and their z-axis offset.
  2813. # """
  2814. #
  2815. # # At most one region/polygon will contain the path
  2816. # containing = [i for i in range(len(self.polygons)) if self.polygons[i].contains(path)]
  2817. #
  2818. # if len(containing) > 0:
  2819. # return [{"path": path, "z": self.data[containing[0]][2]}]
  2820. #
  2821. # # All region indexes that intersect with the path
  2822. # crossing = [i for i in range(len(self.polygons)) if self.polygons[i].intersects(path)]
  2823. #
  2824. # return [{"path": path.intersection(self.polygons[i]),
  2825. # "z": self.data[i][2]} for i in crossing]
  2826. def autolist(obj):
  2827. try:
  2828. _ = iter(obj)
  2829. return obj
  2830. except TypeError:
  2831. return [obj]
  2832. def three_point_circle(p1, p2, p3):
  2833. """
  2834. Computes the center and radius of a circle from
  2835. 3 points on its circumference.
  2836. :param p1: Point 1
  2837. :param p2: Point 2
  2838. :param p3: Point 3
  2839. :return: center, radius
  2840. """
  2841. # Midpoints
  2842. a1 = (p1 + p2) / 2.0
  2843. a2 = (p2 + p3) / 2.0
  2844. # Normals
  2845. b1 = dot((p2 - p1), array([[0, -1], [1, 0]], dtype=float32))
  2846. b2 = dot((p3 - p2), array([[0, 1], [-1, 0]], dtype=float32))
  2847. # Params
  2848. T = solve(transpose(array([-b1, b2])), a1 - a2)
  2849. # Center
  2850. center = a1 + b1 * T[0]
  2851. # Radius
  2852. radius = norm(center - p1)
  2853. return center, radius, T[0]
  2854. def distance(pt1, pt2):
  2855. return sqrt((pt1[0] - pt2[0]) ** 2 + (pt1[1] - pt2[1]) ** 2)
  2856. class FlatCAMRTree(object):
  2857. def __init__(self):
  2858. # Python RTree Index
  2859. self.rti = rtindex.Index()
  2860. ## Track object-point relationship
  2861. # Each is list of points in object.
  2862. self.obj2points = []
  2863. # Index is index in rtree, value is index of
  2864. # object in obj2points.
  2865. self.points2obj = []
  2866. self.get_points = lambda go: go.coords
  2867. def grow_obj2points(self, idx):
  2868. if len(self.obj2points) > idx:
  2869. # len == 2, idx == 1, ok.
  2870. return
  2871. else:
  2872. # len == 2, idx == 2, need 1 more.
  2873. # range(2, 3)
  2874. for i in range(len(self.obj2points), idx + 1):
  2875. self.obj2points.append([])
  2876. def insert(self, objid, obj):
  2877. self.grow_obj2points(objid)
  2878. self.obj2points[objid] = []
  2879. for pt in self.get_points(obj):
  2880. self.rti.insert(len(self.points2obj), (pt[0], pt[1], pt[0], pt[1]), obj=objid)
  2881. self.obj2points[objid].append(len(self.points2obj))
  2882. self.points2obj.append(objid)
  2883. def remove_obj(self, objid, obj):
  2884. # Use all ptids to delete from index
  2885. for i, pt in enumerate(self.get_points(obj)):
  2886. self.rti.delete(self.obj2points[objid][i], (pt[0], pt[1], pt[0], pt[1]))
  2887. def nearest(self, pt):
  2888. """
  2889. Will raise StopIteration if no items are found.
  2890. :param pt:
  2891. :return:
  2892. """
  2893. return self.rti.nearest(pt, objects=True).next()
  2894. class FlatCAMRTreeStorage(FlatCAMRTree):
  2895. def __init__(self):
  2896. super(FlatCAMRTreeStorage, self).__init__()
  2897. self.objects = []
  2898. # Optimization attempt!
  2899. self.indexes = {}
  2900. def insert(self, obj):
  2901. self.objects.append(obj)
  2902. idx = len(self.objects) - 1
  2903. self.indexes[obj] = idx
  2904. super(FlatCAMRTreeStorage, self).insert(idx, obj)
  2905. #@profile
  2906. def remove(self, obj):
  2907. # Get index in list
  2908. # TODO: This is extremely expensive
  2909. #objidx = self.objects.index(obj)
  2910. objidx = self.indexes[obj]
  2911. # Remove from list
  2912. self.objects[objidx] = None
  2913. # Remove from index
  2914. self.remove_obj(objidx, obj)
  2915. def get_objects(self):
  2916. return (o for o in self.objects if o is not None)
  2917. def nearest(self, pt):
  2918. """
  2919. Returns the nearest matching points and the object
  2920. it belongs to.
  2921. :param pt: Query point.
  2922. :return: (match_x, match_y), Object owner of
  2923. matching point.
  2924. :rtype: tuple
  2925. """
  2926. tidx = super(FlatCAMRTreeStorage, self).nearest(pt)
  2927. return (tidx.bbox[0], tidx.bbox[1]), self.objects[tidx.object]
  2928. # class myO:
  2929. # def __init__(self, coords):
  2930. # self.coords = coords
  2931. #
  2932. #
  2933. # def test_rti():
  2934. #
  2935. # o1 = myO([(0, 0), (0, 1), (1, 1)])
  2936. # o2 = myO([(2, 0), (2, 1), (2, 1)])
  2937. # o3 = myO([(2, 0), (2, 1), (3, 1)])
  2938. #
  2939. # os = [o1, o2]
  2940. #
  2941. # idx = FlatCAMRTree()
  2942. #
  2943. # for o in range(len(os)):
  2944. # idx.insert(o, os[o])
  2945. #
  2946. # print [x.bbox for x in idx.rti.nearest((0, 0), num_results=20, objects=True)]
  2947. #
  2948. # idx.remove_obj(0, o1)
  2949. #
  2950. # print [x.bbox for x in idx.rti.nearest((0, 0), num_results=20, objects=True)]
  2951. #
  2952. # idx.remove_obj(1, o2)
  2953. #
  2954. # print [x.bbox for x in idx.rti.nearest((0, 0), num_results=20, objects=True)]
  2955. #
  2956. #
  2957. # def test_rtis():
  2958. #
  2959. # o1 = myO([(0, 0), (0, 1), (1, 1)])
  2960. # o2 = myO([(2, 0), (2, 1), (2, 1)])
  2961. # o3 = myO([(2, 0), (2, 1), (3, 1)])
  2962. #
  2963. # os = [o1, o2]
  2964. #
  2965. # idx = FlatCAMRTreeStorage()
  2966. #
  2967. # for o in range(len(os)):
  2968. # idx.insert(os[o])
  2969. #
  2970. # #os = None
  2971. # #o1 = None
  2972. # #o2 = None
  2973. #
  2974. # print [x.bbox for x in idx.rti.nearest((0, 0), num_results=20, objects=True)]
  2975. #
  2976. # idx.remove(idx.nearest((2,0))[1])
  2977. #
  2978. # print [x.bbox for x in idx.rti.nearest((0, 0), num_results=20, objects=True)]
  2979. #
  2980. # idx.remove(idx.nearest((0,0))[1])
  2981. #
  2982. # print [x.bbox for x in idx.rti.nearest((0, 0), num_results=20, objects=True)]