camlib.py 254 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433
  1. # ########################################################## ##
  2. # FlatCAM: 2D Post-processing for Manufacturing #
  3. # http://flatcam.org #
  4. # Author: Juan Pablo Caram (c) #
  5. # Date: 2/5/2014 #
  6. # MIT Licence #
  7. # ########################################################## ##
  8. from PyQt5 import QtWidgets, QtCore
  9. from io import StringIO
  10. import numpy as np
  11. from numpy.linalg import solve, norm
  12. import platform
  13. from copy import deepcopy
  14. import traceback
  15. from decimal import Decimal
  16. from rtree import index as rtindex
  17. from lxml import etree as ET
  18. # See: http://toblerity.org/shapely/manual.html
  19. from shapely.geometry import Polygon, LineString, Point, LinearRing, MultiLineString, MultiPoint, MultiPolygon
  20. from shapely.geometry import box as shply_box
  21. from shapely.ops import cascaded_union, unary_union, polygonize
  22. import shapely.affinity as affinity
  23. from shapely.wkt import loads as sloads
  24. from shapely.wkt import dumps as sdumps
  25. from shapely.geometry.base import BaseGeometry
  26. from shapely.geometry import shape
  27. # needed for legacy mode
  28. # Used for solid polygons in Matplotlib
  29. from descartes.patch import PolygonPatch
  30. import collections
  31. from collections import Iterable
  32. import rasterio
  33. from rasterio.features import shapes
  34. import ezdxf
  35. # TODO: Commented for FlatCAM packaging with cx_freeze
  36. # from scipy.spatial import KDTree, Delaunay
  37. # from scipy.spatial import Delaunay
  38. from flatcamParsers.ParseSVG import *
  39. from flatcamParsers.ParseDXF import *
  40. if platform.architecture()[0] == '64bit':
  41. from ortools.constraint_solver import pywrapcp
  42. from ortools.constraint_solver import routing_enums_pb2
  43. import logging
  44. import FlatCAMApp
  45. import gettext
  46. import FlatCAMTranslation as fcTranslate
  47. import builtins
  48. fcTranslate.apply_language('strings')
  49. log = logging.getLogger('base2')
  50. log.setLevel(logging.DEBUG)
  51. formatter = logging.Formatter('[%(levelname)s] %(message)s')
  52. handler = logging.StreamHandler()
  53. handler.setFormatter(formatter)
  54. log.addHandler(handler)
  55. if '_' not in builtins.__dict__:
  56. _ = gettext.gettext
  57. class ParseError(Exception):
  58. pass
  59. class ApertureMacro:
  60. """
  61. Syntax of aperture macros.
  62. <AM command>: AM<Aperture macro name>*<Macro content>
  63. <Macro content>: {{<Variable definition>*}{<Primitive>*}}
  64. <Variable definition>: $K=<Arithmetic expression>
  65. <Primitive>: <Primitive code>,<Modifier>{,<Modifier>}|<Comment>
  66. <Modifier>: $M|< Arithmetic expression>
  67. <Comment>: 0 <Text>
  68. """
  69. # ## Regular expressions
  70. am1_re = re.compile(r'^%AM([^\*]+)\*(.+)?(%)?$')
  71. am2_re = re.compile(r'(.*)%$')
  72. amcomm_re = re.compile(r'^0(.*)')
  73. amprim_re = re.compile(r'^[1-9].*')
  74. amvar_re = re.compile(r'^\$([0-9a-zA-z]+)=(.*)')
  75. def __init__(self, name=None):
  76. self.name = name
  77. self.raw = ""
  78. # ## These below are recomputed for every aperture
  79. # ## definition, in other words, are temporary variables.
  80. self.primitives = []
  81. self.locvars = {}
  82. self.geometry = None
  83. def to_dict(self):
  84. """
  85. Returns the object in a serializable form. Only the name and
  86. raw are required.
  87. :return: Dictionary representing the object. JSON ready.
  88. :rtype: dict
  89. """
  90. return {
  91. 'name': self.name,
  92. 'raw': self.raw
  93. }
  94. def from_dict(self, d):
  95. """
  96. Populates the object from a serial representation created
  97. with ``self.to_dict()``.
  98. :param d: Serial representation of an ApertureMacro object.
  99. :return: None
  100. """
  101. for attr in ['name', 'raw']:
  102. setattr(self, attr, d[attr])
  103. def parse_content(self):
  104. """
  105. Creates numerical lists for all primitives in the aperture
  106. macro (in ``self.raw``) by replacing all variables by their
  107. values iteratively and evaluating expressions. Results
  108. are stored in ``self.primitives``.
  109. :return: None
  110. """
  111. # Cleanup
  112. self.raw = self.raw.replace('\n', '').replace('\r', '').strip(" *")
  113. self.primitives = []
  114. # Separate parts
  115. parts = self.raw.split('*')
  116. # ### Every part in the macro ####
  117. for part in parts:
  118. # ## Comments. Ignored.
  119. match = ApertureMacro.amcomm_re.search(part)
  120. if match:
  121. continue
  122. # ## Variables
  123. # These are variables defined locally inside the macro. They can be
  124. # numerical constant or defined in terms of previously define
  125. # variables, which can be defined locally or in an aperture
  126. # definition. All replacements occur here.
  127. match = ApertureMacro.amvar_re.search(part)
  128. if match:
  129. var = match.group(1)
  130. val = match.group(2)
  131. # Replace variables in value
  132. for v in self.locvars:
  133. # replaced the following line with the next to fix Mentor custom apertures not parsed OK
  134. # val = re.sub((r'\$'+str(v)+r'(?![0-9a-zA-Z])'), str(self.locvars[v]), val)
  135. val = val.replace('$' + str(v), str(self.locvars[v]))
  136. # Make all others 0
  137. val = re.sub(r'\$[0-9a-zA-Z](?![0-9a-zA-Z])', "0", val)
  138. # Change x with *
  139. val = re.sub(r'[xX]', "*", val)
  140. # Eval() and store.
  141. self.locvars[var] = eval(val)
  142. continue
  143. # ## Primitives
  144. # Each is an array. The first identifies the primitive, while the
  145. # rest depend on the primitive. All are strings representing a
  146. # number and may contain variable definition. The values of these
  147. # variables are defined in an aperture definition.
  148. match = ApertureMacro.amprim_re.search(part)
  149. if match:
  150. # ## Replace all variables
  151. for v in self.locvars:
  152. # replaced the following line with the next to fix Mentor custom apertures not parsed OK
  153. # part = re.sub(r'\$' + str(v) + r'(?![0-9a-zA-Z])', str(self.locvars[v]), part)
  154. part = part.replace('$' + str(v), str(self.locvars[v]))
  155. # Make all others 0
  156. part = re.sub(r'\$[0-9a-zA-Z](?![0-9a-zA-Z])', "0", part)
  157. # Change x with *
  158. part = re.sub(r'[xX]', "*", part)
  159. # ## Store
  160. elements = part.split(",")
  161. self.primitives.append([eval(x) for x in elements])
  162. continue
  163. log.warning("Unknown syntax of aperture macro part: %s" % str(part))
  164. def append(self, data):
  165. """
  166. Appends a string to the raw macro.
  167. :param data: Part of the macro.
  168. :type data: str
  169. :return: None
  170. """
  171. self.raw += data
  172. @staticmethod
  173. def default2zero(n, mods):
  174. """
  175. Pads the ``mods`` list with zeros resulting in an
  176. list of length n.
  177. :param n: Length of the resulting list.
  178. :type n: int
  179. :param mods: List to be padded.
  180. :type mods: list
  181. :return: Zero-padded list.
  182. :rtype: list
  183. """
  184. x = [0.0] * n
  185. na = len(mods)
  186. x[0:na] = mods
  187. return x
  188. @staticmethod
  189. def make_circle(mods):
  190. """
  191. :param mods: (Exposure 0/1, Diameter >=0, X-coord, Y-coord)
  192. :return:
  193. """
  194. pol, dia, x, y = ApertureMacro.default2zero(4, mods)
  195. return {"pol": int(pol), "geometry": Point(x, y).buffer(dia/2)}
  196. @staticmethod
  197. def make_vectorline(mods):
  198. """
  199. :param mods: (Exposure 0/1, Line width >= 0, X-start, Y-start, X-end, Y-end,
  200. rotation angle around origin in degrees)
  201. :return:
  202. """
  203. pol, width, xs, ys, xe, ye, angle = ApertureMacro.default2zero(7, mods)
  204. line = LineString([(xs, ys), (xe, ye)])
  205. box = line.buffer(width/2, cap_style=2)
  206. box_rotated = affinity.rotate(box, angle, origin=(0, 0))
  207. return {"pol": int(pol), "geometry": box_rotated}
  208. @staticmethod
  209. def make_centerline(mods):
  210. """
  211. :param mods: (Exposure 0/1, width >=0, height >=0, x-center, y-center,
  212. rotation angle around origin in degrees)
  213. :return:
  214. """
  215. pol, width, height, x, y, angle = ApertureMacro.default2zero(6, mods)
  216. box = shply_box(x-width/2, y-height/2, x+width/2, y+height/2)
  217. box_rotated = affinity.rotate(box, angle, origin=(0, 0))
  218. return {"pol": int(pol), "geometry": box_rotated}
  219. @staticmethod
  220. def make_lowerleftline(mods):
  221. """
  222. :param mods: (exposure 0/1, width >=0, height >=0, x-lowerleft, y-lowerleft,
  223. rotation angle around origin in degrees)
  224. :return:
  225. """
  226. pol, width, height, x, y, angle = ApertureMacro.default2zero(6, mods)
  227. box = shply_box(x, y, x+width, y+height)
  228. box_rotated = affinity.rotate(box, angle, origin=(0, 0))
  229. return {"pol": int(pol), "geometry": box_rotated}
  230. @staticmethod
  231. def make_outline(mods):
  232. """
  233. :param mods:
  234. :return:
  235. """
  236. pol = mods[0]
  237. n = mods[1]
  238. points = [(0, 0)]*(n+1)
  239. for i in range(n+1):
  240. points[i] = mods[2*i + 2:2*i + 4]
  241. angle = mods[2*n + 4]
  242. poly = Polygon(points)
  243. poly_rotated = affinity.rotate(poly, angle, origin=(0, 0))
  244. return {"pol": int(pol), "geometry": poly_rotated}
  245. @staticmethod
  246. def make_polygon(mods):
  247. """
  248. Note: Specs indicate that rotation is only allowed if the center
  249. (x, y) == (0, 0). I will tolerate breaking this rule.
  250. :param mods: (exposure 0/1, n_verts 3<=n<=12, x-center, y-center,
  251. diameter of circumscribed circle >=0, rotation angle around origin)
  252. :return:
  253. """
  254. pol, nverts, x, y, dia, angle = ApertureMacro.default2zero(6, mods)
  255. points = [(0, 0)]*nverts
  256. for i in range(nverts):
  257. points[i] = (x + 0.5 * dia * np.cos(2*np.pi * i/nverts),
  258. y + 0.5 * dia * np.sin(2*np.pi * i/nverts))
  259. poly = Polygon(points)
  260. poly_rotated = affinity.rotate(poly, angle, origin=(0, 0))
  261. return {"pol": int(pol), "geometry": poly_rotated}
  262. @staticmethod
  263. def make_moire(mods):
  264. """
  265. Note: Specs indicate that rotation is only allowed if the center
  266. (x, y) == (0, 0). I will tolerate breaking this rule.
  267. :param mods: (x-center, y-center, outer_dia_outer_ring, ring thickness,
  268. gap, max_rings, crosshair_thickness, crosshair_len, rotation
  269. angle around origin in degrees)
  270. :return:
  271. """
  272. x, y, dia, thickness, gap, nrings, cross_th, cross_len, angle = ApertureMacro.default2zero(9, mods)
  273. r = dia/2 - thickness/2
  274. result = Point((x, y)).buffer(r).exterior.buffer(thickness/2.0)
  275. ring = Point((x, y)).buffer(r).exterior.buffer(thickness/2.0) # Need a copy!
  276. i = 1 # Number of rings created so far
  277. # ## If the ring does not have an interior it means that it is
  278. # ## a disk. Then stop.
  279. while len(ring.interiors) > 0 and i < nrings:
  280. r -= thickness + gap
  281. if r <= 0:
  282. break
  283. ring = Point((x, y)).buffer(r).exterior.buffer(thickness/2.0)
  284. result = cascaded_union([result, ring])
  285. i += 1
  286. # ## Crosshair
  287. hor = LineString([(x - cross_len, y), (x + cross_len, y)]).buffer(cross_th/2.0, cap_style=2)
  288. ver = LineString([(x, y-cross_len), (x, y + cross_len)]).buffer(cross_th/2.0, cap_style=2)
  289. result = cascaded_union([result, hor, ver])
  290. return {"pol": 1, "geometry": result}
  291. @staticmethod
  292. def make_thermal(mods):
  293. """
  294. Note: Specs indicate that rotation is only allowed if the center
  295. (x, y) == (0, 0). I will tolerate breaking this rule.
  296. :param mods: [x-center, y-center, diameter-outside, diameter-inside,
  297. gap-thickness, rotation angle around origin]
  298. :return:
  299. """
  300. x, y, dout, din, t, angle = ApertureMacro.default2zero(6, mods)
  301. ring = Point((x, y)).buffer(dout/2.0).difference(Point((x, y)).buffer(din/2.0))
  302. hline = LineString([(x - dout/2.0, y), (x + dout/2.0, y)]).buffer(t/2.0, cap_style=3)
  303. vline = LineString([(x, y - dout/2.0), (x, y + dout/2.0)]).buffer(t/2.0, cap_style=3)
  304. thermal = ring.difference(hline.union(vline))
  305. return {"pol": 1, "geometry": thermal}
  306. def make_geometry(self, modifiers):
  307. """
  308. Runs the macro for the given modifiers and generates
  309. the corresponding geometry.
  310. :param modifiers: Modifiers (parameters) for this macro
  311. :type modifiers: list
  312. :return: Shapely geometry
  313. :rtype: shapely.geometry.polygon
  314. """
  315. # ## Primitive makers
  316. makers = {
  317. "1": ApertureMacro.make_circle,
  318. "2": ApertureMacro.make_vectorline,
  319. "20": ApertureMacro.make_vectorline,
  320. "21": ApertureMacro.make_centerline,
  321. "22": ApertureMacro.make_lowerleftline,
  322. "4": ApertureMacro.make_outline,
  323. "5": ApertureMacro.make_polygon,
  324. "6": ApertureMacro.make_moire,
  325. "7": ApertureMacro.make_thermal
  326. }
  327. # ## Store modifiers as local variables
  328. modifiers = modifiers or []
  329. modifiers = [float(m) for m in modifiers]
  330. self.locvars = {}
  331. for i in range(0, len(modifiers)):
  332. self.locvars[str(i + 1)] = modifiers[i]
  333. # ## Parse
  334. self.primitives = [] # Cleanup
  335. self.geometry = Polygon()
  336. self.parse_content()
  337. # ## Make the geometry
  338. for primitive in self.primitives:
  339. # Make the primitive
  340. prim_geo = makers[str(int(primitive[0]))](primitive[1:])
  341. # Add it (according to polarity)
  342. # if self.geometry is None and prim_geo['pol'] == 1:
  343. # self.geometry = prim_geo['geometry']
  344. # continue
  345. if prim_geo['pol'] == 1:
  346. self.geometry = self.geometry.union(prim_geo['geometry'])
  347. continue
  348. if prim_geo['pol'] == 0:
  349. self.geometry = self.geometry.difference(prim_geo['geometry'])
  350. continue
  351. return self.geometry
  352. class Geometry(object):
  353. """
  354. Base geometry class.
  355. """
  356. defaults = {
  357. "units": 'mm',
  358. # "geo_steps_per_circle": 128
  359. }
  360. def __init__(self, geo_steps_per_circle=None):
  361. # Units (in or mm)
  362. self.units = self.app.defaults["units"]
  363. self.decimals = self.app.decimals
  364. # Final geometry: MultiPolygon or list (of geometry constructs)
  365. self.solid_geometry = None
  366. # Final geometry: MultiLineString or list (of LineString or Points)
  367. self.follow_geometry = None
  368. # Attributes to be included in serialization
  369. self.ser_attrs = ["units", 'solid_geometry', 'follow_geometry']
  370. # Flattened geometry (list of paths only)
  371. self.flat_geometry = []
  372. # this is the calculated conversion factor when the file units are different than the ones in the app
  373. self.file_units_factor = 1
  374. # Index
  375. self.index = None
  376. self.geo_steps_per_circle = geo_steps_per_circle
  377. # variables to display the percentage of work done
  378. self.geo_len = 0
  379. self.old_disp_number = 0
  380. self.el_count = 0
  381. if self.app.is_legacy is False:
  382. self.temp_shapes = self.app.plotcanvas.new_shape_group()
  383. else:
  384. from flatcamGUI.PlotCanvasLegacy import ShapeCollectionLegacy
  385. self.temp_shapes = ShapeCollectionLegacy(obj=self, app=self.app, name='camlib.geometry')
  386. def plot_temp_shapes(self, element, color='red'):
  387. try:
  388. for sub_el in element:
  389. self.plot_temp_shapes(sub_el)
  390. except TypeError: # Element is not iterable...
  391. # self.add_shape(shape=element, color=color, visible=visible, layer=0)
  392. self.temp_shapes.add(tolerance=float(self.app.defaults["global_tolerance"]),
  393. shape=element, color=color, visible=True, layer=0)
  394. def make_index(self):
  395. self.flatten()
  396. self.index = FlatCAMRTree()
  397. for i, g in enumerate(self.flat_geometry):
  398. self.index.insert(i, g)
  399. def add_circle(self, origin, radius):
  400. """
  401. Adds a circle to the object.
  402. :param origin: Center of the circle.
  403. :param radius: Radius of the circle.
  404. :return: None
  405. """
  406. if self.solid_geometry is None:
  407. self.solid_geometry = []
  408. if type(self.solid_geometry) is list:
  409. self.solid_geometry.append(Point(origin).buffer(radius, int(self.geo_steps_per_circle)))
  410. return
  411. try:
  412. self.solid_geometry = self.solid_geometry.union(
  413. Point(origin).buffer(radius, int(self.geo_steps_per_circle))
  414. )
  415. except Exception as e:
  416. log.error("Failed to run union on polygons. %s" % str(e))
  417. return
  418. def add_polygon(self, points):
  419. """
  420. Adds a polygon to the object (by union)
  421. :param points: The vertices of the polygon.
  422. :return: None
  423. """
  424. if self.solid_geometry is None:
  425. self.solid_geometry = []
  426. if type(self.solid_geometry) is list:
  427. self.solid_geometry.append(Polygon(points))
  428. return
  429. try:
  430. self.solid_geometry = self.solid_geometry.union(Polygon(points))
  431. except Exception as e:
  432. log.error("Failed to run union on polygons. %s" % str(e))
  433. return
  434. def add_polyline(self, points):
  435. """
  436. Adds a polyline to the object (by union)
  437. :param points: The vertices of the polyline.
  438. :return: None
  439. """
  440. if self.solid_geometry is None:
  441. self.solid_geometry = []
  442. if type(self.solid_geometry) is list:
  443. self.solid_geometry.append(LineString(points))
  444. return
  445. try:
  446. self.solid_geometry = self.solid_geometry.union(LineString(points))
  447. except Exception as e:
  448. log.error("Failed to run union on polylines. %s" % str(e))
  449. return
  450. def is_empty(self):
  451. if isinstance(self.solid_geometry, BaseGeometry):
  452. return self.solid_geometry.is_empty
  453. if isinstance(self.solid_geometry, list):
  454. return len(self.solid_geometry) == 0
  455. self.app.inform.emit('[ERROR_NOTCL] %s' %
  456. _("self.solid_geometry is neither BaseGeometry or list."))
  457. return
  458. def subtract_polygon(self, points):
  459. """
  460. Subtract polygon from the given object. This only operates on the paths in the original geometry,
  461. i.e. it converts polygons into paths.
  462. :param points: The vertices of the polygon.
  463. :return: none
  464. """
  465. if self.solid_geometry is None:
  466. self.solid_geometry = []
  467. # pathonly should be allways True, otherwise polygons are not subtracted
  468. flat_geometry = self.flatten(pathonly=True)
  469. log.debug("%d paths" % len(flat_geometry))
  470. polygon = Polygon(points)
  471. toolgeo = cascaded_union(polygon)
  472. diffs = []
  473. for target in flat_geometry:
  474. if type(target) == LineString or type(target) == LinearRing:
  475. diffs.append(target.difference(toolgeo))
  476. else:
  477. log.warning("Not implemented.")
  478. self.solid_geometry = cascaded_union(diffs)
  479. def bounds(self):
  480. """
  481. Returns coordinates of rectangular bounds
  482. of geometry: (xmin, ymin, xmax, ymax).
  483. """
  484. # fixed issue of getting bounds only for one level lists of objects
  485. # now it can get bounds for nested lists of objects
  486. log.debug("camlib.Geometry.bounds()")
  487. if self.solid_geometry is None:
  488. log.debug("solid_geometry is None")
  489. return 0, 0, 0, 0
  490. def bounds_rec(obj):
  491. if type(obj) is list:
  492. minx = np.Inf
  493. miny = np.Inf
  494. maxx = -np.Inf
  495. maxy = -np.Inf
  496. for k in obj:
  497. if type(k) is dict:
  498. for key in k:
  499. minx_, miny_, maxx_, maxy_ = bounds_rec(k[key])
  500. minx = min(minx, minx_)
  501. miny = min(miny, miny_)
  502. maxx = max(maxx, maxx_)
  503. maxy = max(maxy, maxy_)
  504. else:
  505. minx_, miny_, maxx_, maxy_ = bounds_rec(k)
  506. minx = min(minx, minx_)
  507. miny = min(miny, miny_)
  508. maxx = max(maxx, maxx_)
  509. maxy = max(maxy, maxy_)
  510. return minx, miny, maxx, maxy
  511. else:
  512. # it's a Shapely object, return it's bounds
  513. return obj.bounds
  514. if self.multigeo is True:
  515. minx_list = []
  516. miny_list = []
  517. maxx_list = []
  518. maxy_list = []
  519. for tool in self.tools:
  520. minx, miny, maxx, maxy = bounds_rec(self.tools[tool]['solid_geometry'])
  521. minx_list.append(minx)
  522. miny_list.append(miny)
  523. maxx_list.append(maxx)
  524. maxy_list.append(maxy)
  525. return(min(minx_list), min(miny_list), max(maxx_list), max(maxy_list))
  526. else:
  527. bounds_coords = bounds_rec(self.solid_geometry)
  528. return bounds_coords
  529. # try:
  530. # # from here: http://rightfootin.blogspot.com/2006/09/more-on-python-flatten.html
  531. # def flatten(l, ltypes=(list, tuple)):
  532. # ltype = type(l)
  533. # l = list(l)
  534. # i = 0
  535. # while i < len(l):
  536. # while isinstance(l[i], ltypes):
  537. # if not l[i]:
  538. # l.pop(i)
  539. # i -= 1
  540. # break
  541. # else:
  542. # l[i:i + 1] = l[i]
  543. # i += 1
  544. # return ltype(l)
  545. #
  546. # log.debug("Geometry->bounds()")
  547. # if self.solid_geometry is None:
  548. # log.debug("solid_geometry is None")
  549. # return 0, 0, 0, 0
  550. #
  551. # if type(self.solid_geometry) is list:
  552. # # TODO: This can be done faster. See comment from Shapely mailing lists.
  553. # if len(self.solid_geometry) == 0:
  554. # log.debug('solid_geometry is empty []')
  555. # return 0, 0, 0, 0
  556. # return cascaded_union(flatten(self.solid_geometry)).bounds
  557. # else:
  558. # return self.solid_geometry.bounds
  559. # except Exception as e:
  560. # self.app.inform.emit("[ERROR_NOTCL] Error cause: %s" % str(e))
  561. # log.debug("Geometry->bounds()")
  562. # if self.solid_geometry is None:
  563. # log.debug("solid_geometry is None")
  564. # return 0, 0, 0, 0
  565. #
  566. # if type(self.solid_geometry) is list:
  567. # # TODO: This can be done faster. See comment from Shapely mailing lists.
  568. # if len(self.solid_geometry) == 0:
  569. # log.debug('solid_geometry is empty []')
  570. # return 0, 0, 0, 0
  571. # return cascaded_union(self.solid_geometry).bounds
  572. # else:
  573. # return self.solid_geometry.bounds
  574. def find_polygon(self, point, geoset=None):
  575. """
  576. Find an object that object.contains(Point(point)) in
  577. poly, which can can be iterable, contain iterable of, or
  578. be itself an implementer of .contains().
  579. :param point: See description
  580. :param geoset: a polygon or list of polygons where to find if the param point is contained
  581. :return: Polygon containing point or None.
  582. """
  583. if geoset is None:
  584. geoset = self.solid_geometry
  585. try: # Iterable
  586. for sub_geo in geoset:
  587. p = self.find_polygon(point, geoset=sub_geo)
  588. if p is not None:
  589. return p
  590. except TypeError: # Non-iterable
  591. try: # Implements .contains()
  592. if isinstance(geoset, LinearRing):
  593. geoset = Polygon(geoset)
  594. if geoset.contains(Point(point)):
  595. return geoset
  596. except AttributeError: # Does not implement .contains()
  597. return None
  598. return None
  599. def get_interiors(self, geometry=None):
  600. interiors = []
  601. if geometry is None:
  602. geometry = self.solid_geometry
  603. # ## If iterable, expand recursively.
  604. try:
  605. for geo in geometry:
  606. interiors.extend(self.get_interiors(geometry=geo))
  607. # ## Not iterable, get the interiors if polygon.
  608. except TypeError:
  609. if type(geometry) == Polygon:
  610. interiors.extend(geometry.interiors)
  611. return interiors
  612. def get_exteriors(self, geometry=None):
  613. """
  614. Returns all exteriors of polygons in geometry. Uses
  615. ``self.solid_geometry`` if geometry is not provided.
  616. :param geometry: Shapely type or list or list of list of such.
  617. :return: List of paths constituting the exteriors
  618. of polygons in geometry.
  619. """
  620. exteriors = []
  621. if geometry is None:
  622. geometry = self.solid_geometry
  623. # ## If iterable, expand recursively.
  624. try:
  625. for geo in geometry:
  626. exteriors.extend(self.get_exteriors(geometry=geo))
  627. # ## Not iterable, get the exterior if polygon.
  628. except TypeError:
  629. if type(geometry) == Polygon:
  630. exteriors.append(geometry.exterior)
  631. return exteriors
  632. def flatten(self, geometry=None, reset=True, pathonly=False):
  633. """
  634. Creates a list of non-iterable linear geometry objects.
  635. Polygons are expanded into its exterior and interiors if specified.
  636. Results are placed in self.flat_geometry
  637. :param geometry: Shapely type or list or list of list of such.
  638. :param reset: Clears the contents of self.flat_geometry.
  639. :param pathonly: Expands polygons into linear elements.
  640. """
  641. if geometry is None:
  642. geometry = self.solid_geometry
  643. if reset:
  644. self.flat_geometry = []
  645. # ## If iterable, expand recursively.
  646. try:
  647. for geo in geometry:
  648. if geo is not None:
  649. self.flatten(geometry=geo,
  650. reset=False,
  651. pathonly=pathonly)
  652. # ## Not iterable, do the actual indexing and add.
  653. except TypeError:
  654. if pathonly and type(geometry) == Polygon:
  655. self.flat_geometry.append(geometry.exterior)
  656. self.flatten(geometry=geometry.interiors,
  657. reset=False,
  658. pathonly=True)
  659. else:
  660. self.flat_geometry.append(geometry)
  661. return self.flat_geometry
  662. # def make2Dstorage(self):
  663. #
  664. # self.flatten()
  665. #
  666. # def get_pts(o):
  667. # pts = []
  668. # if type(o) == Polygon:
  669. # g = o.exterior
  670. # pts += list(g.coords)
  671. # for i in o.interiors:
  672. # pts += list(i.coords)
  673. # else:
  674. # pts += list(o.coords)
  675. # return pts
  676. #
  677. # storage = FlatCAMRTreeStorage()
  678. # storage.get_points = get_pts
  679. # for shape in self.flat_geometry:
  680. # storage.insert(shape)
  681. # return storage
  682. # def flatten_to_paths(self, geometry=None, reset=True):
  683. # """
  684. # Creates a list of non-iterable linear geometry elements and
  685. # indexes them in rtree.
  686. #
  687. # :param geometry: Iterable geometry
  688. # :param reset: Wether to clear (True) or append (False) to self.flat_geometry
  689. # :return: self.flat_geometry, self.flat_geometry_rtree
  690. # """
  691. #
  692. # if geometry is None:
  693. # geometry = self.solid_geometry
  694. #
  695. # if reset:
  696. # self.flat_geometry = []
  697. #
  698. # # ## If iterable, expand recursively.
  699. # try:
  700. # for geo in geometry:
  701. # self.flatten_to_paths(geometry=geo, reset=False)
  702. #
  703. # # ## Not iterable, do the actual indexing and add.
  704. # except TypeError:
  705. # if type(geometry) == Polygon:
  706. # g = geometry.exterior
  707. # self.flat_geometry.append(g)
  708. #
  709. # # ## Add first and last points of the path to the index.
  710. # self.flat_geometry_rtree.insert(len(self.flat_geometry) - 1, g.coords[0])
  711. # self.flat_geometry_rtree.insert(len(self.flat_geometry) - 1, g.coords[-1])
  712. #
  713. # for interior in geometry.interiors:
  714. # g = interior
  715. # self.flat_geometry.append(g)
  716. # self.flat_geometry_rtree.insert(len(self.flat_geometry) - 1, g.coords[0])
  717. # self.flat_geometry_rtree.insert(len(self.flat_geometry) - 1, g.coords[-1])
  718. # else:
  719. # g = geometry
  720. # self.flat_geometry.append(g)
  721. # self.flat_geometry_rtree.insert(len(self.flat_geometry) - 1, g.coords[0])
  722. # self.flat_geometry_rtree.insert(len(self.flat_geometry) - 1, g.coords[-1])
  723. #
  724. # return self.flat_geometry, self.flat_geometry_rtree
  725. def isolation_geometry(self, offset, geometry=None, iso_type=2, corner=None, follow=None, passes=0):
  726. """
  727. Creates contours around geometry at a given
  728. offset distance.
  729. :param offset: Offset distance.
  730. :type offset: float
  731. :param iso_type: type of isolation, can be 0 = exteriors or 1 = interiors or 2 = both (complete)
  732. :param corner: type of corner for the isolation: 0 = round; 1 = square; 2= beveled (line that connects the ends)
  733. :param follow: whether the geometry to be isolated is a follow_geometry
  734. :param passes: current pass out of possible multiple passes for which the isolation is done
  735. :return: The buffered geometry.
  736. :rtype: Shapely.MultiPolygon or Shapely.Polygon
  737. """
  738. if self.app.abort_flag:
  739. # graceful abort requested by the user
  740. raise FlatCAMApp.GracefulException
  741. geo_iso = list()
  742. if follow:
  743. return geometry
  744. if geometry:
  745. working_geo = geometry
  746. else:
  747. working_geo = self.solid_geometry
  748. try:
  749. geo_len = len(working_geo)
  750. except TypeError:
  751. geo_len = 1
  752. old_disp_number = 0
  753. pol_nr = 0
  754. # yet, it can be done by issuing an unary_union in the end, thus getting rid of the overlapping geo
  755. try:
  756. for pol in working_geo:
  757. if self.app.abort_flag:
  758. # graceful abort requested by the user
  759. raise FlatCAMApp.GracefulException
  760. if offset == 0:
  761. geo_iso.append(pol)
  762. else:
  763. corner_type = 1 if corner is None else corner
  764. geo_iso.append(pol.buffer(offset, int(self.geo_steps_per_circle), join_style=corner_type))
  765. pol_nr += 1
  766. disp_number = int(np.interp(pol_nr, [0, geo_len], [0, 100]))
  767. if old_disp_number < disp_number <= 100:
  768. self.app.proc_container.update_view_text(' %s %d: %d%%' %
  769. (_("Pass"), int(passes + 1), int(disp_number)))
  770. old_disp_number = disp_number
  771. except TypeError:
  772. # taking care of the case when the self.solid_geometry is just a single Polygon, not a list or a
  773. # MultiPolygon (not an iterable)
  774. if offset == 0:
  775. geo_iso.append(working_geo)
  776. else:
  777. corner_type = 1 if corner is None else corner
  778. geo_iso.append(working_geo.buffer(offset, int(self.geo_steps_per_circle), join_style=corner_type))
  779. self.app.proc_container.update_view_text(' %s' % _("Buffering"))
  780. geo_iso = unary_union(geo_iso)
  781. self.app.proc_container.update_view_text('')
  782. # end of replaced block
  783. if iso_type == 2:
  784. return geo_iso
  785. elif iso_type == 0:
  786. self.app.proc_container.update_view_text(' %s' % _("Get Exteriors"))
  787. return self.get_exteriors(geo_iso)
  788. elif iso_type == 1:
  789. self.app.proc_container.update_view_text(' %s' % _("Get Interiors"))
  790. return self.get_interiors(geo_iso)
  791. else:
  792. log.debug("Geometry.isolation_geometry() --> Type of isolation not supported")
  793. return "fail"
  794. def flatten_list(self, obj_list):
  795. for item in obj_list:
  796. if isinstance(item, Iterable) and not isinstance(item, (str, bytes)):
  797. yield from self.flatten_list(item)
  798. else:
  799. yield item
  800. def import_svg(self, filename, object_type=None, flip=True, units='MM'):
  801. """
  802. Imports shapes from an SVG file into the object's geometry.
  803. :param filename: Path to the SVG file.
  804. :type filename: str
  805. :param object_type: parameter passed further along
  806. :param flip: Flip the vertically.
  807. :type flip: bool
  808. :param units: FlatCAM units
  809. :return: None
  810. """
  811. log.debug("camlib.Geometry.import_svg()")
  812. # Parse into list of shapely objects
  813. svg_tree = ET.parse(filename)
  814. svg_root = svg_tree.getroot()
  815. # Change origin to bottom left
  816. # h = float(svg_root.get('height'))
  817. # w = float(svg_root.get('width'))
  818. h = svgparselength(svg_root.get('height'))[0] # TODO: No units support yet
  819. geos = getsvggeo(svg_root, object_type)
  820. if flip:
  821. geos = [translate(scale(g, 1.0, -1.0, origin=(0, 0)), yoff=h) for g in geos]
  822. # Add to object
  823. if self.solid_geometry is None:
  824. self.solid_geometry = list()
  825. if type(self.solid_geometry) is list:
  826. if type(geos) is list:
  827. self.solid_geometry += geos
  828. else:
  829. self.solid_geometry.append(geos)
  830. else: # It's shapely geometry
  831. self.solid_geometry = [self.solid_geometry, geos]
  832. # flatten the self.solid_geometry list for import_svg() to import SVG as Gerber
  833. self.solid_geometry = list(self.flatten_list(self.solid_geometry))
  834. geos_text = getsvgtext(svg_root, object_type, units=units)
  835. if geos_text is not None:
  836. geos_text_f = list()
  837. if flip:
  838. # Change origin to bottom left
  839. for i in geos_text:
  840. _, minimy, _, maximy = i.bounds
  841. h2 = (maximy - minimy) * 0.5
  842. geos_text_f.append(translate(scale(i, 1.0, -1.0, origin=(0, 0)), yoff=(h + h2)))
  843. if geos_text_f:
  844. self.solid_geometry = self.solid_geometry + geos_text_f
  845. def import_dxf(self, filename, object_type=None, units='MM'):
  846. """
  847. Imports shapes from an DXF file into the object's geometry.
  848. :param filename: Path to the DXF file.
  849. :type filename: str
  850. :param units: Application units
  851. :type flip: str
  852. :return: None
  853. """
  854. # Parse into list of shapely objects
  855. dxf = ezdxf.readfile(filename)
  856. geos = getdxfgeo(dxf)
  857. # Add to object
  858. if self.solid_geometry is None:
  859. self.solid_geometry = []
  860. if type(self.solid_geometry) is list:
  861. if type(geos) is list:
  862. self.solid_geometry += geos
  863. else:
  864. self.solid_geometry.append(geos)
  865. else: # It's shapely geometry
  866. self.solid_geometry = [self.solid_geometry, geos]
  867. # flatten the self.solid_geometry list for import_dxf() to import DXF as Gerber
  868. self.solid_geometry = list(self.flatten_list(self.solid_geometry))
  869. if self.solid_geometry is not None:
  870. self.solid_geometry = cascaded_union(self.solid_geometry)
  871. else:
  872. return
  873. # commented until this function is ready
  874. # geos_text = getdxftext(dxf, object_type, units=units)
  875. # if geos_text is not None:
  876. # geos_text_f = []
  877. # self.solid_geometry = [self.solid_geometry, geos_text_f]
  878. def import_image(self, filename, flip=True, units='MM', dpi=96, mode='black', mask=None):
  879. """
  880. Imports shapes from an IMAGE file into the object's geometry.
  881. :param filename: Path to the IMAGE file.
  882. :type filename: str
  883. :param flip: Flip the object vertically.
  884. :type flip: bool
  885. :param units: FlatCAM units
  886. :param dpi: dots per inch on the imported image
  887. :param mode: how to import the image: as 'black' or 'color'
  888. :param mask: level of detail for the import
  889. :return: None
  890. """
  891. if mask is None:
  892. mask = [128, 128, 128, 128]
  893. scale_factor = 25.4 / dpi if units.lower() == 'mm' else 1 / dpi
  894. geos = list()
  895. unscaled_geos = list()
  896. with rasterio.open(filename) as src:
  897. # if filename.lower().rpartition('.')[-1] == 'bmp':
  898. # red = green = blue = src.read(1)
  899. # print("BMP")
  900. # elif filename.lower().rpartition('.')[-1] == 'png':
  901. # red, green, blue, alpha = src.read()
  902. # elif filename.lower().rpartition('.')[-1] == 'jpg':
  903. # red, green, blue = src.read()
  904. red = green = blue = src.read(1)
  905. try:
  906. green = src.read(2)
  907. except Exception:
  908. pass
  909. try:
  910. blue = src.read(3)
  911. except Exception:
  912. pass
  913. if mode == 'black':
  914. mask_setting = red <= mask[0]
  915. total = red
  916. log.debug("Image import as monochrome.")
  917. else:
  918. mask_setting = (red <= mask[1]) + (green <= mask[2]) + (blue <= mask[3])
  919. total = np.zeros(red.shape, dtype=np.float32)
  920. for band in red, green, blue:
  921. total += band
  922. total /= 3
  923. log.debug("Image import as colored. Thresholds are: R = %s , G = %s, B = %s" %
  924. (str(mask[1]), str(mask[2]), str(mask[3])))
  925. for geom, val in shapes(total, mask=mask_setting):
  926. unscaled_geos.append(shape(geom))
  927. for g in unscaled_geos:
  928. geos.append(scale(g, scale_factor, scale_factor, origin=(0, 0)))
  929. if flip:
  930. geos = [translate(scale(g, 1.0, -1.0, origin=(0, 0))) for g in geos]
  931. # Add to object
  932. if self.solid_geometry is None:
  933. self.solid_geometry = list()
  934. if type(self.solid_geometry) is list:
  935. # self.solid_geometry.append(cascaded_union(geos))
  936. if type(geos) is list:
  937. self.solid_geometry += geos
  938. else:
  939. self.solid_geometry.append(geos)
  940. else: # It's shapely geometry
  941. self.solid_geometry = [self.solid_geometry, geos]
  942. # flatten the self.solid_geometry list for import_svg() to import SVG as Gerber
  943. self.solid_geometry = list(self.flatten_list(self.solid_geometry))
  944. self.solid_geometry = cascaded_union(self.solid_geometry)
  945. # self.solid_geometry = MultiPolygon(self.solid_geometry)
  946. # self.solid_geometry = self.solid_geometry.buffer(0.00000001)
  947. # self.solid_geometry = self.solid_geometry.buffer(-0.00000001)
  948. def size(self):
  949. """
  950. Returns (width, height) of rectangular
  951. bounds of geometry.
  952. """
  953. if self.solid_geometry is None:
  954. log.warning("Solid_geometry not computed yet.")
  955. return 0
  956. bounds = self.bounds()
  957. return bounds[2] - bounds[0], bounds[3] - bounds[1]
  958. def get_empty_area(self, boundary=None):
  959. """
  960. Returns the complement of self.solid_geometry within
  961. the given boundary polygon. If not specified, it defaults to
  962. the rectangular bounding box of self.solid_geometry.
  963. """
  964. if boundary is None:
  965. boundary = self.solid_geometry.envelope
  966. return boundary.difference(self.solid_geometry)
  967. def clear_polygon(self, polygon, tooldia, steps_per_circle, overlap=0.15, connect=True, contour=True,
  968. prog_plot=False):
  969. """
  970. Creates geometry inside a polygon for a tool to cover
  971. the whole area.
  972. This algorithm shrinks the edges of the polygon and takes
  973. the resulting edges as toolpaths.
  974. :param polygon: Polygon to clear.
  975. :param tooldia: Diameter of the tool.
  976. :param steps_per_circle: number of linear segments to be used to approximate a circle
  977. :param overlap: Overlap of toolpasses.
  978. :param connect: Draw lines between disjoint segments to
  979. minimize tool lifts.
  980. :param contour: Paint around the edges. Inconsequential in
  981. this painting method.
  982. :param prog_plot: boolean; if Ture use the progressive plotting
  983. :return:
  984. """
  985. # log.debug("camlib.clear_polygon()")
  986. assert type(polygon) == Polygon or type(polygon) == MultiPolygon, \
  987. "Expected a Polygon or MultiPolygon, got %s" % type(polygon)
  988. # ## The toolpaths
  989. # Index first and last points in paths
  990. def get_pts(o):
  991. return [o.coords[0], o.coords[-1]]
  992. geoms = FlatCAMRTreeStorage()
  993. geoms.get_points = get_pts
  994. # Can only result in a Polygon or MultiPolygon
  995. # NOTE: The resulting polygon can be "empty".
  996. current = polygon.buffer((-tooldia / 1.999999), int(steps_per_circle))
  997. if current.area == 0:
  998. # Otherwise, trying to to insert current.exterior == None
  999. # into the FlatCAMStorage will fail.
  1000. # print("Area is None")
  1001. return None
  1002. # current can be a MultiPolygon
  1003. try:
  1004. for p in current:
  1005. geoms.insert(p.exterior)
  1006. for i in p.interiors:
  1007. geoms.insert(i)
  1008. # Not a Multipolygon. Must be a Polygon
  1009. except TypeError:
  1010. geoms.insert(current.exterior)
  1011. for i in current.interiors:
  1012. geoms.insert(i)
  1013. while True:
  1014. if self.app.abort_flag:
  1015. # graceful abort requested by the user
  1016. raise FlatCAMApp.GracefulException
  1017. # provide the app with a way to process the GUI events when in a blocking loop
  1018. QtWidgets.QApplication.processEvents()
  1019. # Can only result in a Polygon or MultiPolygon
  1020. current = current.buffer(-tooldia * (1 - overlap), int(steps_per_circle))
  1021. if current.area > 0:
  1022. # current can be a MultiPolygon
  1023. try:
  1024. for p in current:
  1025. geoms.insert(p.exterior)
  1026. for i in p.interiors:
  1027. geoms.insert(i)
  1028. if prog_plot:
  1029. self.plot_temp_shapes(p)
  1030. # Not a Multipolygon. Must be a Polygon
  1031. except TypeError:
  1032. geoms.insert(current.exterior)
  1033. if prog_plot:
  1034. self.plot_temp_shapes(current.exterior)
  1035. for i in current.interiors:
  1036. geoms.insert(i)
  1037. if prog_plot:
  1038. self.plot_temp_shapes(i)
  1039. else:
  1040. log.debug("camlib.Geometry.clear_polygon() --> Current Area is zero")
  1041. break
  1042. if prog_plot:
  1043. self.temp_shapes.redraw()
  1044. # Optimization: Reduce lifts
  1045. if connect:
  1046. # log.debug("Reducing tool lifts...")
  1047. geoms = Geometry.paint_connect(geoms, polygon, tooldia, int(steps_per_circle))
  1048. return geoms
  1049. def clear_polygon2(self, polygon_to_clear, tooldia, steps_per_circle, seedpoint=None, overlap=0.15,
  1050. connect=True, contour=True, prog_plot=False):
  1051. """
  1052. Creates geometry inside a polygon for a tool to cover
  1053. the whole area.
  1054. This algorithm starts with a seed point inside the polygon
  1055. and draws circles around it. Arcs inside the polygons are
  1056. valid cuts. Finalizes by cutting around the inside edge of
  1057. the polygon.
  1058. :param polygon_to_clear: Shapely.geometry.Polygon
  1059. :param steps_per_circle: how many linear segments to use to approximate a circle
  1060. :param tooldia: Diameter of the tool
  1061. :param seedpoint: Shapely.geometry.Point or None
  1062. :param overlap: Tool fraction overlap bewteen passes
  1063. :param connect: Connect disjoint segment to minumize tool lifts
  1064. :param contour: Cut countour inside the polygon.
  1065. :return: List of toolpaths covering polygon.
  1066. :rtype: FlatCAMRTreeStorage | None
  1067. :param prog_plot: boolean; if True use the progressive plotting
  1068. """
  1069. # log.debug("camlib.clear_polygon2()")
  1070. # Current buffer radius
  1071. radius = tooldia / 2 * (1 - overlap)
  1072. # ## The toolpaths
  1073. # Index first and last points in paths
  1074. def get_pts(o):
  1075. return [o.coords[0], o.coords[-1]]
  1076. geoms = FlatCAMRTreeStorage()
  1077. geoms.get_points = get_pts
  1078. # Path margin
  1079. path_margin = polygon_to_clear.buffer(-tooldia / 2, int(steps_per_circle))
  1080. if path_margin.is_empty or path_margin is None:
  1081. return
  1082. # Estimate good seedpoint if not provided.
  1083. if seedpoint is None:
  1084. seedpoint = path_margin.representative_point()
  1085. # Grow from seed until outside the box. The polygons will
  1086. # never have an interior, so take the exterior LinearRing.
  1087. while True:
  1088. if self.app.abort_flag:
  1089. # graceful abort requested by the user
  1090. raise FlatCAMApp.GracefulException
  1091. # provide the app with a way to process the GUI events when in a blocking loop
  1092. QtWidgets.QApplication.processEvents()
  1093. path = Point(seedpoint).buffer(radius, int(steps_per_circle)).exterior
  1094. path = path.intersection(path_margin)
  1095. # Touches polygon?
  1096. if path.is_empty:
  1097. break
  1098. else:
  1099. # geoms.append(path)
  1100. # geoms.insert(path)
  1101. # path can be a collection of paths.
  1102. try:
  1103. for p in path:
  1104. geoms.insert(p)
  1105. if prog_plot:
  1106. self.plot_temp_shapes(p)
  1107. except TypeError:
  1108. geoms.insert(path)
  1109. if prog_plot:
  1110. self.plot_temp_shapes(path)
  1111. if prog_plot:
  1112. self.temp_shapes.redraw()
  1113. radius += tooldia * (1 - overlap)
  1114. # Clean inside edges (contours) of the original polygon
  1115. if contour:
  1116. outer_edges = [
  1117. x.exterior for x in autolist(polygon_to_clear.buffer(-tooldia / 2, int(steps_per_circle)))
  1118. ]
  1119. inner_edges = []
  1120. # Over resulting polygons
  1121. for x in autolist(polygon_to_clear.buffer(-tooldia / 2, int(steps_per_circle))):
  1122. for y in x.interiors: # Over interiors of each polygon
  1123. inner_edges.append(y)
  1124. # geoms += outer_edges + inner_edges
  1125. for g in outer_edges + inner_edges:
  1126. if g and not g.is_empty:
  1127. geoms.insert(g)
  1128. if prog_plot:
  1129. self.plot_temp_shapes(g)
  1130. if prog_plot:
  1131. self.temp_shapes.redraw()
  1132. # Optimization connect touching paths
  1133. # log.debug("Connecting paths...")
  1134. # geoms = Geometry.path_connect(geoms)
  1135. # Optimization: Reduce lifts
  1136. if connect:
  1137. # log.debug("Reducing tool lifts...")
  1138. geoms_conn = Geometry.paint_connect(geoms, polygon_to_clear, tooldia, steps_per_circle)
  1139. if geoms_conn:
  1140. return geoms_conn
  1141. return geoms
  1142. def clear_polygon3(self, polygon, tooldia, steps_per_circle, overlap=0.15, connect=True, contour=True,
  1143. prog_plot=False):
  1144. """
  1145. Creates geometry inside a polygon for a tool to cover
  1146. the whole area.
  1147. This algorithm draws horizontal lines inside the polygon.
  1148. :param polygon: The polygon being painted.
  1149. :type polygon: shapely.geometry.Polygon
  1150. :param tooldia: Tool diameter.
  1151. :param steps_per_circle: how many linear segments to use to approximate a circle
  1152. :param overlap: Tool path overlap percentage.
  1153. :param connect: Connect lines to avoid tool lifts.
  1154. :param contour: Paint around the edges.
  1155. :param prog_plot: boolean; if to use the progressive plotting
  1156. :return:
  1157. """
  1158. # log.debug("camlib.clear_polygon3()")
  1159. if not isinstance(polygon, Polygon):
  1160. log.debug("camlib.Geometry.clear_polygon3() --> Not a Polygon but %s" % str(type(polygon)))
  1161. return None
  1162. # ## The toolpaths
  1163. # Index first and last points in paths
  1164. def get_pts(o):
  1165. return [o.coords[0], o.coords[-1]]
  1166. geoms = FlatCAMRTreeStorage()
  1167. geoms.get_points = get_pts
  1168. lines_trimmed = []
  1169. # Bounding box
  1170. left, bot, right, top = polygon.bounds
  1171. try:
  1172. margin_poly = polygon.buffer(-tooldia / 1.99999999, (int(steps_per_circle)))
  1173. except Exception:
  1174. log.debug("camlib.Geometry.clear_polygon3() --> Could not buffer the Polygon")
  1175. return None
  1176. # decide the direction of the lines
  1177. if abs(left - right) >= abs(top - bot):
  1178. # First line
  1179. try:
  1180. y = top - tooldia / 1.99999999
  1181. while y > bot + tooldia / 1.999999999:
  1182. if self.app.abort_flag:
  1183. # graceful abort requested by the user
  1184. raise FlatCAMApp.GracefulException
  1185. # provide the app with a way to process the GUI events when in a blocking loop
  1186. QtWidgets.QApplication.processEvents()
  1187. line = LineString([(left, y), (right, y)])
  1188. line = line.intersection(margin_poly)
  1189. lines_trimmed.append(line)
  1190. y -= tooldia * (1 - overlap)
  1191. if prog_plot:
  1192. self.plot_temp_shapes(line)
  1193. self.temp_shapes.redraw()
  1194. # Last line
  1195. y = bot + tooldia / 2
  1196. line = LineString([(left, y), (right, y)])
  1197. line = line.intersection(margin_poly)
  1198. for ll in line:
  1199. lines_trimmed.append(ll)
  1200. if prog_plot:
  1201. self.plot_temp_shapes(line)
  1202. except Exception as e:
  1203. log.debug('camlib.Geometry.clear_polygon3() Processing poly --> %s' % str(e))
  1204. return None
  1205. else:
  1206. # First line
  1207. try:
  1208. x = left + tooldia / 1.99999999
  1209. while x < right - tooldia / 1.999999999:
  1210. if self.app.abort_flag:
  1211. # graceful abort requested by the user
  1212. raise FlatCAMApp.GracefulException
  1213. # provide the app with a way to process the GUI events when in a blocking loop
  1214. QtWidgets.QApplication.processEvents()
  1215. line = LineString([(x, top), (x, bot)])
  1216. line = line.intersection(margin_poly)
  1217. lines_trimmed.append(line)
  1218. x += tooldia * (1 - overlap)
  1219. if prog_plot:
  1220. self.plot_temp_shapes(line)
  1221. self.temp_shapes.redraw()
  1222. # Last line
  1223. x = right + tooldia / 2
  1224. line = LineString([(x, top), (x, bot)])
  1225. line = line.intersection(margin_poly)
  1226. for ll in line:
  1227. lines_trimmed.append(ll)
  1228. if prog_plot:
  1229. self.plot_temp_shapes(line)
  1230. except Exception as e:
  1231. log.debug('camlib.Geometry.clear_polygon3() Processing poly --> %s' % str(e))
  1232. return None
  1233. if prog_plot:
  1234. self.temp_shapes.redraw()
  1235. lines_trimmed = unary_union(lines_trimmed)
  1236. # Add lines to storage
  1237. try:
  1238. for line in lines_trimmed:
  1239. if isinstance(line, LineString) or isinstance(line, LinearRing):
  1240. geoms.insert(line)
  1241. else:
  1242. log.debug("camlib.Geometry.clear_polygon3(). Not a line: %s" % str(type(line)))
  1243. except TypeError:
  1244. # in case lines_trimmed are not iterable (Linestring, LinearRing)
  1245. geoms.insert(lines_trimmed)
  1246. # Add margin (contour) to storage
  1247. if contour:
  1248. try:
  1249. for poly in margin_poly:
  1250. if isinstance(poly, Polygon) and not poly.is_empty:
  1251. geoms.insert(poly.exterior)
  1252. if prog_plot:
  1253. self.plot_temp_shapes(poly.exterior)
  1254. for ints in poly.interiors:
  1255. geoms.insert(ints)
  1256. if prog_plot:
  1257. self.plot_temp_shapes(ints)
  1258. except TypeError:
  1259. if isinstance(margin_poly, Polygon) and not margin_poly.is_empty:
  1260. marg_ext = margin_poly.exterior
  1261. geoms.insert(marg_ext)
  1262. if prog_plot:
  1263. self.plot_temp_shapes(margin_poly.exterior)
  1264. for ints in margin_poly.interiors:
  1265. geoms.insert(ints)
  1266. if prog_plot:
  1267. self.plot_temp_shapes(ints)
  1268. if prog_plot:
  1269. self.temp_shapes.redraw()
  1270. # Optimization: Reduce lifts
  1271. if connect:
  1272. # log.debug("Reducing tool lifts...")
  1273. geoms_conn = Geometry.paint_connect(geoms, polygon, tooldia, steps_per_circle)
  1274. if geoms_conn:
  1275. return geoms_conn
  1276. return geoms
  1277. def fill_with_lines(self, line, aperture_size, tooldia, steps_per_circle, overlap=0.15, connect=True, contour=True,
  1278. prog_plot=False):
  1279. """
  1280. Creates geometry of lines inside a polygon for a tool to cover
  1281. the whole area.
  1282. This algorithm draws parallel lines inside the polygon.
  1283. :param line: The target line that create painted polygon.
  1284. :param aperture_size: the size of the aperture that is used to draw the 'line' as a polygon
  1285. :type line: shapely.geometry.LineString or shapely.geometry.MultiLineString
  1286. :param tooldia: Tool diameter.
  1287. :param steps_per_circle: how many linear segments to use to approximate a circle
  1288. :param overlap: Tool path overlap percentage.
  1289. :param connect: Connect lines to avoid tool lifts.
  1290. :param contour: Paint around the edges.
  1291. :param prog_plot: boolean; if to use the progressive plotting
  1292. :return:
  1293. """
  1294. # log.debug("camlib.fill_with_lines()")
  1295. if not isinstance(line, LineString) and not isinstance(line, MultiLineString):
  1296. log.debug("camlib.Geometry.fill_with_lines() --> Not a LineString/MultiLineString but %s" % str(type(line)))
  1297. return None
  1298. # ## The toolpaths
  1299. # Index first and last points in paths
  1300. def get_pts(o):
  1301. return [o.coords[0], o.coords[-1]]
  1302. geoms = FlatCAMRTreeStorage()
  1303. geoms.get_points = get_pts
  1304. lines_trimmed = []
  1305. polygon = line.buffer(aperture_size / 2.0, int(steps_per_circle))
  1306. try:
  1307. margin_poly = polygon.buffer(-tooldia / 2.0, int(steps_per_circle))
  1308. except Exception:
  1309. log.debug("camlib.Geometry.fill_with_lines() --> Could not buffer the Polygon, tool diameter too high")
  1310. return None
  1311. # First line
  1312. try:
  1313. delta = 0
  1314. while delta < aperture_size / 2:
  1315. if self.app.abort_flag:
  1316. # graceful abort requested by the user
  1317. raise FlatCAMApp.GracefulException
  1318. # provide the app with a way to process the GUI events when in a blocking loop
  1319. QtWidgets.QApplication.processEvents()
  1320. new_line = line.parallel_offset(distance=delta, side='left', resolution=int(steps_per_circle))
  1321. new_line = new_line.intersection(margin_poly)
  1322. lines_trimmed.append(new_line)
  1323. new_line = line.parallel_offset(distance=delta, side='right', resolution=int(steps_per_circle))
  1324. new_line = new_line.intersection(margin_poly)
  1325. lines_trimmed.append(new_line)
  1326. delta += tooldia * (1 - overlap)
  1327. if prog_plot:
  1328. self.plot_temp_shapes(new_line)
  1329. self.temp_shapes.redraw()
  1330. # Last line
  1331. delta = (aperture_size / 2) - (tooldia / 2.00000001)
  1332. new_line = line.parallel_offset(distance=delta, side='left', resolution=int(steps_per_circle))
  1333. new_line = new_line.intersection(margin_poly)
  1334. except Exception as e:
  1335. log.debug('camlib.Geometry.fill_with_lines() Processing poly --> %s' % str(e))
  1336. return None
  1337. try:
  1338. for ll in new_line:
  1339. lines_trimmed.append(ll)
  1340. if prog_plot:
  1341. self.plot_temp_shapes(ll)
  1342. except TypeError:
  1343. lines_trimmed.append(new_line)
  1344. if prog_plot:
  1345. self.plot_temp_shapes(new_line)
  1346. new_line = line.parallel_offset(distance=delta, side='right', resolution=int(steps_per_circle))
  1347. new_line = new_line.intersection(margin_poly)
  1348. try:
  1349. for ll in new_line:
  1350. lines_trimmed.append(ll)
  1351. if prog_plot:
  1352. self.plot_temp_shapes(ll)
  1353. except TypeError:
  1354. lines_trimmed.append(new_line)
  1355. if prog_plot:
  1356. self.plot_temp_shapes(new_line)
  1357. if prog_plot:
  1358. self.temp_shapes.redraw()
  1359. lines_trimmed = unary_union(lines_trimmed)
  1360. # Add lines to storage
  1361. try:
  1362. for line in lines_trimmed:
  1363. if isinstance(line, LineString) or isinstance(line, LinearRing):
  1364. geoms.insert(line)
  1365. else:
  1366. log.debug("camlib.Geometry.fill_with_lines(). Not a line: %s" % str(type(line)))
  1367. except TypeError:
  1368. # in case lines_trimmed are not iterable (Linestring, LinearRing)
  1369. geoms.insert(lines_trimmed)
  1370. # Add margin (contour) to storage
  1371. if contour:
  1372. try:
  1373. for poly in margin_poly:
  1374. if isinstance(poly, Polygon) and not poly.is_empty:
  1375. geoms.insert(poly.exterior)
  1376. if prog_plot:
  1377. self.plot_temp_shapes(poly.exterior)
  1378. for ints in poly.interiors:
  1379. geoms.insert(ints)
  1380. if prog_plot:
  1381. self.plot_temp_shapes(ints)
  1382. except TypeError:
  1383. if isinstance(margin_poly, Polygon) and not margin_poly.is_empty:
  1384. marg_ext = margin_poly.exterior
  1385. geoms.insert(marg_ext)
  1386. if prog_plot:
  1387. self.plot_temp_shapes(margin_poly.exterior)
  1388. for ints in margin_poly.interiors:
  1389. geoms.insert(ints)
  1390. if prog_plot:
  1391. self.plot_temp_shapes(ints)
  1392. if prog_plot:
  1393. self.temp_shapes.redraw()
  1394. # Optimization: Reduce lifts
  1395. if connect:
  1396. # log.debug("Reducing tool lifts...")
  1397. geoms_conn = Geometry.paint_connect(geoms, polygon, tooldia, steps_per_circle)
  1398. if geoms_conn:
  1399. return geoms_conn
  1400. return geoms
  1401. def scale(self, xfactor, yfactor, point=None):
  1402. """
  1403. Scales all of the object's geometry by a given factor. Override
  1404. this method.
  1405. :param xfactor: Number by which to scale on X axis.
  1406. :type xfactor: float
  1407. :param yfactor: Number by which to scale on Y axis.
  1408. :type yfactor: float
  1409. :param point: point to be used as reference for scaling; a tuple
  1410. :return: None
  1411. :rtype: None
  1412. """
  1413. return
  1414. def offset(self, vect):
  1415. """
  1416. Offset the geometry by the given vector. Override this method.
  1417. :param vect: (x, y) vector by which to offset the object.
  1418. :type vect: tuple
  1419. :return: None
  1420. """
  1421. return
  1422. @staticmethod
  1423. def paint_connect(storage, boundary, tooldia, steps_per_circle, max_walk=None):
  1424. """
  1425. Connects paths that results in a connection segment that is
  1426. within the paint area. This avoids unnecessary tool lifting.
  1427. :param storage: Geometry to be optimized.
  1428. :type storage: FlatCAMRTreeStorage
  1429. :param boundary: Polygon defining the limits of the paintable area.
  1430. :type boundary: Polygon
  1431. :param tooldia: Tool diameter.
  1432. :rtype tooldia: float
  1433. :param steps_per_circle: how many linear segments to use to approximate a circle
  1434. :param max_walk: Maximum allowable distance without lifting tool.
  1435. :type max_walk: float or None
  1436. :return: Optimized geometry.
  1437. :rtype: FlatCAMRTreeStorage
  1438. """
  1439. # If max_walk is not specified, the maximum allowed is
  1440. # 10 times the tool diameter
  1441. max_walk = max_walk or 10 * tooldia
  1442. # Assuming geolist is a flat list of flat elements
  1443. # ## Index first and last points in paths
  1444. def get_pts(o):
  1445. return [o.coords[0], o.coords[-1]]
  1446. # storage = FlatCAMRTreeStorage()
  1447. # storage.get_points = get_pts
  1448. #
  1449. # for shape in geolist:
  1450. # if shape is not None:
  1451. # # Make LlinearRings into linestrings otherwise
  1452. # # When chaining the coordinates path is messed up.
  1453. # storage.insert(LineString(shape))
  1454. # #storage.insert(shape)
  1455. # ## Iterate over geometry paths getting the nearest each time.
  1456. #optimized_paths = []
  1457. optimized_paths = FlatCAMRTreeStorage()
  1458. optimized_paths.get_points = get_pts
  1459. path_count = 0
  1460. current_pt = (0, 0)
  1461. try:
  1462. pt, geo = storage.nearest(current_pt)
  1463. except StopIteration:
  1464. log.debug("camlib.Geometry.paint_connect(). Storage empty")
  1465. return None
  1466. storage.remove(geo)
  1467. geo = LineString(geo)
  1468. current_pt = geo.coords[-1]
  1469. try:
  1470. while True:
  1471. path_count += 1
  1472. # log.debug("Path %d" % path_count)
  1473. pt, candidate = storage.nearest(current_pt)
  1474. storage.remove(candidate)
  1475. candidate = LineString(candidate)
  1476. # If last point in geometry is the nearest
  1477. # then reverse coordinates.
  1478. # but prefer the first one if last == first
  1479. if pt != candidate.coords[0] and pt == candidate.coords[-1]:
  1480. candidate.coords = list(candidate.coords)[::-1]
  1481. # Straight line from current_pt to pt.
  1482. # Is the toolpath inside the geometry?
  1483. walk_path = LineString([current_pt, pt])
  1484. walk_cut = walk_path.buffer(tooldia / 2, int(steps_per_circle))
  1485. if walk_cut.within(boundary) and walk_path.length < max_walk:
  1486. # log.debug("Walk to path #%d is inside. Joining." % path_count)
  1487. # Completely inside. Append...
  1488. geo.coords = list(geo.coords) + list(candidate.coords)
  1489. # try:
  1490. # last = optimized_paths[-1]
  1491. # last.coords = list(last.coords) + list(geo.coords)
  1492. # except IndexError:
  1493. # optimized_paths.append(geo)
  1494. else:
  1495. # Have to lift tool. End path.
  1496. # log.debug("Path #%d not within boundary. Next." % path_count)
  1497. # optimized_paths.append(geo)
  1498. optimized_paths.insert(geo)
  1499. geo = candidate
  1500. current_pt = geo.coords[-1]
  1501. # Next
  1502. # pt, geo = storage.nearest(current_pt)
  1503. except StopIteration: # Nothing left in storage.
  1504. # pass
  1505. optimized_paths.insert(geo)
  1506. return optimized_paths
  1507. @staticmethod
  1508. def path_connect(storage, origin=(0, 0)):
  1509. """
  1510. Simplifies paths in the FlatCAMRTreeStorage storage by
  1511. connecting paths that touch on their enpoints.
  1512. :param storage: Storage containing the initial paths.
  1513. :rtype storage: FlatCAMRTreeStorage
  1514. :return: Simplified storage.
  1515. :rtype: FlatCAMRTreeStorage
  1516. """
  1517. log.debug("path_connect()")
  1518. # ## Index first and last points in paths
  1519. def get_pts(o):
  1520. return [o.coords[0], o.coords[-1]]
  1521. #
  1522. # storage = FlatCAMRTreeStorage()
  1523. # storage.get_points = get_pts
  1524. #
  1525. # for shape in pathlist:
  1526. # if shape is not None: # TODO: This shouldn't have happened.
  1527. # storage.insert(shape)
  1528. path_count = 0
  1529. pt, geo = storage.nearest(origin)
  1530. storage.remove(geo)
  1531. # optimized_geometry = [geo]
  1532. optimized_geometry = FlatCAMRTreeStorage()
  1533. optimized_geometry.get_points = get_pts
  1534. # optimized_geometry.insert(geo)
  1535. try:
  1536. while True:
  1537. path_count += 1
  1538. _, left = storage.nearest(geo.coords[0])
  1539. # If left touches geo, remove left from original
  1540. # storage and append to geo.
  1541. if type(left) == LineString:
  1542. if left.coords[0] == geo.coords[0]:
  1543. storage.remove(left)
  1544. geo.coords = list(geo.coords)[::-1] + list(left.coords)
  1545. continue
  1546. if left.coords[-1] == geo.coords[0]:
  1547. storage.remove(left)
  1548. geo.coords = list(left.coords) + list(geo.coords)
  1549. continue
  1550. if left.coords[0] == geo.coords[-1]:
  1551. storage.remove(left)
  1552. geo.coords = list(geo.coords) + list(left.coords)
  1553. continue
  1554. if left.coords[-1] == geo.coords[-1]:
  1555. storage.remove(left)
  1556. geo.coords = list(geo.coords) + list(left.coords)[::-1]
  1557. continue
  1558. _, right = storage.nearest(geo.coords[-1])
  1559. # If right touches geo, remove left from original
  1560. # storage and append to geo.
  1561. if type(right) == LineString:
  1562. if right.coords[0] == geo.coords[-1]:
  1563. storage.remove(right)
  1564. geo.coords = list(geo.coords) + list(right.coords)
  1565. continue
  1566. if right.coords[-1] == geo.coords[-1]:
  1567. storage.remove(right)
  1568. geo.coords = list(geo.coords) + list(right.coords)[::-1]
  1569. continue
  1570. if right.coords[0] == geo.coords[0]:
  1571. storage.remove(right)
  1572. geo.coords = list(geo.coords)[::-1] + list(right.coords)
  1573. continue
  1574. if right.coords[-1] == geo.coords[0]:
  1575. storage.remove(right)
  1576. geo.coords = list(left.coords) + list(geo.coords)
  1577. continue
  1578. # right is either a LinearRing or it does not connect
  1579. # to geo (nothing left to connect to geo), so we continue
  1580. # with right as geo.
  1581. storage.remove(right)
  1582. if type(right) == LinearRing:
  1583. optimized_geometry.insert(right)
  1584. else:
  1585. # Cannot extend geo any further. Put it away.
  1586. optimized_geometry.insert(geo)
  1587. # Continue with right.
  1588. geo = right
  1589. except StopIteration: # Nothing found in storage.
  1590. optimized_geometry.insert(geo)
  1591. # print path_count
  1592. log.debug("path_count = %d" % path_count)
  1593. return optimized_geometry
  1594. def convert_units(self, obj_units):
  1595. """
  1596. Converts the units of the object to ``units`` by scaling all
  1597. the geometry appropriately. This call ``scale()``. Don't call
  1598. it again in descendents.
  1599. :param units: "IN" or "MM"
  1600. :type units: str
  1601. :return: Scaling factor resulting from unit change.
  1602. :rtype: float
  1603. """
  1604. if obj_units.upper() == self.units.upper():
  1605. log.debug("camlib.Geometry.convert_units() --> Factor: 1")
  1606. return 1.0
  1607. if obj_units.upper() == "MM":
  1608. factor = 25.4
  1609. log.debug("camlib.Geometry.convert_units() --> Factor: 25.4")
  1610. elif obj_units.upper() == "IN":
  1611. factor = 1 / 25.4
  1612. log.debug("camlib.Geometry.convert_units() --> Factor: %s" % str(1 / 25.4))
  1613. else:
  1614. log.error("Unsupported units: %s" % str(obj_units))
  1615. log.debug("camlib.Geometry.convert_units() --> Factor: 1")
  1616. return 1.0
  1617. self.units = obj_units
  1618. self.scale(factor, factor)
  1619. self.file_units_factor = factor
  1620. return factor
  1621. def to_dict(self):
  1622. """
  1623. Returns a representation of the object as a dictionary.
  1624. Attributes to include are listed in ``self.ser_attrs``.
  1625. :return: A dictionary-encoded copy of the object.
  1626. :rtype: dict
  1627. """
  1628. d = {}
  1629. for attr in self.ser_attrs:
  1630. d[attr] = getattr(self, attr)
  1631. return d
  1632. def from_dict(self, d):
  1633. """
  1634. Sets object's attributes from a dictionary.
  1635. Attributes to include are listed in ``self.ser_attrs``.
  1636. This method will look only for only and all the
  1637. attributes in ``self.ser_attrs``. They must all
  1638. be present. Use only for deserializing saved
  1639. objects.
  1640. :param d: Dictionary of attributes to set in the object.
  1641. :type d: dict
  1642. :return: None
  1643. """
  1644. for attr in self.ser_attrs:
  1645. setattr(self, attr, d[attr])
  1646. def union(self):
  1647. """
  1648. Runs a cascaded union on the list of objects in
  1649. solid_geometry.
  1650. :return: None
  1651. """
  1652. self.solid_geometry = [cascaded_union(self.solid_geometry)]
  1653. def export_svg(self, scale_stroke_factor=0.00,
  1654. scale_factor_x=None, scale_factor_y=None,
  1655. skew_factor_x=None, skew_factor_y=None,
  1656. skew_reference='center',
  1657. mirror=None):
  1658. """
  1659. Exports the Geometry Object as a SVG Element
  1660. :return: SVG Element
  1661. """
  1662. # Make sure we see a Shapely Geometry class and not a list
  1663. if self.kind.lower() == 'geometry':
  1664. flat_geo = []
  1665. if self.multigeo:
  1666. for tool in self.tools:
  1667. flat_geo += self.flatten(self.tools[tool]['solid_geometry'])
  1668. geom_svg = cascaded_union(flat_geo)
  1669. else:
  1670. geom_svg = cascaded_union(self.flatten())
  1671. else:
  1672. geom_svg = cascaded_union(self.flatten())
  1673. skew_ref = 'center'
  1674. if skew_reference != 'center':
  1675. xmin, ymin, xmax, ymax = geom_svg.bounds
  1676. if skew_reference == 'topleft':
  1677. skew_ref = (xmin, ymax)
  1678. elif skew_reference == 'bottomleft':
  1679. skew_ref = (xmin, ymin)
  1680. elif skew_reference == 'topright':
  1681. skew_ref = (xmax, ymax)
  1682. elif skew_reference == 'bottomright':
  1683. skew_ref = (xmax, ymin)
  1684. geom = geom_svg
  1685. if scale_factor_x:
  1686. geom = affinity.scale(geom_svg, scale_factor_x, 1.0)
  1687. if scale_factor_y:
  1688. geom = affinity.scale(geom_svg, 1.0, scale_factor_y)
  1689. if skew_factor_x:
  1690. geom = affinity.skew(geom_svg, skew_factor_x, 0.0, origin=skew_ref)
  1691. if skew_factor_y:
  1692. geom = affinity.skew(geom_svg, 0.0, skew_factor_y, origin=skew_ref)
  1693. if mirror:
  1694. if mirror == 'x':
  1695. geom = affinity.scale(geom_svg, 1.0, -1.0)
  1696. if mirror == 'y':
  1697. geom = affinity.scale(geom_svg, -1.0, 1.0)
  1698. if mirror == 'both':
  1699. geom = affinity.scale(geom_svg, -1.0, -1.0)
  1700. # scale_factor is a multiplication factor for the SVG stroke-width used within shapely's svg export
  1701. # If 0 or less which is invalid then default to 0.01
  1702. # This value appears to work for zooming, and getting the output svg line width
  1703. # to match that viewed on screen with FlatCam
  1704. # MS: I choose a factor of 0.01 so the scale is right for PCB UV film
  1705. if scale_stroke_factor <= 0:
  1706. scale_stroke_factor = 0.01
  1707. # Convert to a SVG
  1708. svg_elem = geom.svg(scale_factor=scale_stroke_factor)
  1709. return svg_elem
  1710. def mirror(self, axis, point):
  1711. """
  1712. Mirrors the object around a specified axis passign through
  1713. the given point.
  1714. :param axis: "X" or "Y" indicates around which axis to mirror.
  1715. :type axis: str
  1716. :param point: [x, y] point belonging to the mirror axis.
  1717. :type point: list
  1718. :return: None
  1719. """
  1720. log.debug("camlib.Geometry.mirror()")
  1721. px, py = point
  1722. xscale, yscale = {"X": (1.0, -1.0), "Y": (-1.0, 1.0)}[axis]
  1723. def mirror_geom(obj):
  1724. if type(obj) is list:
  1725. new_obj = []
  1726. for g in obj:
  1727. new_obj.append(mirror_geom(g))
  1728. return new_obj
  1729. else:
  1730. try:
  1731. self.el_count += 1
  1732. disp_number = int(np.interp(self.el_count, [0, self.geo_len], [0, 100]))
  1733. if self.old_disp_number < disp_number <= 100:
  1734. self.app.proc_container.update_view_text(' %d%%' % disp_number)
  1735. self.old_disp_number = disp_number
  1736. return affinity.scale(obj, xscale, yscale, origin=(px, py))
  1737. except AttributeError:
  1738. return obj
  1739. try:
  1740. if self.multigeo is True:
  1741. for tool in self.tools:
  1742. # variables to display the percentage of work done
  1743. self.geo_len = 0
  1744. try:
  1745. for g in self.tools[tool]['solid_geometry']:
  1746. self.geo_len += 1
  1747. except TypeError:
  1748. self.geo_len = 1
  1749. self.old_disp_number = 0
  1750. self.el_count = 0
  1751. self.tools[tool]['solid_geometry'] = mirror_geom(self.tools[tool]['solid_geometry'])
  1752. else:
  1753. # variables to display the percentage of work done
  1754. self.geo_len = 0
  1755. try:
  1756. for g in self.solid_geometry:
  1757. self.geo_len += 1
  1758. except TypeError:
  1759. self.geo_len = 1
  1760. self.old_disp_number = 0
  1761. self.el_count = 0
  1762. self.solid_geometry = mirror_geom(self.solid_geometry)
  1763. self.app.inform.emit('[success] %s...' %
  1764. _('Object was mirrored'))
  1765. except AttributeError:
  1766. self.app.inform.emit('[ERROR_NOTCL] %s' %
  1767. _("Failed to mirror. No object selected"))
  1768. self.app.proc_container.new_text = ''
  1769. def rotate(self, angle, point):
  1770. """
  1771. Rotate an object by an angle (in degrees) around the provided coordinates.
  1772. Parameters
  1773. ----------
  1774. The angle of rotation are specified in degrees (default). Positive angles are
  1775. counter-clockwise and negative are clockwise rotations.
  1776. The point of origin can be a keyword 'center' for the bounding box
  1777. center (default), 'centroid' for the geometry's centroid, a Point object
  1778. or a coordinate tuple (x0, y0).
  1779. See shapely manual for more information:
  1780. http://toblerity.org/shapely/manual.html#affine-transformations
  1781. """
  1782. log.debug("camlib.Geometry.rotate()")
  1783. px, py = point
  1784. def rotate_geom(obj):
  1785. if type(obj) is list:
  1786. new_obj = []
  1787. for g in obj:
  1788. new_obj.append(rotate_geom(g))
  1789. return new_obj
  1790. else:
  1791. try:
  1792. self.el_count += 1
  1793. disp_number = int(np.interp(self.el_count, [0, self.geo_len], [0, 100]))
  1794. if self.old_disp_number < disp_number <= 100:
  1795. self.app.proc_container.update_view_text(' %d%%' % disp_number)
  1796. self.old_disp_number = disp_number
  1797. return affinity.rotate(obj, angle, origin=(px, py))
  1798. except AttributeError:
  1799. return obj
  1800. try:
  1801. if self.multigeo is True:
  1802. for tool in self.tools:
  1803. # variables to display the percentage of work done
  1804. self.geo_len = 0
  1805. try:
  1806. for g in self.tools[tool]['solid_geometry']:
  1807. self.geo_len += 1
  1808. except TypeError:
  1809. self.geo_len = 1
  1810. self.old_disp_number = 0
  1811. self.el_count = 0
  1812. self.tools[tool]['solid_geometry'] = rotate_geom(self.tools[tool]['solid_geometry'])
  1813. else:
  1814. # variables to display the percentage of work done
  1815. self.geo_len = 0
  1816. try:
  1817. for g in self.solid_geometry:
  1818. self.geo_len += 1
  1819. except TypeError:
  1820. self.geo_len = 1
  1821. self.old_disp_number = 0
  1822. self.el_count = 0
  1823. self.solid_geometry = rotate_geom(self.solid_geometry)
  1824. self.app.inform.emit('[success] %s...' %
  1825. _('Object was rotated'))
  1826. except AttributeError:
  1827. self.app.inform.emit('[ERROR_NOTCL] %s' %
  1828. _("Failed to rotate. No object selected"))
  1829. self.app.proc_container.new_text = ''
  1830. def skew(self, angle_x, angle_y, point):
  1831. """
  1832. Shear/Skew the geometries of an object by angles along x and y dimensions.
  1833. Parameters
  1834. ----------
  1835. angle_x, angle_y : float, float
  1836. The shear angle(s) for the x and y axes respectively. These can be
  1837. specified in either degrees (default) or radians by setting
  1838. use_radians=True.
  1839. point: tuple of coordinates (x,y)
  1840. See shapely manual for more information:
  1841. http://toblerity.org/shapely/manual.html#affine-transformations
  1842. """
  1843. log.debug("camlib.Geometry.skew()")
  1844. px, py = point
  1845. def skew_geom(obj):
  1846. if type(obj) is list:
  1847. new_obj = []
  1848. for g in obj:
  1849. new_obj.append(skew_geom(g))
  1850. return new_obj
  1851. else:
  1852. try:
  1853. self.el_count += 1
  1854. disp_number = int(np.interp(self.el_count, [0, self.geo_len], [0, 100]))
  1855. if self.old_disp_number < disp_number <= 100:
  1856. self.app.proc_container.update_view_text(' %d%%' % disp_number)
  1857. self.old_disp_number = disp_number
  1858. return affinity.skew(obj, angle_x, angle_y, origin=(px, py))
  1859. except AttributeError:
  1860. return obj
  1861. try:
  1862. if self.multigeo is True:
  1863. for tool in self.tools:
  1864. # variables to display the percentage of work done
  1865. self.geo_len = 0
  1866. try:
  1867. for g in self.tools[tool]['solid_geometry']:
  1868. self.geo_len += 1
  1869. except TypeError:
  1870. self.geo_len = 1
  1871. self.old_disp_number = 0
  1872. self.el_count = 0
  1873. self.tools[tool]['solid_geometry'] = skew_geom(self.tools[tool]['solid_geometry'])
  1874. else:
  1875. # variables to display the percentage of work done
  1876. self.geo_len = 0
  1877. try:
  1878. self.geo_len = len(self.solid_geometry)
  1879. except TypeError:
  1880. self.geo_len = 1
  1881. self.old_disp_number = 0
  1882. self.el_count = 0
  1883. self.solid_geometry = skew_geom(self.solid_geometry)
  1884. self.app.inform.emit('[success] %s...' %
  1885. _('Object was skewed'))
  1886. except AttributeError:
  1887. self.app.inform.emit('[ERROR_NOTCL] %s' %
  1888. _("Failed to skew. No object selected"))
  1889. self.app.proc_container.new_text = ''
  1890. # if type(self.solid_geometry) == list:
  1891. # self.solid_geometry = [affinity.skew(g, angle_x, angle_y, origin=(px, py))
  1892. # for g in self.solid_geometry]
  1893. # else:
  1894. # self.solid_geometry = affinity.skew(self.solid_geometry, angle_x, angle_y,
  1895. # origin=(px, py))
  1896. def buffer(self, distance, join, factor):
  1897. """
  1898. :param distance: if 'factor' is True then distance is the factor
  1899. :param factor: True or False (None)
  1900. :return:
  1901. """
  1902. log.debug("camlib.Geometry.buffer()")
  1903. if distance == 0:
  1904. return
  1905. def buffer_geom(obj):
  1906. if type(obj) is list:
  1907. new_obj = []
  1908. for g in obj:
  1909. new_obj.append(buffer_geom(g))
  1910. return new_obj
  1911. else:
  1912. try:
  1913. self.el_count += 1
  1914. disp_number = int(np.interp(self.el_count, [0, self.geo_len], [0, 100]))
  1915. if self.old_disp_number < disp_number <= 100:
  1916. self.app.proc_container.update_view_text(' %d%%' % disp_number)
  1917. self.old_disp_number = disp_number
  1918. if factor is None:
  1919. return obj.buffer(distance, resolution=self.geo_steps_per_circle, join_style=join)
  1920. else:
  1921. return affinity.scale(obj, xfact=distance, yfact=distance, origin='center')
  1922. except AttributeError:
  1923. return obj
  1924. try:
  1925. if self.multigeo is True:
  1926. for tool in self.tools:
  1927. # variables to display the percentage of work done
  1928. self.geo_len = 0
  1929. try:
  1930. self.geo_len += len(self.tools[tool]['solid_geometry'])
  1931. except TypeError:
  1932. self.geo_len += 1
  1933. self.old_disp_number = 0
  1934. self.el_count = 0
  1935. res = buffer_geom(self.tools[tool]['solid_geometry'])
  1936. try:
  1937. __ = iter(res)
  1938. self.tools[tool]['solid_geometry'] = res
  1939. except TypeError:
  1940. self.tools[tool]['solid_geometry'] = [res]
  1941. # variables to display the percentage of work done
  1942. self.geo_len = 0
  1943. try:
  1944. self.geo_len = len(self.solid_geometry)
  1945. except TypeError:
  1946. self.geo_len = 1
  1947. self.old_disp_number = 0
  1948. self.el_count = 0
  1949. self.solid_geometry = buffer_geom(self.solid_geometry)
  1950. self.app.inform.emit('[success] %s...' % _('Object was buffered'))
  1951. except AttributeError:
  1952. self.app.inform.emit('[ERROR_NOTCL] %s' % _("Failed to buffer. No object selected"))
  1953. self.app.proc_container.new_text = ''
  1954. class AttrDict(dict):
  1955. def __init__(self, *args, **kwargs):
  1956. super(AttrDict, self).__init__(*args, **kwargs)
  1957. self.__dict__ = self
  1958. class CNCjob(Geometry):
  1959. """
  1960. Represents work to be done by a CNC machine.
  1961. *ATTRIBUTES*
  1962. * ``gcode_parsed`` (list): Each is a dictionary:
  1963. ===================== =========================================
  1964. Key Value
  1965. ===================== =========================================
  1966. geom (Shapely.LineString) Tool path (XY plane)
  1967. kind (string) "AB", A is "T" (travel) or
  1968. "C" (cut). B is "F" (fast) or "S" (slow).
  1969. ===================== =========================================
  1970. """
  1971. defaults = {
  1972. "global_zdownrate": None,
  1973. "pp_geometry_name": 'default',
  1974. "pp_excellon_name": 'default',
  1975. "excellon_optimization_type": "B",
  1976. }
  1977. settings = QtCore.QSettings("Open Source", "FlatCAM")
  1978. if settings.contains("machinist"):
  1979. machinist_setting = settings.value('machinist', type=int)
  1980. else:
  1981. machinist_setting = 0
  1982. def __init__(self,
  1983. units="in", kind="generic", tooldia=0.0,
  1984. z_cut=-0.002, z_move=0.1,
  1985. feedrate=3.0, feedrate_z=3.0, feedrate_rapid=3.0, feedrate_probe=3.0,
  1986. pp_geometry_name='default', pp_excellon_name='default',
  1987. depthpercut=0.1, z_pdepth=-0.02,
  1988. spindlespeed=None, spindledir='CW', dwell=True, dwelltime=1000,
  1989. toolchangez=0.787402, toolchange_xy=[0.0, 0.0],
  1990. endz=2.0,
  1991. segx=None,
  1992. segy=None,
  1993. steps_per_circle=None):
  1994. self.decimals = self.app.decimals
  1995. # Used when parsing G-code arcs
  1996. self.steps_per_circle = int(self.app.defaults['cncjob_steps_per_circle'])
  1997. Geometry.__init__(self, geo_steps_per_circle=self.steps_per_circle)
  1998. self.kind = kind
  1999. self.units = units
  2000. self.z_cut = z_cut
  2001. self.z_move = z_move
  2002. self.feedrate = feedrate
  2003. self.z_feedrate = feedrate_z
  2004. self.feedrate_rapid = feedrate_rapid
  2005. self.tooldia = tooldia
  2006. self.toolchange = False
  2007. self.z_toolchange = toolchangez
  2008. self.xy_toolchange = toolchange_xy
  2009. self.toolchange_xy_type = None
  2010. self.toolC = tooldia
  2011. self.startz = None
  2012. self.z_end = endz
  2013. self.multidepth = False
  2014. self.z_depthpercut = depthpercut
  2015. self.excellon_optimization_type = 'B'
  2016. # if set True then the GCode generation will use UI; used in Excellon GVode for now
  2017. self.use_ui = False
  2018. self.unitcode = {"IN": "G20", "MM": "G21"}
  2019. self.feedminutecode = "G94"
  2020. # self.absolutecode = "G90"
  2021. # self.incrementalcode = "G91"
  2022. self.coordinates_type = self.app.defaults["cncjob_coords_type"]
  2023. self.gcode = ""
  2024. self.gcode_parsed = None
  2025. self.pp_geometry_name = pp_geometry_name
  2026. self.pp_geometry = self.app.preprocessors[self.pp_geometry_name]
  2027. self.pp_excellon_name = pp_excellon_name
  2028. self.pp_excellon = self.app.preprocessors[self.pp_excellon_name]
  2029. self.pp_solderpaste_name = None
  2030. # Controls if the move from Z_Toolchange to Z_Move is done fast with G0 or normally with G1
  2031. self.f_plunge = None
  2032. # Controls if the move from Z_Cutto Z_Move is done fast with G0 or G1 until zero and then G0 to Z_move
  2033. self.f_retract = None
  2034. # how much depth the probe can probe before error
  2035. self.z_pdepth = z_pdepth if z_pdepth else None
  2036. # the feedrate(speed) with which the probel travel while probing
  2037. self.feedrate_probe = feedrate_probe if feedrate_probe else None
  2038. self.spindlespeed = spindlespeed
  2039. self.spindledir = spindledir
  2040. self.dwell = dwell
  2041. self.dwelltime = dwelltime
  2042. self.segx = float(segx) if segx is not None else 0.0
  2043. self.segy = float(segy) if segy is not None else 0.0
  2044. self.input_geometry_bounds = None
  2045. self.oldx = None
  2046. self.oldy = None
  2047. self.tool = 0.0
  2048. # here store the travelled distance
  2049. self.travel_distance = 0.0
  2050. # here store the routing time
  2051. self.routing_time = 0.0
  2052. # used for creating drill CCode geometry; will be updated in the generate_from_excellon_by_tool()
  2053. self.exc_drills = None
  2054. # store here the Excellon source object tools to be accessible locally
  2055. self.exc_tools = None
  2056. # search for toolchange parameters in the Toolchange Custom Code
  2057. self.re_toolchange_custom = re.compile(r'(%[a-zA-Z0-9\-_]+%)')
  2058. # search for toolchange code: M6
  2059. self.re_toolchange = re.compile(r'^\s*(M6)$')
  2060. # Attributes to be included in serialization
  2061. # Always append to it because it carries contents
  2062. # from Geometry.
  2063. self.ser_attrs += ['kind', 'z_cut', 'z_move', 'z_toolchange', 'feedrate', 'z_feedrate', 'feedrate_rapid',
  2064. 'tooldia', 'gcode', 'input_geometry_bounds', 'gcode_parsed', 'steps_per_circle',
  2065. 'z_depthpercut', 'spindlespeed', 'dwell', 'dwelltime']
  2066. @property
  2067. def postdata(self):
  2068. return self.__dict__
  2069. def convert_units(self, units):
  2070. log.debug("camlib.CNCJob.convert_units()")
  2071. factor = Geometry.convert_units(self, units)
  2072. self.z_cut = float(self.z_cut) * factor
  2073. self.z_move *= factor
  2074. self.feedrate *= factor
  2075. self.z_feedrate *= factor
  2076. self.feedrate_rapid *= factor
  2077. self.tooldia *= factor
  2078. self.z_toolchange *= factor
  2079. self.z_end *= factor
  2080. self.z_depthpercut = float(self.z_depthpercut) * factor
  2081. return factor
  2082. def doformat(self, fun, **kwargs):
  2083. return self.doformat2(fun, **kwargs) + "\n"
  2084. def doformat2(self, fun, **kwargs):
  2085. attributes = AttrDict()
  2086. attributes.update(self.postdata)
  2087. attributes.update(kwargs)
  2088. try:
  2089. returnvalue = fun(attributes)
  2090. return returnvalue
  2091. except Exception:
  2092. self.app.log.error('Exception occurred within a preprocessor: ' + traceback.format_exc())
  2093. return ''
  2094. def parse_custom_toolchange_code(self, data):
  2095. text = data
  2096. match_list = self.re_toolchange_custom.findall(text)
  2097. if match_list:
  2098. for match in match_list:
  2099. command = match.strip('%')
  2100. try:
  2101. value = getattr(self, command)
  2102. except AttributeError:
  2103. self.app.inform.emit('[ERROR] %s: %s' %
  2104. (_("There is no such parameter"), str(match)))
  2105. log.debug("CNCJob.parse_custom_toolchange_code() --> AttributeError ")
  2106. return 'fail'
  2107. text = text.replace(match, str(value))
  2108. return text
  2109. def optimized_travelling_salesman(self, points, start=None):
  2110. """
  2111. As solving the problem in the brute force way is too slow,
  2112. this function implements a simple heuristic: always
  2113. go to the nearest city.
  2114. Even if this algorithm is extremely simple, it works pretty well
  2115. giving a solution only about 25%% longer than the optimal one (cit. Wikipedia),
  2116. and runs very fast in O(N^2) time complexity.
  2117. >>> optimized_travelling_salesman([[i,j] for i in range(5) for j in range(5)])
  2118. [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [1, 4], [1, 3], [1, 2], [1, 1], [1, 0], [2, 0], [2, 1], [2, 2],
  2119. [2, 3], [2, 4], [3, 4], [3, 3], [3, 2], [3, 1], [3, 0], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4]]
  2120. >>> optimized_travelling_salesman([[0,0],[10,0],[6,0]])
  2121. [[0, 0], [6, 0], [10, 0]]
  2122. """
  2123. if start is None:
  2124. start = points[0]
  2125. must_visit = points
  2126. path = [start]
  2127. # must_visit.remove(start)
  2128. while must_visit:
  2129. nearest = min(must_visit, key=lambda x: distance(path[-1], x))
  2130. path.append(nearest)
  2131. must_visit.remove(nearest)
  2132. return path
  2133. def generate_from_excellon_by_tool(self, exobj, tools="all", use_ui=False):
  2134. """
  2135. Creates gcode for this object from an Excellon object
  2136. for the specified tools.
  2137. :param exobj: Excellon object to process
  2138. :type exobj: Excellon
  2139. :param tools: Comma separated tool names
  2140. :type: tools: str
  2141. :param use_ui: Bool, if True the method will use parameters set in UI
  2142. :return: None
  2143. :rtype: None
  2144. """
  2145. # create a local copy of the exobj.drills so it can be used for creating drill CCode geometry
  2146. self.exc_drills = deepcopy(exobj.drills)
  2147. self.exc_tools = deepcopy(exobj.tools)
  2148. # the Excellon GCode preprocessor will use this info in the start_code() method
  2149. self.use_ui = True if use_ui else False
  2150. old_zcut = deepcopy(self.z_cut)
  2151. if self.machinist_setting == 0:
  2152. if self.z_cut > 0:
  2153. self.app.inform.emit('[WARNING] %s' %
  2154. _("The Cut Z parameter has positive value. "
  2155. "It is the depth value to drill into material.\n"
  2156. "The Cut Z parameter needs to have a negative value, assuming it is a typo "
  2157. "therefore the app will convert the value to negative. "
  2158. "Check the resulting CNC code (Gcode etc)."))
  2159. self.z_cut = -self.z_cut
  2160. elif self.z_cut == 0:
  2161. self.app.inform.emit('[WARNING] %s: %s' %
  2162. (_("The Cut Z parameter is zero. There will be no cut, skipping file"),
  2163. exobj.options['name']))
  2164. return 'fail'
  2165. try:
  2166. if self.xy_toolchange == '':
  2167. self.xy_toolchange = None
  2168. else:
  2169. self.xy_toolchange = [float(eval(a)) for a in self.xy_toolchange.split(",")]
  2170. if len(self.xy_toolchange) < 2:
  2171. self.app.inform.emit('[ERROR]%s' %
  2172. _("The Toolchange X,Y field in Edit -> Preferences has to be "
  2173. "in the format (x, y) \nbut now there is only one value, not two. "))
  2174. return 'fail'
  2175. except Exception as e:
  2176. log.debug("camlib.CNCJob.generate_from_excellon_by_tool() --> %s" % str(e))
  2177. pass
  2178. self.pp_excellon = self.app.preprocessors[self.pp_excellon_name]
  2179. p = self.pp_excellon
  2180. log.debug("Creating CNC Job from Excellon...")
  2181. # Tools
  2182. # sort the tools list by the second item in tuple (here we have a dict with diameter of the tool)
  2183. # so we actually are sorting the tools by diameter
  2184. # sorted_tools = sorted(exobj.tools.items(), key=lambda t1: t1['C'])
  2185. sort = []
  2186. for k, v in list(exobj.tools.items()):
  2187. sort.append((k, v.get('C')))
  2188. sorted_tools = sorted(sort, key=lambda t1: t1[1])
  2189. if tools == "all":
  2190. tools = [i[0] for i in sorted_tools] # we get a array of ordered tools
  2191. log.debug("Tools 'all' and sorted are: %s" % str(tools))
  2192. else:
  2193. selected_tools = [x.strip() for x in tools.split(",")] # we strip spaces and also separate the tools by ','
  2194. selected_tools = [t1 for t1 in selected_tools if t1 in selected_tools]
  2195. # Create a sorted list of selected tools from the sorted_tools list
  2196. tools = [i for i, j in sorted_tools for k in selected_tools if i == k]
  2197. log.debug("Tools selected and sorted are: %s" % str(tools))
  2198. # build a self.options['Tools_in_use'] list from scratch if we don't have one like in the case of
  2199. # running this method from a Tcl Command
  2200. build_tools_in_use_list = False
  2201. if 'Tools_in_use' not in self.options:
  2202. self.options['Tools_in_use'] = list()
  2203. # if the list is empty (either we just added the key or it was already there but empty) signal to build it
  2204. if not self.options['Tools_in_use']:
  2205. build_tools_in_use_list = True
  2206. # fill the data into the self.exc_cnc_tools dictionary
  2207. for it in sorted_tools:
  2208. for to_ol in tools:
  2209. if to_ol == it[0]:
  2210. drill_no = 0
  2211. sol_geo = list()
  2212. for dr in exobj.drills:
  2213. if dr['tool'] == it[0]:
  2214. drill_no += 1
  2215. sol_geo.append(dr['point'])
  2216. slot_no = 0
  2217. for dr in exobj.slots:
  2218. if dr['tool'] == it[0]:
  2219. slot_no += 1
  2220. start = (dr['start'].x, dr['start'].y)
  2221. stop = (dr['stop'].x, dr['stop'].y)
  2222. sol_geo.append(
  2223. LineString([start, stop]).buffer((it[1] / 2.0), resolution=self.geo_steps_per_circle)
  2224. )
  2225. try:
  2226. z_off = float(exobj.tools[it[0]]['data']['offset']) * (-1)
  2227. except KeyError:
  2228. z_off = 0
  2229. default_data = dict()
  2230. for k, v in list(self.options.items()):
  2231. default_data[k] = deepcopy(v)
  2232. self.exc_cnc_tools[it[1]] = dict()
  2233. self.exc_cnc_tools[it[1]]['tool'] = it[0]
  2234. self.exc_cnc_tools[it[1]]['nr_drills'] = drill_no
  2235. self.exc_cnc_tools[it[1]]['nr_slots'] = slot_no
  2236. self.exc_cnc_tools[it[1]]['offset_z'] = z_off
  2237. self.exc_cnc_tools[it[1]]['data'] = default_data
  2238. self.exc_cnc_tools[it[1]]['solid_geometry'] = deepcopy(sol_geo)
  2239. # build a self.options['Tools_in_use'] list from scratch if we don't have one like in the case of
  2240. # running this method from a Tcl Command
  2241. if build_tools_in_use_list is True:
  2242. self.options['Tools_in_use'].append(
  2243. [it[0], it[1], drill_no, slot_no]
  2244. )
  2245. self.app.inform.emit(_("Creating a list of points to drill..."))
  2246. # Points (Group by tool)
  2247. points = dict()
  2248. for drill in exobj.drills:
  2249. if self.app.abort_flag:
  2250. # graceful abort requested by the user
  2251. raise FlatCAMApp.GracefulException
  2252. if drill['tool'] in tools:
  2253. try:
  2254. points[drill['tool']].append(drill['point'])
  2255. except KeyError:
  2256. points[drill['tool']] = [drill['point']]
  2257. # log.debug("Found %d drills." % len(points))
  2258. self.gcode = list()
  2259. self.f_plunge = self.app.defaults["excellon_f_plunge"]
  2260. self.f_retract = self.app.defaults["excellon_f_retract"]
  2261. # Initialization
  2262. gcode = self.doformat(p.start_code)
  2263. if not use_ui:
  2264. gcode += self.doformat(p.z_feedrate_code)
  2265. if self.toolchange is False:
  2266. if self.xy_toolchange is not None:
  2267. gcode += self.doformat(p.lift_code, x=self.xy_toolchange[0], y=self.xy_toolchange[1])
  2268. gcode += self.doformat(p.startz_code, x=self.xy_toolchange[0], y=self.xy_toolchange[1])
  2269. else:
  2270. gcode += self.doformat(p.lift_code, x=0.0, y=0.0)
  2271. gcode += self.doformat(p.startz_code, x=0.0, y=0.0)
  2272. # Distance callback
  2273. class CreateDistanceCallback(object):
  2274. """Create callback to calculate distances between points."""
  2275. def __init__(self):
  2276. """Initialize distance array."""
  2277. locations = create_data_array()
  2278. size = len(locations)
  2279. self.matrix = dict()
  2280. for from_node in range(size):
  2281. self.matrix[from_node] = {}
  2282. for to_node in range(size):
  2283. if from_node == to_node:
  2284. self.matrix[from_node][to_node] = 0
  2285. else:
  2286. x1 = locations[from_node][0]
  2287. y1 = locations[from_node][1]
  2288. x2 = locations[to_node][0]
  2289. y2 = locations[to_node][1]
  2290. self.matrix[from_node][to_node] = distance_euclidian(x1, y1, x2, y2)
  2291. # def Distance(self, from_node, to_node):
  2292. # return int(self.matrix[from_node][to_node])
  2293. def Distance(self, from_index, to_index):
  2294. # Convert from routing variable Index to distance matrix NodeIndex.
  2295. from_node = manager.IndexToNode(from_index)
  2296. to_node = manager.IndexToNode(to_index)
  2297. return self.matrix[from_node][to_node]
  2298. # Create the data.
  2299. def create_data_array():
  2300. locations = []
  2301. for point in points[tool]:
  2302. locations.append((point.coords.xy[0][0], point.coords.xy[1][0]))
  2303. return locations
  2304. if self.xy_toolchange is not None:
  2305. self.oldx = self.xy_toolchange[0]
  2306. self.oldy = self.xy_toolchange[1]
  2307. else:
  2308. self.oldx = 0.0
  2309. self.oldy = 0.0
  2310. measured_distance = 0.0
  2311. measured_down_distance = 0.0
  2312. measured_up_to_zero_distance = 0.0
  2313. measured_lift_distance = 0.0
  2314. self.app.inform.emit('%s...' % _("Starting G-Code"))
  2315. current_platform = platform.architecture()[0]
  2316. if current_platform == '64bit':
  2317. used_excellon_optimization_type = self.excellon_optimization_type
  2318. if used_excellon_optimization_type == 'M':
  2319. log.debug("Using OR-Tools Metaheuristic Guided Local Search drill path optimization.")
  2320. if exobj.drills:
  2321. for tool in tools:
  2322. if self.app.abort_flag:
  2323. # graceful abort requested by the user
  2324. raise FlatCAMApp.GracefulException
  2325. self.tool = tool
  2326. self.postdata['toolC'] = exobj.tools[tool]["C"]
  2327. self.tooldia = exobj.tools[tool]["C"]
  2328. if use_ui:
  2329. self.z_feedrate = exobj.tools[tool]['data']['feedrate_z']
  2330. self.feedrate = exobj.tools[tool]['data']['feedrate']
  2331. gcode += self.doformat(p.z_feedrate_code)
  2332. self.z_cut = exobj.tools[tool]['data']['cutz']
  2333. if self.machinist_setting == 0:
  2334. if self.z_cut > 0:
  2335. self.app.inform.emit('[WARNING] %s' %
  2336. _("The Cut Z parameter has positive value. "
  2337. "It is the depth value to drill into material.\n"
  2338. "The Cut Z parameter needs to have a negative value, "
  2339. "assuming it is a typo "
  2340. "therefore the app will convert the value to negative. "
  2341. "Check the resulting CNC code (Gcode etc)."))
  2342. self.z_cut = -self.z_cut
  2343. elif self.z_cut == 0:
  2344. self.app.inform.emit('[WARNING] %s: %s' %
  2345. (_(
  2346. "The Cut Z parameter is zero. There will be no cut, "
  2347. "skipping file"),
  2348. exobj.options['name']))
  2349. return 'fail'
  2350. old_zcut = deepcopy(self.z_cut)
  2351. self.z_move = exobj.tools[tool]['data']['travelz']
  2352. self.spindlespeed = exobj.tools[tool]['data']['spindlespeed']
  2353. self.dwell = exobj.tools[tool]['data']['dwell']
  2354. self.dwelltime = exobj.tools[tool]['data']['dwelltime']
  2355. self.multidepth = exobj.tools[tool]['data']['multidepth']
  2356. self.z_depthpercut = exobj.tools[tool]['data']['depthperpass']
  2357. # ###############################################
  2358. # ############ Create the data. #################
  2359. # ###############################################
  2360. node_list = []
  2361. locations = create_data_array()
  2362. tsp_size = len(locations)
  2363. num_routes = 1 # The number of routes, which is 1 in the TSP.
  2364. # Nodes are indexed from 0 to tsp_size - 1. The depot is the starting node of the route.
  2365. depot = 0
  2366. # Create routing model.
  2367. if tsp_size > 0:
  2368. manager = pywrapcp.RoutingIndexManager(tsp_size, num_routes, depot)
  2369. routing = pywrapcp.RoutingModel(manager)
  2370. search_parameters = pywrapcp.DefaultRoutingSearchParameters()
  2371. search_parameters.local_search_metaheuristic = (
  2372. routing_enums_pb2.LocalSearchMetaheuristic.GUIDED_LOCAL_SEARCH)
  2373. # Set search time limit in milliseconds.
  2374. if float(self.app.defaults["excellon_search_time"]) != 0:
  2375. search_parameters.time_limit.seconds = int(
  2376. float(self.app.defaults["excellon_search_time"]))
  2377. else:
  2378. search_parameters.time_limit.seconds = 3
  2379. # Callback to the distance function. The callback takes two
  2380. # arguments (the from and to node indices) and returns the distance between them.
  2381. dist_between_locations = CreateDistanceCallback()
  2382. dist_callback = dist_between_locations.Distance
  2383. transit_callback_index = routing.RegisterTransitCallback(dist_callback)
  2384. routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index)
  2385. # Solve, returns a solution if any.
  2386. assignment = routing.SolveWithParameters(search_parameters)
  2387. if assignment:
  2388. # Solution cost.
  2389. log.info("Total distance: " + str(assignment.ObjectiveValue()))
  2390. # Inspect solution.
  2391. # Only one route here; otherwise iterate from 0 to routing.vehicles() - 1.
  2392. route_number = 0
  2393. node = routing.Start(route_number)
  2394. start_node = node
  2395. while not routing.IsEnd(node):
  2396. if self.app.abort_flag:
  2397. # graceful abort requested by the user
  2398. raise FlatCAMApp.GracefulException
  2399. node_list.append(node)
  2400. node = assignment.Value(routing.NextVar(node))
  2401. else:
  2402. log.warning('No solution found.')
  2403. else:
  2404. log.warning('Specify an instance greater than 0.')
  2405. # ############################################# ##
  2406. # Only if tool has points.
  2407. if tool in points:
  2408. if self.app.abort_flag:
  2409. # graceful abort requested by the user
  2410. raise FlatCAMApp.GracefulException
  2411. # Tool change sequence (optional)
  2412. if self.toolchange:
  2413. gcode += self.doformat(p.toolchange_code, toolchangexy=(self.oldx, self.oldy))
  2414. gcode += self.doformat(p.spindle_code) # Spindle start
  2415. if self.dwell is True:
  2416. gcode += self.doformat(p.dwell_code) # Dwell time
  2417. else:
  2418. gcode += self.doformat(p.spindle_code)
  2419. if self.dwell is True:
  2420. gcode += self.doformat(p.dwell_code) # Dwell time
  2421. current_tooldia = float('%.*f' % (self.decimals, float(exobj.tools[tool]["C"])))
  2422. self.app.inform.emit(
  2423. '%s: %s%s.' % (_("Starting G-Code for tool with diameter"),
  2424. str(current_tooldia),
  2425. str(self.units))
  2426. )
  2427. # TODO apply offset only when using the GUI, for TclCommand this will create an error
  2428. # because the values for Z offset are created in build_ui()
  2429. try:
  2430. z_offset = float(exobj.tools[tool]['data']['offset']) * (-1)
  2431. except KeyError:
  2432. z_offset = 0
  2433. self.z_cut = z_offset + old_zcut
  2434. self.coordinates_type = self.app.defaults["cncjob_coords_type"]
  2435. if self.coordinates_type == "G90":
  2436. # Drillling! for Absolute coordinates type G90
  2437. # variables to display the percentage of work done
  2438. geo_len = len(node_list)
  2439. old_disp_number = 0
  2440. log.warning("Number of drills for which to generate GCode: %s" % str(geo_len))
  2441. loc_nr = 0
  2442. for k in node_list:
  2443. if self.app.abort_flag:
  2444. # graceful abort requested by the user
  2445. raise FlatCAMApp.GracefulException
  2446. locx = locations[k][0]
  2447. locy = locations[k][1]
  2448. gcode += self.doformat(p.rapid_code, x=locx, y=locy)
  2449. if self.multidepth and abs(self.z_cut) > abs(self.z_depthpercut):
  2450. doc = deepcopy(self.z_cut)
  2451. self.z_cut = 0.0
  2452. while abs(self.z_cut) < abs(doc):
  2453. self.z_cut -= self.z_depthpercut
  2454. if abs(doc) < abs(self.z_cut) < (abs(doc) + self.z_depthpercut):
  2455. self.z_cut = doc
  2456. gcode += self.doformat(p.down_code, x=locx, y=locy)
  2457. measured_down_distance += abs(self.z_cut) + abs(self.z_move)
  2458. if self.f_retract is False:
  2459. gcode += self.doformat(p.up_to_zero_code, x=locx, y=locy)
  2460. measured_up_to_zero_distance += abs(self.z_cut)
  2461. measured_lift_distance += abs(self.z_move)
  2462. else:
  2463. measured_lift_distance += abs(self.z_cut) + abs(self.z_move)
  2464. gcode += self.doformat(p.lift_code, x=locx, y=locy)
  2465. else:
  2466. gcode += self.doformat(p.down_code, x=locx, y=locy)
  2467. measured_down_distance += abs(self.z_cut) + abs(self.z_move)
  2468. if self.f_retract is False:
  2469. gcode += self.doformat(p.up_to_zero_code, x=locx, y=locy)
  2470. measured_up_to_zero_distance += abs(self.z_cut)
  2471. measured_lift_distance += abs(self.z_move)
  2472. else:
  2473. measured_lift_distance += abs(self.z_cut) + abs(self.z_move)
  2474. gcode += self.doformat(p.lift_code, x=locx, y=locy)
  2475. measured_distance += abs(distance_euclidian(locx, locy, self.oldx, self.oldy))
  2476. self.oldx = locx
  2477. self.oldy = locy
  2478. loc_nr += 1
  2479. disp_number = int(np.interp(loc_nr, [0, geo_len], [0, 100]))
  2480. if old_disp_number < disp_number <= 100:
  2481. self.app.proc_container.update_view_text(' %d%%' % disp_number)
  2482. old_disp_number = disp_number
  2483. else:
  2484. self.app.inform.emit('[ERROR_NOTCL] %s...' % _('G91 coordinates not implemented'))
  2485. return 'fail'
  2486. self.z_cut = deepcopy(old_zcut)
  2487. else:
  2488. log.debug("camlib.CNCJob.generate_from_excellon_by_tool() --> "
  2489. "The loaded Excellon file has no drills ...")
  2490. self.app.inform.emit('[ERROR_NOTCL] %s...' % _('The loaded Excellon file has no drills'))
  2491. return 'fail'
  2492. log.debug("The total travel distance with OR-TOOLS Metaheuristics is: %s" % str(measured_distance))
  2493. if used_excellon_optimization_type == 'B':
  2494. log.debug("Using OR-Tools Basic drill path optimization.")
  2495. if exobj.drills:
  2496. for tool in tools:
  2497. if self.app.abort_flag:
  2498. # graceful abort requested by the user
  2499. raise FlatCAMApp.GracefulException
  2500. self.tool = tool
  2501. self.postdata['toolC']=exobj.tools[tool]["C"]
  2502. self.tooldia = exobj.tools[tool]["C"]
  2503. if use_ui:
  2504. self.z_feedrate = exobj.tools[tool]['data']['feedrate_z']
  2505. self.feedrate = exobj.tools[tool]['data']['feedrate']
  2506. gcode += self.doformat(p.z_feedrate_code)
  2507. self.z_cut = exobj.tools[tool]['data']['cutz']
  2508. if self.machinist_setting == 0:
  2509. if self.z_cut > 0:
  2510. self.app.inform.emit('[WARNING] %s' %
  2511. _("The Cut Z parameter has positive value. "
  2512. "It is the depth value to drill into material.\n"
  2513. "The Cut Z parameter needs to have a negative value, "
  2514. "assuming it is a typo "
  2515. "therefore the app will convert the value to negative. "
  2516. "Check the resulting CNC code (Gcode etc)."))
  2517. self.z_cut = -self.z_cut
  2518. elif self.z_cut == 0:
  2519. self.app.inform.emit('[WARNING] %s: %s' %
  2520. (_(
  2521. "The Cut Z parameter is zero. There will be no cut, "
  2522. "skipping file"),
  2523. exobj.options['name']))
  2524. return 'fail'
  2525. old_zcut = deepcopy(self.z_cut)
  2526. self.z_move = exobj.tools[tool]['data']['travelz']
  2527. print(self.z_move)
  2528. self.spindlespeed = exobj.tools[tool]['data']['spindlespeed']
  2529. self.dwell = exobj.tools[tool]['data']['dwell']
  2530. self.dwelltime = exobj.tools[tool]['data']['dwelltime']
  2531. self.multidepth = exobj.tools[tool]['data']['multidepth']
  2532. self.z_depthpercut = exobj.tools[tool]['data']['depthperpass']
  2533. # ###############################################
  2534. # ############ Create the data. #################
  2535. # ###############################################
  2536. node_list = []
  2537. locations = create_data_array()
  2538. tsp_size = len(locations)
  2539. num_routes = 1 # The number of routes, which is 1 in the TSP.
  2540. # Nodes are indexed from 0 to tsp_size - 1. The depot is the starting node of the route.
  2541. depot = 0
  2542. # Create routing model.
  2543. if tsp_size > 0:
  2544. manager = pywrapcp.RoutingIndexManager(tsp_size, num_routes, depot)
  2545. routing = pywrapcp.RoutingModel(manager)
  2546. search_parameters = pywrapcp.DefaultRoutingSearchParameters()
  2547. # Callback to the distance function. The callback takes two
  2548. # arguments (the from and to node indices) and returns the distance between them.
  2549. dist_between_locations = CreateDistanceCallback()
  2550. dist_callback = dist_between_locations.Distance
  2551. transit_callback_index = routing.RegisterTransitCallback(dist_callback)
  2552. routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index)
  2553. # Solve, returns a solution if any.
  2554. assignment = routing.SolveWithParameters(search_parameters)
  2555. if assignment:
  2556. # Solution cost.
  2557. log.info("Total distance: " + str(assignment.ObjectiveValue()))
  2558. # Inspect solution.
  2559. # Only one route here; otherwise iterate from 0 to routing.vehicles() - 1.
  2560. route_number = 0
  2561. node = routing.Start(route_number)
  2562. start_node = node
  2563. while not routing.IsEnd(node):
  2564. node_list.append(node)
  2565. node = assignment.Value(routing.NextVar(node))
  2566. else:
  2567. log.warning('No solution found.')
  2568. else:
  2569. log.warning('Specify an instance greater than 0.')
  2570. # ############################################# ##
  2571. # Only if tool has points.
  2572. if tool in points:
  2573. if self.app.abort_flag:
  2574. # graceful abort requested by the user
  2575. raise FlatCAMApp.GracefulException
  2576. # Tool change sequence (optional)
  2577. if self.toolchange:
  2578. gcode += self.doformat(p.toolchange_code, toolchangexy=(self.oldx, self.oldy))
  2579. gcode += self.doformat(p.spindle_code) # Spindle start)
  2580. if self.dwell is True:
  2581. gcode += self.doformat(p.dwell_code) # Dwell time
  2582. else:
  2583. gcode += self.doformat(p.spindle_code)
  2584. if self.dwell is True:
  2585. gcode += self.doformat(p.dwell_code) # Dwell time
  2586. current_tooldia = float('%.*f' % (self.decimals, float(exobj.tools[tool]["C"])))
  2587. self.app.inform.emit(
  2588. '%s: %s%s.' % (_("Starting G-Code for tool with diameter"),
  2589. str(current_tooldia),
  2590. str(self.units))
  2591. )
  2592. # TODO apply offset only when using the GUI, for TclCommand this will create an error
  2593. # because the values for Z offset are created in build_ui()
  2594. try:
  2595. z_offset = float(exobj.tools[tool]['data']['offset']) * (-1)
  2596. except KeyError:
  2597. z_offset = 0
  2598. self.z_cut = z_offset + old_zcut
  2599. self.coordinates_type = self.app.defaults["cncjob_coords_type"]
  2600. if self.coordinates_type == "G90":
  2601. # Drillling! for Absolute coordinates type G90
  2602. # variables to display the percentage of work done
  2603. geo_len = len(node_list)
  2604. old_disp_number = 0
  2605. log.warning("Number of drills for which to generate GCode: %s" % str(geo_len))
  2606. loc_nr = 0
  2607. for k in node_list:
  2608. if self.app.abort_flag:
  2609. # graceful abort requested by the user
  2610. raise FlatCAMApp.GracefulException
  2611. locx = locations[k][0]
  2612. locy = locations[k][1]
  2613. gcode += self.doformat(p.rapid_code, x=locx, y=locy)
  2614. if self.multidepth and abs(self.z_cut) > abs(self.z_depthpercut):
  2615. doc = deepcopy(self.z_cut)
  2616. self.z_cut = 0.0
  2617. while abs(self.z_cut) < abs(doc):
  2618. self.z_cut -= self.z_depthpercut
  2619. if abs(doc) < abs(self.z_cut) < (abs(doc) + self.z_depthpercut):
  2620. self.z_cut = doc
  2621. gcode += self.doformat(p.down_code, x=locx, y=locy)
  2622. measured_down_distance += abs(self.z_cut) + abs(self.z_move)
  2623. if self.f_retract is False:
  2624. gcode += self.doformat(p.up_to_zero_code, x=locx, y=locy)
  2625. measured_up_to_zero_distance += abs(self.z_cut)
  2626. measured_lift_distance += abs(self.z_move)
  2627. else:
  2628. measured_lift_distance += abs(self.z_cut) + abs(self.z_move)
  2629. gcode += self.doformat(p.lift_code, x=locx, y=locy)
  2630. else:
  2631. gcode += self.doformat(p.down_code, x=locx, y=locy)
  2632. measured_down_distance += abs(self.z_cut) + abs(self.z_move)
  2633. if self.f_retract is False:
  2634. gcode += self.doformat(p.up_to_zero_code, x=locx, y=locy)
  2635. measured_up_to_zero_distance += abs(self.z_cut)
  2636. measured_lift_distance += abs(self.z_move)
  2637. else:
  2638. measured_lift_distance += abs(self.z_cut) + abs(self.z_move)
  2639. gcode += self.doformat(p.lift_code, x=locx, y=locy)
  2640. measured_distance += abs(distance_euclidian(locx, locy, self.oldx, self.oldy))
  2641. self.oldx = locx
  2642. self.oldy = locy
  2643. loc_nr += 1
  2644. disp_number = int(np.interp(loc_nr, [0, geo_len], [0, 100]))
  2645. if old_disp_number < disp_number <= 100:
  2646. self.app.proc_container.update_view_text(' %d%%' % disp_number)
  2647. old_disp_number = disp_number
  2648. else:
  2649. self.app.inform.emit('[ERROR_NOTCL] %s...' % _('G91 coordinates not implemented'))
  2650. return 'fail'
  2651. self.z_cut = deepcopy(old_zcut)
  2652. else:
  2653. log.debug("camlib.CNCJob.generate_from_excellon_by_tool() --> "
  2654. "The loaded Excellon file has no drills ...")
  2655. self.app.inform.emit('[ERROR_NOTCL] %s...' %
  2656. _('The loaded Excellon file has no drills'))
  2657. return 'fail'
  2658. log.debug("The total travel distance with OR-TOOLS Basic Algorithm is: %s" % str(measured_distance))
  2659. else:
  2660. used_excellon_optimization_type = 'T'
  2661. if used_excellon_optimization_type == 'T':
  2662. log.debug("Using Travelling Salesman drill path optimization.")
  2663. for tool in tools:
  2664. if self.app.abort_flag:
  2665. # graceful abort requested by the user
  2666. raise FlatCAMApp.GracefulException
  2667. if exobj.drills:
  2668. self.tool = tool
  2669. self.postdata['toolC'] = exobj.tools[tool]["C"]
  2670. self.tooldia = exobj.tools[tool]["C"]
  2671. if use_ui:
  2672. self.z_feedrate = exobj.tools[tool]['data']['feedrate_z']
  2673. self.feedrate = exobj.tools[tool]['data']['feedrate']
  2674. gcode += self.doformat(p.z_feedrate_code)
  2675. self.z_cut = exobj.tools[tool]['data']['cutz']
  2676. if self.machinist_setting == 0:
  2677. if self.z_cut > 0:
  2678. self.app.inform.emit('[WARNING] %s' %
  2679. _("The Cut Z parameter has positive value. "
  2680. "It is the depth value to drill into material.\n"
  2681. "The Cut Z parameter needs to have a negative value, "
  2682. "assuming it is a typo "
  2683. "therefore the app will convert the value to negative. "
  2684. "Check the resulting CNC code (Gcode etc)."))
  2685. self.z_cut = -self.z_cut
  2686. elif self.z_cut == 0:
  2687. self.app.inform.emit('[WARNING] %s: %s' %
  2688. (_(
  2689. "The Cut Z parameter is zero. There will be no cut, "
  2690. "skipping file"),
  2691. exobj.options['name']))
  2692. return 'fail'
  2693. old_zcut = deepcopy(self.z_cut)
  2694. self.z_move = exobj.tools[tool]['data']['travelz']
  2695. self.spindlespeed = exobj.tools[tool]['data']['spindlespeed']
  2696. self.dwell = exobj.tools[tool]['data']['dwell']
  2697. self.dwelltime = exobj.tools[tool]['data']['dwelltime']
  2698. self.multidepth = exobj.tools[tool]['data']['multidepth']
  2699. self.z_depthpercut = exobj.tools[tool]['data']['depthperpass']
  2700. # Only if tool has points.
  2701. if tool in points:
  2702. if self.app.abort_flag:
  2703. # graceful abort requested by the user
  2704. raise FlatCAMApp.GracefulException
  2705. # Tool change sequence (optional)
  2706. if self.toolchange:
  2707. gcode += self.doformat(p.toolchange_code, toolchangexy=(self.oldx, self.oldy))
  2708. gcode += self.doformat(p.spindle_code) # Spindle start)
  2709. if self.dwell is True:
  2710. gcode += self.doformat(p.dwell_code) # Dwell time
  2711. else:
  2712. gcode += self.doformat(p.spindle_code)
  2713. if self.dwell is True:
  2714. gcode += self.doformat(p.dwell_code) # Dwell time
  2715. current_tooldia = float('%.*f' % (self.decimals, float(exobj.tools[tool]["C"])))
  2716. self.app.inform.emit(
  2717. '%s: %s%s.' % (_("Starting G-Code for tool with diameter"),
  2718. str(current_tooldia),
  2719. str(self.units))
  2720. )
  2721. # TODO apply offset only when using the GUI, for TclCommand this will create an error
  2722. # because the values for Z offset are created in build_ui()
  2723. try:
  2724. z_offset = float(exobj.tools[tool]['data']['offset']) * (-1)
  2725. except KeyError:
  2726. z_offset = 0
  2727. self.z_cut = z_offset + old_zcut
  2728. self.coordinates_type = self.app.defaults["cncjob_coords_type"]
  2729. if self.coordinates_type == "G90":
  2730. # Drillling! for Absolute coordinates type G90
  2731. altPoints = []
  2732. for point in points[tool]:
  2733. altPoints.append((point.coords.xy[0][0], point.coords.xy[1][0]))
  2734. node_list = self.optimized_travelling_salesman(altPoints)
  2735. # variables to display the percentage of work done
  2736. geo_len = len(node_list)
  2737. old_disp_number = 0
  2738. log.warning("Number of drills for which to generate GCode: %s" % str(geo_len))
  2739. loc_nr = 0
  2740. for point in node_list:
  2741. if self.app.abort_flag:
  2742. # graceful abort requested by the user
  2743. raise FlatCAMApp.GracefulException
  2744. locx = point[0]
  2745. locy = point[1]
  2746. gcode += self.doformat(p.rapid_code, x=locx, y=locy)
  2747. if self.multidepth and abs(self.z_cut) > abs(self.z_depthpercut):
  2748. doc = deepcopy(self.z_cut)
  2749. self.z_cut = 0.0
  2750. while abs(self.z_cut) < abs(doc):
  2751. self.z_cut -= self.z_depthpercut
  2752. if abs(doc) < abs(self.z_cut) < (abs(doc) + self.z_depthpercut):
  2753. self.z_cut = doc
  2754. gcode += self.doformat(p.down_code, x=locx, y=locy)
  2755. measured_down_distance += abs(self.z_cut) + abs(self.z_move)
  2756. if self.f_retract is False:
  2757. gcode += self.doformat(p.up_to_zero_code, x=locx, y=locy)
  2758. measured_up_to_zero_distance += abs(self.z_cut)
  2759. measured_lift_distance += abs(self.z_move)
  2760. else:
  2761. measured_lift_distance += abs(self.z_cut) + abs(self.z_move)
  2762. gcode += self.doformat(p.lift_code, x=locx, y=locy)
  2763. else:
  2764. gcode += self.doformat(p.down_code, x=locx, y=locy)
  2765. measured_down_distance += abs(self.z_cut) + abs(self.z_move)
  2766. if self.f_retract is False:
  2767. gcode += self.doformat(p.up_to_zero_code, x=locx, y=locy)
  2768. measured_up_to_zero_distance += abs(self.z_cut)
  2769. measured_lift_distance += abs(self.z_move)
  2770. else:
  2771. measured_lift_distance += abs(self.z_cut) + abs(self.z_move)
  2772. gcode += self.doformat(p.lift_code, x=locx, y=locy)
  2773. measured_distance += abs(distance_euclidian(locx, locy, self.oldx, self.oldy))
  2774. self.oldx = locx
  2775. self.oldy = locy
  2776. loc_nr += 1
  2777. disp_number = int(np.interp(loc_nr, [0, geo_len], [0, 100]))
  2778. if old_disp_number < disp_number <= 100:
  2779. self.app.proc_container.update_view_text(' %d%%' % disp_number)
  2780. old_disp_number = disp_number
  2781. else:
  2782. self.app.inform.emit('[ERROR_NOTCL] %s...' % _('G91 coordinates not implemented'))
  2783. return 'fail'
  2784. else:
  2785. log.debug("camlib.CNCJob.generate_from_excellon_by_tool() --> "
  2786. "The loaded Excellon file has no drills ...")
  2787. self.app.inform.emit('[ERROR_NOTCL] %s...' %
  2788. _('The loaded Excellon file has no drills'))
  2789. return 'fail'
  2790. self.z_cut = deepcopy(old_zcut)
  2791. log.debug("The total travel distance with Travelling Salesman Algorithm is: %s" % str(measured_distance))
  2792. gcode += self.doformat(p.spindle_stop_code) # Spindle stop
  2793. gcode += self.doformat(p.end_code, x=0, y=0)
  2794. measured_distance += abs(distance_euclidian(self.oldx, self.oldy, 0, 0))
  2795. log.debug("The total travel distance including travel to end position is: %s" %
  2796. str(measured_distance) + '\n')
  2797. self.travel_distance = measured_distance
  2798. # I use the value of self.feedrate_rapid for the feadrate in case of the measure_lift_distance and for
  2799. # traveled_time because it is not always possible to determine the feedrate that the CNC machine uses
  2800. # for G0 move (the fastest speed available to the CNC router). Although self.feedrate_rapids is used only with
  2801. # Marlin preprocessor and derivatives.
  2802. self.routing_time = (measured_down_distance + measured_up_to_zero_distance) / self.feedrate
  2803. lift_time = measured_lift_distance / self.feedrate_rapid
  2804. traveled_time = measured_distance / self.feedrate_rapid
  2805. self.routing_time += lift_time + traveled_time
  2806. self.gcode = gcode
  2807. self.app.inform.emit(_("Finished G-Code generation..."))
  2808. return 'OK'
  2809. def generate_from_multitool_geometry(
  2810. self, geometry, append=True,
  2811. tooldia=None, offset=0.0, tolerance=0, z_cut=1.0, z_move=2.0,
  2812. feedrate=2.0, feedrate_z=2.0, feedrate_rapid=30,
  2813. spindlespeed=None, spindledir='CW', dwell=False, dwelltime=1.0,
  2814. multidepth=False, depthpercut=None,
  2815. toolchange=False, toolchangez=1.0, toolchangexy="0.0, 0.0", extracut=False, extracut_length=0.2,
  2816. startz=None, endz=2.0, pp_geometry_name=None, tool_no=1):
  2817. """
  2818. Algorithm to generate from multitool Geometry.
  2819. Algorithm description:
  2820. ----------------------
  2821. Uses RTree to find the nearest path to follow.
  2822. :param geometry:
  2823. :param append:
  2824. :param tooldia:
  2825. :param offset:
  2826. :param tolerance:
  2827. :param z_cut:
  2828. :param z_move:
  2829. :param feedrate:
  2830. :param feedrate_z:
  2831. :param feedrate_rapid:
  2832. :param spindlespeed:
  2833. :param spindledir: Direction of rotation for the spindle. If using GRBL laser mode will
  2834. adjust the laser mode
  2835. :param dwell:
  2836. :param dwelltime:
  2837. :param multidepth: If True, use multiple passes to reach the desired depth.
  2838. :param depthpercut: Maximum depth in each pass.
  2839. :param toolchange:
  2840. :param toolchangez:
  2841. :param toolchangexy:
  2842. :param extracut: Adds (or not) an extra cut at the end of each path overlapping the
  2843. first point in path to ensure complete copper removal
  2844. :param extracut_length: Extra cut legth at the end of the path
  2845. :param startz:
  2846. :param endz:
  2847. :param pp_geometry_name:
  2848. :param tool_no:
  2849. :return: GCode - string
  2850. """
  2851. log.debug("Generate_from_multitool_geometry()")
  2852. temp_solid_geometry = []
  2853. if offset != 0.0:
  2854. for it in geometry:
  2855. # if the geometry is a closed shape then create a Polygon out of it
  2856. if isinstance(it, LineString):
  2857. c = it.coords
  2858. if c[0] == c[-1]:
  2859. it = Polygon(it)
  2860. temp_solid_geometry.append(it.buffer(offset, join_style=2))
  2861. else:
  2862. temp_solid_geometry = geometry
  2863. # ## Flatten the geometry. Only linear elements (no polygons) remain.
  2864. flat_geometry = self.flatten(temp_solid_geometry, pathonly=True)
  2865. log.debug("%d paths" % len(flat_geometry))
  2866. self.tooldia = float(tooldia) if tooldia else None
  2867. self.z_cut = float(z_cut) if z_cut else None
  2868. self.z_move = float(z_move) if z_move is not None else None
  2869. self.feedrate = float(feedrate) if feedrate else None
  2870. self.z_feedrate = float(feedrate_z) if feedrate_z is not None else None
  2871. self.feedrate_rapid = float(feedrate_rapid) if feedrate_rapid else None
  2872. self.spindlespeed = int(spindlespeed) if spindlespeed != 0 else None
  2873. self.spindledir = spindledir
  2874. self.dwell = dwell
  2875. self.dwelltime = float(dwelltime) if dwelltime else None
  2876. self.startz = float(startz) if startz is not None else None
  2877. self.z_end = float(endz) if endz is not None else None
  2878. self.z_depthpercut = float(depthpercut) if depthpercut else None
  2879. self.multidepth = multidepth
  2880. self.z_toolchange = float(toolchangez) if toolchangez is not None else None
  2881. # it servers in the preprocessor file
  2882. self.tool = tool_no
  2883. try:
  2884. if toolchangexy == '':
  2885. self.xy_toolchange = None
  2886. else:
  2887. self.xy_toolchange = [float(eval(a)) for a in toolchangexy.split(",")]
  2888. if len(self.xy_toolchange) < 2:
  2889. self.app.inform.emit('[ERROR] %s' % _("The Toolchange X,Y field in Edit -> Preferences has to be "
  2890. "in the format (x, y) \n"
  2891. "but now there is only one value, not two."))
  2892. return 'fail'
  2893. except Exception as e:
  2894. log.debug("camlib.CNCJob.generate_from_multitool_geometry() --> %s" % str(e))
  2895. pass
  2896. self.pp_geometry_name = pp_geometry_name if pp_geometry_name else 'default'
  2897. self.f_plunge = self.app.defaults["geometry_f_plunge"]
  2898. if self.z_cut is None:
  2899. if 'laser' not in self.pp_geometry_name:
  2900. self.app.inform.emit('[ERROR_NOTCL] %s' %
  2901. _("Cut_Z parameter is None or zero. Most likely a bad combinations of "
  2902. "other parameters."))
  2903. return 'fail'
  2904. else:
  2905. self.z_cut = 0
  2906. if self.machinist_setting == 0:
  2907. if self.z_cut > 0:
  2908. self.app.inform.emit('[WARNING] %s' %
  2909. _("The Cut Z parameter has positive value. "
  2910. "It is the depth value to cut into material.\n"
  2911. "The Cut Z parameter needs to have a negative value, assuming it is a typo "
  2912. "therefore the app will convert the value to negative."
  2913. "Check the resulting CNC code (Gcode etc)."))
  2914. self.z_cut = -self.z_cut
  2915. elif self.z_cut == 0 and 'laser' not in self.pp_geometry_name:
  2916. self.app.inform.emit('[WARNING] %s: %s' %
  2917. (_("The Cut Z parameter is zero. There will be no cut, skipping file"),
  2918. self.options['name']))
  2919. return 'fail'
  2920. if self.z_move is None:
  2921. self.app.inform.emit('[ERROR_NOTCL] %s' % _("Travel Z parameter is None or zero."))
  2922. return 'fail'
  2923. if self.z_move < 0:
  2924. self.app.inform.emit('[WARNING] %s' %
  2925. _("The Travel Z parameter has negative value. "
  2926. "It is the height value to travel between cuts.\n"
  2927. "The Z Travel parameter needs to have a positive value, assuming it is a typo "
  2928. "therefore the app will convert the value to positive."
  2929. "Check the resulting CNC code (Gcode etc)."))
  2930. self.z_move = -self.z_move
  2931. elif self.z_move == 0:
  2932. self.app.inform.emit('[WARNING] %s: %s' %
  2933. (_("The Z Travel parameter is zero. This is dangerous, skipping file"),
  2934. self.options['name']))
  2935. return 'fail'
  2936. # made sure that depth_per_cut is no more then the z_cut
  2937. if abs(self.z_cut) < self.z_depthpercut:
  2938. self.z_depthpercut = abs(self.z_cut)
  2939. # ## Index first and last points in paths
  2940. # What points to index.
  2941. def get_pts(o):
  2942. return [o.coords[0], o.coords[-1]]
  2943. # Create the indexed storage.
  2944. storage = FlatCAMRTreeStorage()
  2945. storage.get_points = get_pts
  2946. # Store the geometry
  2947. log.debug("Indexing geometry before generating G-Code...")
  2948. self.app.inform.emit(_("Indexing geometry before generating G-Code..."))
  2949. for shape in flat_geometry:
  2950. if self.app.abort_flag:
  2951. # graceful abort requested by the user
  2952. raise FlatCAMApp.GracefulException
  2953. if shape is not None: # TODO: This shouldn't have happened.
  2954. storage.insert(shape)
  2955. # self.input_geometry_bounds = geometry.bounds()
  2956. if not append:
  2957. self.gcode = ""
  2958. # tell preprocessor the number of tool (for toolchange)
  2959. self.tool = tool_no
  2960. # this is the tool diameter, it is used as such to accommodate the preprocessor who need the tool diameter
  2961. # given under the name 'toolC'
  2962. self.postdata['toolC'] = self.tooldia
  2963. # Initial G-Code
  2964. self.pp_geometry = self.app.preprocessors[self.pp_geometry_name]
  2965. p = self.pp_geometry
  2966. self.gcode = self.doformat(p.start_code)
  2967. self.gcode += self.doformat(p.feedrate_code) # sets the feed rate
  2968. if toolchange is False:
  2969. self.gcode += self.doformat(p.lift_code, x=0, y=0) # Move (up) to travel height
  2970. self.gcode += self.doformat(p.startz_code, x=0, y=0)
  2971. if toolchange:
  2972. # if "line_xyz" in self.pp_geometry_name:
  2973. # self.gcode += self.doformat(p.toolchange_code, x=self.xy_toolchange[0], y=self.xy_toolchange[1])
  2974. # else:
  2975. # self.gcode += self.doformat(p.toolchange_code)
  2976. self.gcode += self.doformat(p.toolchange_code)
  2977. if 'laser' not in self.pp_geometry_name:
  2978. self.gcode += self.doformat(p.spindle_code) # Spindle start
  2979. else:
  2980. # for laser this will disable the laser
  2981. self.gcode += self.doformat(p.lift_code, x=self.oldx, y=self.oldy) # Move (up) to travel height
  2982. if self.dwell is True:
  2983. self.gcode += self.doformat(p.dwell_code) # Dwell time
  2984. else:
  2985. if 'laser' not in self.pp_geometry_name:
  2986. self.gcode += self.doformat(p.spindle_code) # Spindle start
  2987. if self.dwell is True:
  2988. self.gcode += self.doformat(p.dwell_code) # Dwell time
  2989. total_travel = 0.0
  2990. total_cut = 0.0
  2991. # ## Iterate over geometry paths getting the nearest each time.
  2992. log.debug("Starting G-Code...")
  2993. self.app.inform.emit('%s...' % _("Starting G-Code"))
  2994. path_count = 0
  2995. current_pt = (0, 0)
  2996. # variables to display the percentage of work done
  2997. geo_len = len(flat_geometry)
  2998. old_disp_number = 0
  2999. log.warning("Number of paths for which to generate GCode: %s" % str(geo_len))
  3000. current_tooldia = float('%.*f' % (self.decimals, float(self.tooldia)))
  3001. self.app.inform.emit('%s: %s%s.' % (_("Starting G-Code for tool with diameter"),
  3002. str(current_tooldia),
  3003. str(self.units)))
  3004. pt, geo = storage.nearest(current_pt)
  3005. try:
  3006. while True:
  3007. if self.app.abort_flag:
  3008. # graceful abort requested by the user
  3009. raise FlatCAMApp.GracefulException
  3010. path_count += 1
  3011. # Remove before modifying, otherwise deletion will fail.
  3012. storage.remove(geo)
  3013. # If last point in geometry is the nearest but prefer the first one if last point == first point
  3014. # then reverse coordinates.
  3015. if pt != geo.coords[0] and pt == geo.coords[-1]:
  3016. geo.coords = list(geo.coords)[::-1]
  3017. # ---------- Single depth/pass --------
  3018. if not multidepth:
  3019. # calculate the cut distance
  3020. total_cut = total_cut + geo.length
  3021. self.gcode += self.create_gcode_single_pass(geo, extracut, extracut_length, tolerance,
  3022. old_point=current_pt)
  3023. # --------- Multi-pass ---------
  3024. else:
  3025. # calculate the cut distance
  3026. # due of the number of cuts (multi depth) it has to multiplied by the number of cuts
  3027. nr_cuts = 0
  3028. depth = abs(self.z_cut)
  3029. while depth > 0:
  3030. nr_cuts += 1
  3031. depth -= float(self.z_depthpercut)
  3032. total_cut += (geo.length * nr_cuts)
  3033. self.gcode += self.create_gcode_multi_pass(geo, extracut, extracut_length, tolerance,
  3034. postproc=p, old_point=current_pt)
  3035. # calculate the total distance
  3036. total_travel = total_travel + abs(distance(pt1=current_pt, pt2=pt))
  3037. current_pt = geo.coords[-1]
  3038. pt, geo = storage.nearest(current_pt) # Next
  3039. disp_number = int(np.interp(path_count, [0, geo_len], [0, 100]))
  3040. if old_disp_number < disp_number <= 100:
  3041. self.app.proc_container.update_view_text(' %d%%' % disp_number)
  3042. old_disp_number = disp_number
  3043. except StopIteration: # Nothing found in storage.
  3044. pass
  3045. log.debug("Finished G-Code... %s paths traced." % path_count)
  3046. # add move to end position
  3047. total_travel += abs(distance_euclidian(current_pt[0], current_pt[1], 0, 0))
  3048. self.travel_distance += total_travel + total_cut
  3049. self.routing_time += total_cut / self.feedrate
  3050. # Finish
  3051. self.gcode += self.doformat(p.spindle_stop_code)
  3052. self.gcode += self.doformat(p.lift_code, x=current_pt[0], y=current_pt[1])
  3053. self.gcode += self.doformat(p.end_code, x=0, y=0)
  3054. self.app.inform.emit(
  3055. '%s... %s %s.' % (_("Finished G-Code generation"), str(path_count), _("paths traced"))
  3056. )
  3057. return self.gcode
  3058. def generate_from_geometry_2(
  3059. self, geometry, append=True, tooldia=None, offset=0.0, tolerance=0, z_cut=None, z_move=None,
  3060. feedrate=None, feedrate_z=None, feedrate_rapid=None,
  3061. spindlespeed=None, spindledir='CW', dwell=False, dwelltime=None,
  3062. multidepth=False, depthpercut=None,
  3063. toolchange=False, toolchangez=None, toolchangexy="0.0, 0.0",
  3064. extracut=False, extracut_length=None, startz=None, endz=None,
  3065. pp_geometry_name=None, tool_no=1):
  3066. """
  3067. Second algorithm to generate from Geometry.
  3068. Algorithm description:
  3069. ----------------------
  3070. Uses RTree to find the nearest path to follow.
  3071. :param geometry:
  3072. :param append:
  3073. :param tooldia:
  3074. :param tolerance:
  3075. :param multidepth: If True, use multiple passes to reach
  3076. the desired depth.
  3077. :param depthpercut: Maximum depth in each pass.
  3078. :param extracut: Adds (or not) an extra cut at the end of each path
  3079. overlapping the first point in path to ensure complete copper removal
  3080. :param extracut_length: The extra cut length
  3081. :return: None
  3082. """
  3083. if not isinstance(geometry, Geometry):
  3084. self.app.inform.emit('[ERROR] %s: %s' % (_("Expected a Geometry, got"), type(geometry)))
  3085. return 'fail'
  3086. log.debug("Executing camlib.CNCJob.generate_from_geometry_2()")
  3087. # if solid_geometry is empty raise an exception
  3088. if not geometry.solid_geometry:
  3089. self.app.inform.emit(
  3090. '[ERROR_NOTCL] %s' % _("Trying to generate a CNC Job from a Geometry object without solid_geometry.")
  3091. )
  3092. temp_solid_geometry = list()
  3093. def bounds_rec(obj):
  3094. if type(obj) is list:
  3095. minx = np.Inf
  3096. miny = np.Inf
  3097. maxx = -np.Inf
  3098. maxy = -np.Inf
  3099. for k in obj:
  3100. if type(k) is dict:
  3101. for key in k:
  3102. minx_, miny_, maxx_, maxy_ = bounds_rec(k[key])
  3103. minx = min(minx, minx_)
  3104. miny = min(miny, miny_)
  3105. maxx = max(maxx, maxx_)
  3106. maxy = max(maxy, maxy_)
  3107. else:
  3108. minx_, miny_, maxx_, maxy_ = bounds_rec(k)
  3109. minx = min(minx, minx_)
  3110. miny = min(miny, miny_)
  3111. maxx = max(maxx, maxx_)
  3112. maxy = max(maxy, maxy_)
  3113. return minx, miny, maxx, maxy
  3114. else:
  3115. # it's a Shapely object, return it's bounds
  3116. return obj.bounds
  3117. if offset != 0.0:
  3118. offset_for_use = offset
  3119. if offset < 0:
  3120. a, b, c, d = bounds_rec(geometry.solid_geometry)
  3121. # if the offset is less than half of the total length or less than half of the total width of the
  3122. # solid geometry it's obvious we can't do the offset
  3123. if -offset > ((c - a) / 2) or -offset > ((d - b) / 2):
  3124. self.app.inform.emit(
  3125. '[ERROR_NOTCL] %s' %
  3126. _("The Tool Offset value is too negative to use for the current_geometry.\n"
  3127. "Raise the value (in module) and try again.")
  3128. )
  3129. return 'fail'
  3130. # hack: make offset smaller by 0.0000000001 which is insignificant difference but allow the job
  3131. # to continue
  3132. elif -offset == ((c - a) / 2) or -offset == ((d - b) / 2):
  3133. offset_for_use = offset - 0.0000000001
  3134. for it in geometry.solid_geometry:
  3135. # if the geometry is a closed shape then create a Polygon out of it
  3136. if isinstance(it, LineString):
  3137. c = it.coords
  3138. if c[0] == c[-1]:
  3139. it = Polygon(it)
  3140. temp_solid_geometry.append(it.buffer(offset_for_use, join_style=2))
  3141. else:
  3142. temp_solid_geometry = geometry.solid_geometry
  3143. # ## Flatten the geometry. Only linear elements (no polygons) remain.
  3144. flat_geometry = self.flatten(temp_solid_geometry, pathonly=True)
  3145. log.debug("%d paths" % len(flat_geometry))
  3146. default_dia = 0.01
  3147. if isinstance(self.app.defaults["geometry_cnctooldia"], float):
  3148. default_dia = self.app.defaults["geometry_cnctooldia"]
  3149. else:
  3150. try:
  3151. tools_string = self.app.defaults["geometry_cnctooldia"].split(",")
  3152. tools_diameters = [eval(a) for a in tools_string if a != '']
  3153. default_dia = tools_diameters[0] if tools_diameters else 0.0
  3154. except Exception as e:
  3155. self.app.log.debug("camlib.CNCJob.generate_from_geometry_2() --> %s" % str(e))
  3156. try:
  3157. self.tooldia = float(tooldia) if tooldia else default_dia
  3158. except ValueError:
  3159. self.tooldia = [float(el) for el in tooldia.split(',') if el != ''] if tooldia is not None else default_dia
  3160. self.z_cut = float(z_cut) if z_cut is not None else self.app.defaults["geometry_cutz"]
  3161. self.z_move = float(z_move) if z_move is not None else self.app.defaults["geometry_travelz"]
  3162. self.feedrate = float(feedrate) if feedrate is not None else self.app.defaults["geometry_feedrate"]
  3163. self.z_feedrate = float(feedrate_z) if feedrate_z is not None else self.app.defaults["geometry_feedrate_z"]
  3164. self.feedrate_rapid = float(feedrate_rapid) if feedrate_rapid is not None else \
  3165. self.app.defaults["geometry_feedrate_rapid"]
  3166. self.spindlespeed = int(spindlespeed) if spindlespeed != 0 else None
  3167. self.spindledir = spindledir
  3168. self.dwell = dwell
  3169. self.dwelltime = float(dwelltime) if dwelltime is not None else self.app.defaults["geometry_dwelltime"]
  3170. self.startz = float(startz) if startz is not None else self.app.defaults["geometry_startz"]
  3171. self.z_end = float(endz) if endz is not None else self.app.defaults["geometry_endz"]
  3172. self.z_depthpercut = float(depthpercut) if depthpercut is not None else 0.0
  3173. self.multidepth = multidepth
  3174. self.z_toolchange = float(toolchangez) if toolchangez is not None else self.app.defaults["geometry_toolchangez"]
  3175. self.extracut_length = float(extracut_length) if extracut_length is not None else \
  3176. self.app.defaults["geometry_extracut_length"]
  3177. try:
  3178. if toolchangexy == '':
  3179. self.xy_toolchange = None
  3180. else:
  3181. self.xy_toolchange = [float(eval(a)) for a in toolchangexy.split(",")]
  3182. if len(self.xy_toolchange) < 2:
  3183. self.app.inform.emit(
  3184. '[ERROR] %s' %
  3185. _("The Toolchange X,Y field in Edit -> Preferences has to be in the format (x, y) \n"
  3186. "but now there is only one value, not two. ")
  3187. )
  3188. return 'fail'
  3189. except Exception as e:
  3190. log.debug("camlib.CNCJob.generate_from_geometry_2() --> %s" % str(e))
  3191. pass
  3192. self.pp_geometry_name = pp_geometry_name if pp_geometry_name else 'default'
  3193. self.f_plunge = self.app.defaults["geometry_f_plunge"]
  3194. if self.machinist_setting == 0:
  3195. if self.z_cut is None:
  3196. if 'laser' not in self.pp_geometry_name:
  3197. self.app.inform.emit(
  3198. '[ERROR_NOTCL] %s' % _("Cut_Z parameter is None or zero. Most likely a bad combinations of "
  3199. "other parameters.")
  3200. )
  3201. return 'fail'
  3202. else:
  3203. self.z_cut = 0.0
  3204. if self.z_cut > 0:
  3205. self.app.inform.emit('[WARNING] %s' %
  3206. _("The Cut Z parameter has positive value. "
  3207. "It is the depth value to cut into material.\n"
  3208. "The Cut Z parameter needs to have a negative value, assuming it is a typo "
  3209. "therefore the app will convert the value to negative."
  3210. "Check the resulting CNC code (Gcode etc)."))
  3211. self.z_cut = -self.z_cut
  3212. elif self.z_cut == 0 and 'laser' not in self.pp_geometry_name:
  3213. self.app.inform.emit(
  3214. '[WARNING] %s: %s' % (_("The Cut Z parameter is zero. There will be no cut, skipping file"),
  3215. geometry.options['name'])
  3216. )
  3217. return 'fail'
  3218. if self.z_move is None:
  3219. self.app.inform.emit('[ERROR_NOTCL] %s' % _("Travel Z parameter is None or zero."))
  3220. return 'fail'
  3221. if self.z_move < 0:
  3222. self.app.inform.emit('[WARNING] %s' %
  3223. _("The Travel Z parameter has negative value. "
  3224. "It is the height value to travel between cuts.\n"
  3225. "The Z Travel parameter needs to have a positive value, assuming it is a typo "
  3226. "therefore the app will convert the value to positive."
  3227. "Check the resulting CNC code (Gcode etc)."))
  3228. self.z_move = -self.z_move
  3229. elif self.z_move == 0:
  3230. self.app.inform.emit(
  3231. '[WARNING] %s: %s' % (_("The Z Travel parameter is zero. This is dangerous, skipping file"),
  3232. self.options['name'])
  3233. )
  3234. return 'fail'
  3235. # made sure that depth_per_cut is no more then the z_cut
  3236. try:
  3237. if abs(self.z_cut) < self.z_depthpercut:
  3238. self.z_depthpercut = abs(self.z_cut)
  3239. except TypeError:
  3240. self.z_depthpercut = abs(self.z_cut)
  3241. # ## Index first and last points in paths
  3242. # What points to index.
  3243. def get_pts(o):
  3244. return [o.coords[0], o.coords[-1]]
  3245. # Create the indexed storage.
  3246. storage = FlatCAMRTreeStorage()
  3247. storage.get_points = get_pts
  3248. # Store the geometry
  3249. log.debug("Indexing geometry before generating G-Code...")
  3250. self.app.inform.emit(_("Indexing geometry before generating G-Code..."))
  3251. for shape in flat_geometry:
  3252. if self.app.abort_flag:
  3253. # graceful abort requested by the user
  3254. raise FlatCAMApp.GracefulException
  3255. if shape is not None: # TODO: This shouldn't have happened.
  3256. storage.insert(shape)
  3257. if not append:
  3258. self.gcode = ""
  3259. # tell preprocessor the number of tool (for toolchange)
  3260. self.tool = tool_no
  3261. # this is the tool diameter, it is used as such to accommodate the preprocessor who need the tool diameter
  3262. # given under the name 'toolC'
  3263. self.postdata['toolC'] = self.tooldia
  3264. # Initial G-Code
  3265. self.pp_geometry = self.app.preprocessors[self.pp_geometry_name]
  3266. p = self.pp_geometry
  3267. self.oldx = 0.0
  3268. self.oldy = 0.0
  3269. self.gcode = self.doformat(p.start_code)
  3270. self.gcode += self.doformat(p.feedrate_code) # sets the feed rate
  3271. if toolchange is False:
  3272. self.gcode += self.doformat(p.lift_code, x=self.oldx, y=self.oldy) # Move (up) to travel height
  3273. self.gcode += self.doformat(p.startz_code, x=self.oldx , y=self.oldy)
  3274. if toolchange:
  3275. # if "line_xyz" in self.pp_geometry_name:
  3276. # self.gcode += self.doformat(p.toolchange_code, x=self.xy_toolchange[0], y=self.xy_toolchange[1])
  3277. # else:
  3278. # self.gcode += self.doformat(p.toolchange_code)
  3279. self.gcode += self.doformat(p.toolchange_code)
  3280. if 'laser' not in self.pp_geometry_name:
  3281. self.gcode += self.doformat(p.spindle_code) # Spindle start
  3282. else:
  3283. # for laser this will disable the laser
  3284. self.gcode += self.doformat(p.lift_code, x=self.oldx, y=self.oldy) # Move (up) to travel height
  3285. if self.dwell is True:
  3286. self.gcode += self.doformat(p.dwell_code) # Dwell time
  3287. else:
  3288. if 'laser' not in self.pp_geometry_name:
  3289. self.gcode += self.doformat(p.spindle_code) # Spindle start
  3290. if self.dwell is True:
  3291. self.gcode += self.doformat(p.dwell_code) # Dwell time
  3292. total_travel = 0.0
  3293. total_cut = 0.0
  3294. # Iterate over geometry paths getting the nearest each time.
  3295. log.debug("Starting G-Code...")
  3296. self.app.inform.emit('%s...' % _("Starting G-Code"))
  3297. # variables to display the percentage of work done
  3298. geo_len = len(flat_geometry)
  3299. old_disp_number = 0
  3300. log.warning("Number of paths for which to generate GCode: %s" % str(geo_len))
  3301. current_tooldia = float('%.*f' % (self.decimals, float(self.tooldia)))
  3302. self.app.inform.emit(
  3303. '%s: %s%s.' % (_("Starting G-Code for tool with diameter"), str(current_tooldia), str(self.units))
  3304. )
  3305. path_count = 0
  3306. current_pt = (0, 0)
  3307. pt, geo = storage.nearest(current_pt)
  3308. try:
  3309. while True:
  3310. if self.app.abort_flag:
  3311. # graceful abort requested by the user
  3312. raise FlatCAMApp.GracefulException
  3313. path_count += 1
  3314. # Remove before modifying, otherwise deletion will fail.
  3315. storage.remove(geo)
  3316. # If last point in geometry is the nearest but prefer the first one if last point == first point
  3317. # then reverse coordinates.
  3318. if pt != geo.coords[0] and pt == geo.coords[-1]:
  3319. geo.coords = list(geo.coords)[::-1]
  3320. # ---------- Single depth/pass --------
  3321. if not multidepth:
  3322. # calculate the cut distance
  3323. total_cut += geo.length
  3324. self.gcode += self.create_gcode_single_pass(geo, extracut, self.extracut_length, tolerance,
  3325. old_point=current_pt)
  3326. # --------- Multi-pass ---------
  3327. else:
  3328. # calculate the cut distance
  3329. # due of the number of cuts (multi depth) it has to multiplied by the number of cuts
  3330. nr_cuts = 0
  3331. depth = abs(self.z_cut)
  3332. while depth > 0:
  3333. nr_cuts += 1
  3334. depth -= float(self.z_depthpercut)
  3335. total_cut += (geo.length * nr_cuts)
  3336. self.gcode += self.create_gcode_multi_pass(geo, extracut, self.extracut_length, tolerance,
  3337. postproc=p, old_point=current_pt)
  3338. # calculate the travel distance
  3339. total_travel += abs(distance(pt1=current_pt, pt2=pt))
  3340. current_pt = geo.coords[-1]
  3341. pt, geo = storage.nearest(current_pt) # Next
  3342. disp_number = int(np.interp(path_count, [0, geo_len], [0, 100]))
  3343. if old_disp_number < disp_number <= 100:
  3344. self.app.proc_container.update_view_text(' %d%%' % disp_number)
  3345. old_disp_number = disp_number
  3346. except StopIteration: # Nothing found in storage.
  3347. pass
  3348. log.debug("Finishing G-Code... %s paths traced." % path_count)
  3349. # add move to end position
  3350. total_travel += abs(distance_euclidian(current_pt[0], current_pt[1], 0, 0))
  3351. self.travel_distance += total_travel + total_cut
  3352. self.routing_time += total_cut / self.feedrate
  3353. # Finish
  3354. self.gcode += self.doformat(p.spindle_stop_code)
  3355. self.gcode += self.doformat(p.lift_code, x=current_pt[0], y=current_pt[1])
  3356. self.gcode += self.doformat(p.end_code, x=0, y=0)
  3357. self.app.inform.emit(
  3358. '%s... %s %s' % (_("Finished G-Code generation"), str(path_count), _(" paths traced."))
  3359. )
  3360. return self.gcode
  3361. def generate_gcode_from_solderpaste_geo(self, **kwargs):
  3362. """
  3363. Algorithm to generate from multitool Geometry.
  3364. Algorithm description:
  3365. ----------------------
  3366. Uses RTree to find the nearest path to follow.
  3367. :return: Gcode string
  3368. """
  3369. log.debug("Generate_from_solderpaste_geometry()")
  3370. # ## Index first and last points in paths
  3371. # What points to index.
  3372. def get_pts(o):
  3373. return [o.coords[0], o.coords[-1]]
  3374. self.gcode = ""
  3375. if not kwargs:
  3376. log.debug("camlib.generate_from_solderpaste_geo() --> No tool in the solderpaste geometry.")
  3377. self.app.inform.emit('[ERROR_NOTCL] %s' %
  3378. _("There is no tool data in the SolderPaste geometry."))
  3379. # this is the tool diameter, it is used as such to accommodate the preprocessor who need the tool diameter
  3380. # given under the name 'toolC'
  3381. self.postdata['z_start'] = kwargs['data']['tools_solderpaste_z_start']
  3382. self.postdata['z_dispense'] = kwargs['data']['tools_solderpaste_z_dispense']
  3383. self.postdata['z_stop'] = kwargs['data']['tools_solderpaste_z_stop']
  3384. self.postdata['z_travel'] = kwargs['data']['tools_solderpaste_z_travel']
  3385. self.postdata['z_toolchange'] = kwargs['data']['tools_solderpaste_z_toolchange']
  3386. self.postdata['xy_toolchange'] = kwargs['data']['tools_solderpaste_xy_toolchange']
  3387. self.postdata['frxy'] = kwargs['data']['tools_solderpaste_frxy']
  3388. self.postdata['frz'] = kwargs['data']['tools_solderpaste_frz']
  3389. self.postdata['frz_dispense'] = kwargs['data']['tools_solderpaste_frz_dispense']
  3390. self.postdata['speedfwd'] = kwargs['data']['tools_solderpaste_speedfwd']
  3391. self.postdata['dwellfwd'] = kwargs['data']['tools_solderpaste_dwellfwd']
  3392. self.postdata['speedrev'] = kwargs['data']['tools_solderpaste_speedrev']
  3393. self.postdata['dwellrev'] = kwargs['data']['tools_solderpaste_dwellrev']
  3394. self.postdata['pp_solderpaste_name'] = kwargs['data']['tools_solderpaste_pp']
  3395. self.postdata['toolC'] = kwargs['tooldia']
  3396. self.pp_solderpaste_name = kwargs['data']['tools_solderpaste_pp'] if kwargs['data']['tools_solderpaste_pp'] \
  3397. else self.app.defaults['tools_solderpaste_pp']
  3398. p = self.app.preprocessors[self.pp_solderpaste_name]
  3399. # ## Flatten the geometry. Only linear elements (no polygons) remain.
  3400. flat_geometry = self.flatten(kwargs['solid_geometry'], pathonly=True)
  3401. log.debug("%d paths" % len(flat_geometry))
  3402. # Create the indexed storage.
  3403. storage = FlatCAMRTreeStorage()
  3404. storage.get_points = get_pts
  3405. # Store the geometry
  3406. log.debug("Indexing geometry before generating G-Code...")
  3407. for shape in flat_geometry:
  3408. if shape is not None:
  3409. storage.insert(shape)
  3410. # Initial G-Code
  3411. self.gcode = self.doformat(p.start_code)
  3412. self.gcode += self.doformat(p.spindle_off_code)
  3413. self.gcode += self.doformat(p.toolchange_code)
  3414. # ## Iterate over geometry paths getting the nearest each time.
  3415. log.debug("Starting SolderPaste G-Code...")
  3416. path_count = 0
  3417. current_pt = (0, 0)
  3418. # variables to display the percentage of work done
  3419. geo_len = len(flat_geometry)
  3420. old_disp_number = 0
  3421. pt, geo = storage.nearest(current_pt)
  3422. try:
  3423. while True:
  3424. if self.app.abort_flag:
  3425. # graceful abort requested by the user
  3426. raise FlatCAMApp.GracefulException
  3427. path_count += 1
  3428. # Remove before modifying, otherwise deletion will fail.
  3429. storage.remove(geo)
  3430. # If last point in geometry is the nearest but prefer the first one if last point == first point
  3431. # then reverse coordinates.
  3432. if pt != geo.coords[0] and pt == geo.coords[-1]:
  3433. geo.coords = list(geo.coords)[::-1]
  3434. self.gcode += self.create_soldepaste_gcode(geo, p=p, old_point=current_pt)
  3435. current_pt = geo.coords[-1]
  3436. pt, geo = storage.nearest(current_pt) # Next
  3437. disp_number = int(np.interp(path_count, [0, geo_len], [0, 100]))
  3438. if old_disp_number < disp_number <= 100:
  3439. self.app.proc_container.update_view_text(' %d%%' % disp_number)
  3440. old_disp_number = disp_number
  3441. except StopIteration: # Nothing found in storage.
  3442. pass
  3443. log.debug("Finishing SolderPste G-Code... %s paths traced." % path_count)
  3444. self.app.inform.emit(
  3445. '%s... %s %s' % (_("Finished SolderPste G-Code generation"), str(path_count), _("paths traced."))
  3446. )
  3447. # Finish
  3448. self.gcode += self.doformat(p.lift_code)
  3449. self.gcode += self.doformat(p.end_code)
  3450. return self.gcode
  3451. def create_soldepaste_gcode(self, geometry, p, old_point=(0, 0)):
  3452. gcode = ''
  3453. path = geometry.coords
  3454. self.coordinates_type = self.app.defaults["cncjob_coords_type"]
  3455. if self.coordinates_type == "G90":
  3456. # For Absolute coordinates type G90
  3457. first_x = path[0][0]
  3458. first_y = path[0][1]
  3459. else:
  3460. # For Incremental coordinates type G91
  3461. first_x = path[0][0] - old_point[0]
  3462. first_y = path[0][1] - old_point[1]
  3463. if type(geometry) == LineString or type(geometry) == LinearRing:
  3464. # Move fast to 1st point
  3465. gcode += self.doformat(p.rapid_code, x=first_x, y=first_y) # Move to first point
  3466. # Move down to cutting depth
  3467. gcode += self.doformat(p.z_feedrate_code)
  3468. gcode += self.doformat(p.down_z_start_code)
  3469. gcode += self.doformat(p.spindle_fwd_code) # Start dispensing
  3470. gcode += self.doformat(p.dwell_fwd_code)
  3471. gcode += self.doformat(p.feedrate_z_dispense_code)
  3472. gcode += self.doformat(p.lift_z_dispense_code)
  3473. gcode += self.doformat(p.feedrate_xy_code)
  3474. # Cutting...
  3475. prev_x = first_x
  3476. prev_y = first_y
  3477. for pt in path[1:]:
  3478. if self.coordinates_type == "G90":
  3479. # For Absolute coordinates type G90
  3480. next_x = pt[0]
  3481. next_y = pt[1]
  3482. else:
  3483. # For Incremental coordinates type G91
  3484. next_x = pt[0] - prev_x
  3485. next_y = pt[1] - prev_y
  3486. gcode += self.doformat(p.linear_code, x=next_x, y=next_y) # Linear motion to point
  3487. prev_x = next_x
  3488. prev_y = next_y
  3489. # Up to travelling height.
  3490. gcode += self.doformat(p.spindle_off_code) # Stop dispensing
  3491. gcode += self.doformat(p.spindle_rev_code)
  3492. gcode += self.doformat(p.down_z_stop_code)
  3493. gcode += self.doformat(p.spindle_off_code)
  3494. gcode += self.doformat(p.dwell_rev_code)
  3495. gcode += self.doformat(p.z_feedrate_code)
  3496. gcode += self.doformat(p.lift_code)
  3497. elif type(geometry) == Point:
  3498. gcode += self.doformat(p.linear_code, x=first_x, y=first_y) # Move to first point
  3499. gcode += self.doformat(p.feedrate_z_dispense_code)
  3500. gcode += self.doformat(p.down_z_start_code)
  3501. gcode += self.doformat(p.spindle_fwd_code) # Start dispensing
  3502. gcode += self.doformat(p.dwell_fwd_code)
  3503. gcode += self.doformat(p.lift_z_dispense_code)
  3504. gcode += self.doformat(p.spindle_off_code) # Stop dispensing
  3505. gcode += self.doformat(p.spindle_rev_code)
  3506. gcode += self.doformat(p.spindle_off_code)
  3507. gcode += self.doformat(p.down_z_stop_code)
  3508. gcode += self.doformat(p.dwell_rev_code)
  3509. gcode += self.doformat(p.z_feedrate_code)
  3510. gcode += self.doformat(p.lift_code)
  3511. return gcode
  3512. def create_gcode_single_pass(self, geometry, extracut, extracut_length, tolerance, old_point=(0, 0)):
  3513. # G-code. Note: self.linear2gcode() and self.point2gcode() will lower and raise the tool every time.
  3514. if type(geometry) == LineString or type(geometry) == LinearRing:
  3515. if extracut is False:
  3516. gcode_single_pass = self.linear2gcode(geometry, tolerance=tolerance, old_point=old_point)
  3517. else:
  3518. if geometry.is_ring:
  3519. gcode_single_pass = self.linear2gcode_extra(geometry, extracut_length, tolerance=tolerance,
  3520. old_point=old_point)
  3521. else:
  3522. gcode_single_pass = self.linear2gcode(geometry, tolerance=tolerance, old_point=old_point)
  3523. elif type(geometry) == Point:
  3524. gcode_single_pass = self.point2gcode(geometry)
  3525. else:
  3526. log.warning("G-code generation not implemented for %s" % (str(type(geometry))))
  3527. return
  3528. return gcode_single_pass
  3529. def create_gcode_multi_pass(self, geometry, extracut, extracut_length, tolerance, postproc, old_point=(0, 0)):
  3530. gcode_multi_pass = ''
  3531. if isinstance(self.z_cut, Decimal):
  3532. z_cut = self.z_cut
  3533. else:
  3534. z_cut = Decimal(self.z_cut).quantize(Decimal('0.000000001'))
  3535. if self.z_depthpercut is None:
  3536. self.z_depthpercut = z_cut
  3537. elif not isinstance(self.z_depthpercut, Decimal):
  3538. self.z_depthpercut = Decimal(self.z_depthpercut).quantize(Decimal('0.000000001'))
  3539. depth = 0
  3540. reverse = False
  3541. while depth > z_cut:
  3542. # Increase depth. Limit to z_cut.
  3543. depth -= self.z_depthpercut
  3544. if depth < z_cut:
  3545. depth = z_cut
  3546. # Cut at specific depth and do not lift the tool.
  3547. # Note: linear2gcode() will use G00 to move to the first point in the path, but it should be already
  3548. # at the first point if the tool is down (in the material). So, an extra G00 should show up but
  3549. # is inconsequential.
  3550. if type(geometry) == LineString or type(geometry) == LinearRing:
  3551. if extracut is False:
  3552. gcode_multi_pass += self.linear2gcode(geometry, tolerance=tolerance, z_cut=depth, up=False,
  3553. old_point=old_point)
  3554. else:
  3555. if geometry.is_ring:
  3556. gcode_multi_pass += self.linear2gcode_extra(geometry, extracut_length, tolerance=tolerance,
  3557. z_cut=depth, up=False, old_point=old_point)
  3558. else:
  3559. gcode_multi_pass += self.linear2gcode(geometry, tolerance=tolerance, z_cut=depth, up=False,
  3560. old_point=old_point)
  3561. # Ignore multi-pass for points.
  3562. elif type(geometry) == Point:
  3563. gcode_multi_pass += self.point2gcode(geometry, old_point=old_point)
  3564. break # Ignoring ...
  3565. else:
  3566. log.warning("G-code generation not implemented for %s" % (str(type(geometry))))
  3567. # Reverse coordinates if not a loop so we can continue cutting without returning to the beginning.
  3568. if type(geometry) == LineString:
  3569. geometry.coords = list(geometry.coords)[::-1]
  3570. reverse = True
  3571. # If geometry is reversed, revert.
  3572. if reverse:
  3573. if type(geometry) == LineString:
  3574. geometry.coords = list(geometry.coords)[::-1]
  3575. # Lift the tool
  3576. gcode_multi_pass += self.doformat(postproc.lift_code, x=old_point[0], y=old_point[1])
  3577. return gcode_multi_pass
  3578. def codes_split(self, gline):
  3579. """
  3580. Parses a line of G-Code such as "G01 X1234 Y987" into
  3581. a dictionary: {'G': 1.0, 'X': 1234.0, 'Y': 987.0}
  3582. :param gline: G-Code line string
  3583. :return: Dictionary with parsed line.
  3584. """
  3585. command = {}
  3586. if 'Roland' in self.pp_excellon_name or 'Roland' in self.pp_geometry_name:
  3587. match_z = re.search(r"^Z(\s*-?\d+\.\d+?),(\s*\s*-?\d+\.\d+?),(\s*\s*-?\d+\.\d+?)*;$", gline)
  3588. if match_z:
  3589. command['G'] = 0
  3590. command['X'] = float(match_z.group(1).replace(" ", "")) * 0.025
  3591. command['Y'] = float(match_z.group(2).replace(" ", "")) * 0.025
  3592. command['Z'] = float(match_z.group(3).replace(" ", "")) * 0.025
  3593. elif 'hpgl' in self.pp_excellon_name or 'hpgl' in self.pp_geometry_name:
  3594. match_pa = re.search(r"^PA(\s*-?\d+\.\d+?),(\s*\s*-?\d+\.\d+?)*;$", gline)
  3595. if match_pa:
  3596. command['G'] = 0
  3597. command['X'] = float(match_pa.group(1).replace(" ", "")) / 40
  3598. command['Y'] = float(match_pa.group(2).replace(" ", "")) / 40
  3599. match_pen = re.search(r"^(P[U|D])", gline)
  3600. if match_pen:
  3601. if match_pen.group(1) == 'PU':
  3602. # the value does not matter, only that it is positive so the gcode_parse() know it is > 0,
  3603. # therefore the move is of kind T (travel)
  3604. command['Z'] = 1
  3605. else:
  3606. command['Z'] = 0
  3607. elif 'laser' in self.pp_excellon_name.lower() or 'laser' in self.pp_geometry_name.lower() or \
  3608. (self.pp_solderpaste_name is not None and 'paste' in self.pp_solderpaste_name.lower()):
  3609. match_lsr = re.search(r"X([\+-]?\d+.[\+-]?\d+)\s*Y([\+-]?\d+.[\+-]?\d+)", gline)
  3610. if match_lsr:
  3611. command['X'] = float(match_lsr.group(1).replace(" ", ""))
  3612. command['Y'] = float(match_lsr.group(2).replace(" ", ""))
  3613. match_lsr_pos = re.search(r"^(M0?[3-5])", gline)
  3614. if match_lsr_pos:
  3615. if 'M05' in match_lsr_pos.group(1) or 'M5' in match_lsr_pos.group(1):
  3616. # the value does not matter, only that it is positive so the gcode_parse() know it is > 0,
  3617. # therefore the move is of kind T (travel)
  3618. command['Z'] = 1
  3619. else:
  3620. command['Z'] = 0
  3621. match_lsr_pos_2 = re.search(r"^(M10[6|7])", gline)
  3622. if match_lsr_pos_2:
  3623. if 'M107' in match_lsr_pos_2.group(1):
  3624. command['Z'] = 1
  3625. else:
  3626. command['Z'] = 0
  3627. elif self.pp_solderpaste_name is not None:
  3628. if 'Paste' in self.pp_solderpaste_name:
  3629. match_paste = re.search(r"X([\+-]?\d+.[\+-]?\d+)\s*Y([\+-]?\d+.[\+-]?\d+)", gline)
  3630. if match_paste:
  3631. command['X'] = float(match_paste.group(1).replace(" ", ""))
  3632. command['Y'] = float(match_paste.group(2).replace(" ", ""))
  3633. else:
  3634. match = re.search(r'^\s*([A-Z])\s*([\+\-\.\d\s]+)', gline)
  3635. while match:
  3636. command[match.group(1)] = float(match.group(2).replace(" ", ""))
  3637. gline = gline[match.end():]
  3638. match = re.search(r'^\s*([A-Z])\s*([\+\-\.\d\s]+)', gline)
  3639. return command
  3640. def gcode_parse(self, force_parsing=None):
  3641. """
  3642. G-Code parser (from self.gcode). Generates dictionary with
  3643. single-segment LineString's and "kind" indicating cut or travel,
  3644. fast or feedrate speed.
  3645. """
  3646. kind = ["C", "F"] # T=travel, C=cut, F=fast, S=slow
  3647. # Results go here
  3648. geometry = []
  3649. # Last known instruction
  3650. current = {'X': 0.0, 'Y': 0.0, 'Z': 0.0, 'G': 0}
  3651. # Current path: temporary storage until tool is
  3652. # lifted or lowered.
  3653. if self.toolchange_xy_type == "excellon":
  3654. if self.app.defaults["excellon_toolchangexy"] == '':
  3655. pos_xy = (0, 0)
  3656. else:
  3657. pos_xy = [float(eval(a)) for a in self.app.defaults["excellon_toolchangexy"].split(",")]
  3658. else:
  3659. if self.app.defaults["geometry_toolchangexy"] == '':
  3660. pos_xy = (0, 0)
  3661. else:
  3662. pos_xy = [float(eval(a)) for a in self.app.defaults["geometry_toolchangexy"].split(",")]
  3663. path = [pos_xy]
  3664. # path = [(0, 0)]
  3665. gcode_lines_list = self.gcode.splitlines()
  3666. self.app.inform.emit('%s: %d' % (_("Parsing GCode file. Number of lines"), len(gcode_lines_list)))
  3667. # Process every instruction
  3668. for line in gcode_lines_list:
  3669. if force_parsing is False or force_parsing is None:
  3670. if '%MO' in line or '%' in line or 'MOIN' in line or 'MOMM' in line:
  3671. return "fail"
  3672. gobj = self.codes_split(line)
  3673. # ## Units
  3674. if 'G' in gobj and (gobj['G'] == 20.0 or gobj['G'] == 21.0):
  3675. self.units = {20.0: "IN", 21.0: "MM"}[gobj['G']]
  3676. continue
  3677. # TODO take into consideration the tools and update the travel line thickness
  3678. if 'T' in gobj:
  3679. pass
  3680. # ## Changing height
  3681. if 'Z' in gobj:
  3682. if 'Roland' in self.pp_excellon_name or 'Roland' in self.pp_geometry_name:
  3683. pass
  3684. elif 'hpgl' in self.pp_excellon_name or 'hpgl' in self.pp_geometry_name:
  3685. pass
  3686. elif 'laser' in self.pp_excellon_name or 'laser' in self.pp_geometry_name:
  3687. pass
  3688. elif ('X' in gobj or 'Y' in gobj) and gobj['Z'] != current['Z']:
  3689. if self.pp_geometry_name == 'line_xyz' or self.pp_excellon_name == 'line_xyz':
  3690. pass
  3691. else:
  3692. log.warning("Non-orthogonal motion: From %s" % str(current))
  3693. log.warning(" To: %s" % str(gobj))
  3694. current['Z'] = gobj['Z']
  3695. # Store the path into geometry and reset path
  3696. if len(path) > 1:
  3697. geometry.append({"geom": LineString(path),
  3698. "kind": kind})
  3699. path = [path[-1]] # Start with the last point of last path.
  3700. # create the geometry for the holes created when drilling Excellon drills
  3701. if self.origin_kind == 'excellon':
  3702. if current['Z'] < 0:
  3703. current_drill_point_coords = (
  3704. float('%.*f' % (self.decimals, current['X'])),
  3705. float('%.*f' % (self.decimals, current['Y']))
  3706. )
  3707. # find the drill diameter knowing the drill coordinates
  3708. for pt_dict in self.exc_drills:
  3709. point_in_dict_coords = (
  3710. float('%.*f' % (self.decimals, pt_dict['point'].x)),
  3711. float('%.*f' % (self.decimals, pt_dict['point'].y))
  3712. )
  3713. if point_in_dict_coords == current_drill_point_coords:
  3714. tool = pt_dict['tool']
  3715. dia = self.exc_tools[tool]['C']
  3716. kind = ['C', 'F']
  3717. geometry.append(
  3718. {
  3719. "geom": Point(current_drill_point_coords).buffer(dia/2.0).exterior,
  3720. "kind": kind
  3721. }
  3722. )
  3723. break
  3724. if 'G' in gobj:
  3725. current['G'] = int(gobj['G'])
  3726. if 'X' in gobj or 'Y' in gobj:
  3727. if 'X' in gobj:
  3728. x = gobj['X']
  3729. # current['X'] = x
  3730. else:
  3731. x = current['X']
  3732. if 'Y' in gobj:
  3733. y = gobj['Y']
  3734. else:
  3735. y = current['Y']
  3736. kind = ["C", "F"] # T=travel, C=cut, F=fast, S=slow
  3737. if current['Z'] > 0:
  3738. kind[0] = 'T'
  3739. if current['G'] > 0:
  3740. kind[1] = 'S'
  3741. if current['G'] in [0, 1]: # line
  3742. path.append((x, y))
  3743. arcdir = [None, None, "cw", "ccw"]
  3744. if current['G'] in [2, 3]: # arc
  3745. center = [gobj['I'] + current['X'], gobj['J'] + current['Y']]
  3746. radius = np.sqrt(gobj['I']**2 + gobj['J']**2)
  3747. start = np.arctan2(-gobj['J'], -gobj['I'])
  3748. stop = np.arctan2(-center[1] + y, -center[0] + x)
  3749. path += arc(center, radius, start, stop, arcdir[current['G']], int(self.steps_per_circle))
  3750. current['X'] = x
  3751. current['Y'] = y
  3752. # Update current instruction
  3753. for code in gobj:
  3754. current[code] = gobj[code]
  3755. self.app.inform.emit('%s...' % _("Creating Geometry from the parsed GCode file. "))
  3756. # There might not be a change in height at the
  3757. # end, therefore, see here too if there is
  3758. # a final path.
  3759. if len(path) > 1:
  3760. geometry.append(
  3761. {
  3762. "geom": LineString(path),
  3763. "kind": kind
  3764. }
  3765. )
  3766. self.gcode_parsed = geometry
  3767. return geometry
  3768. # def plot(self, tooldia=None, dpi=75, margin=0.1,
  3769. # color={"T": ["#F0E24D", "#B5AB3A"], "C": ["#5E6CFF", "#4650BD"]},
  3770. # alpha={"T": 0.3, "C": 1.0}):
  3771. # """
  3772. # Creates a Matplotlib figure with a plot of the
  3773. # G-code job.
  3774. # """
  3775. # if tooldia is None:
  3776. # tooldia = self.tooldia
  3777. #
  3778. # fig = Figure(dpi=dpi)
  3779. # ax = fig.add_subplot(111)
  3780. # ax.set_aspect(1)
  3781. # xmin, ymin, xmax, ymax = self.input_geometry_bounds
  3782. # ax.set_xlim(xmin-margin, xmax+margin)
  3783. # ax.set_ylim(ymin-margin, ymax+margin)
  3784. #
  3785. # if tooldia == 0:
  3786. # for geo in self.gcode_parsed:
  3787. # linespec = '--'
  3788. # linecolor = color[geo['kind'][0]][1]
  3789. # if geo['kind'][0] == 'C':
  3790. # linespec = 'k-'
  3791. # x, y = geo['geom'].coords.xy
  3792. # ax.plot(x, y, linespec, color=linecolor)
  3793. # else:
  3794. # for geo in self.gcode_parsed:
  3795. # poly = geo['geom'].buffer(tooldia/2.0)
  3796. # patch = PolygonPatch(poly, facecolor=color[geo['kind'][0]][0],
  3797. # edgecolor=color[geo['kind'][0]][1],
  3798. # alpha=alpha[geo['kind'][0]], zorder=2)
  3799. # ax.add_patch(patch)
  3800. #
  3801. # return fig
  3802. def plot2(self, tooldia=None, dpi=75, margin=0.1, gcode_parsed=None,
  3803. color=None, alpha={"T": 0.3, "C": 1.0}, tool_tolerance=0.0005, obj=None, visible=False, kind='all'):
  3804. """
  3805. Plots the G-code job onto the given axes.
  3806. :param tooldia: Tool diameter.
  3807. :param dpi: Not used!
  3808. :param margin: Not used!
  3809. :param color: Color specification.
  3810. :param alpha: Transparency specification.
  3811. :param tool_tolerance: Tolerance when drawing the toolshape.
  3812. :param obj
  3813. :param visible
  3814. :param kind
  3815. :return: None
  3816. """
  3817. # units = self.app.ui.general_defaults_form.general_app_group.units_radio.get_value().upper()
  3818. if color is None:
  3819. color = {
  3820. "T": [self.app.defaults["cncjob_travel_fill"], self.app.defaults["cncjob_travel_line"]],
  3821. "C": [self.app.defaults["cncjob_plot_fill"], self.app.defaults["cncjob_plot_line"]]
  3822. }
  3823. gcode_parsed = gcode_parsed if gcode_parsed else self.gcode_parsed
  3824. path_num = 0
  3825. if tooldia is None:
  3826. tooldia = self.tooldia
  3827. # this should be unlikely unless when upstream the tooldia is a tuple made by one dia and a comma like (2.4,)
  3828. if isinstance(tooldia, list):
  3829. tooldia = tooldia[0] if tooldia[0] is not None else self.tooldia
  3830. if tooldia == 0:
  3831. for geo in gcode_parsed:
  3832. if kind == 'all':
  3833. obj.add_shape(shape=geo['geom'], color=color[geo['kind'][0]][1], visible=visible)
  3834. elif kind == 'travel':
  3835. if geo['kind'][0] == 'T':
  3836. obj.add_shape(shape=geo['geom'], color=color['T'][1], visible=visible)
  3837. elif kind == 'cut':
  3838. if geo['kind'][0] == 'C':
  3839. obj.add_shape(shape=geo['geom'], color=color['C'][1], visible=visible)
  3840. else:
  3841. text = list()
  3842. pos = list()
  3843. self.coordinates_type = self.app.defaults["cncjob_coords_type"]
  3844. if self.coordinates_type == "G90":
  3845. # For Absolute coordinates type G90
  3846. for geo in gcode_parsed:
  3847. if geo['kind'][0] == 'T':
  3848. current_position = geo['geom'].coords[0]
  3849. if current_position not in pos:
  3850. pos.append(current_position)
  3851. path_num += 1
  3852. text.append(str(path_num))
  3853. current_position = geo['geom'].coords[-1]
  3854. if current_position not in pos:
  3855. pos.append(current_position)
  3856. path_num += 1
  3857. text.append(str(path_num))
  3858. # plot the geometry of Excellon objects
  3859. if self.origin_kind == 'excellon':
  3860. try:
  3861. poly = Polygon(geo['geom'])
  3862. except ValueError:
  3863. # if the geos are travel lines it will enter into Exception
  3864. poly = geo['geom'].buffer(distance=(tooldia / 1.99999999), resolution=self.steps_per_circle)
  3865. poly = poly.simplify(tool_tolerance)
  3866. else:
  3867. # plot the geometry of any objects other than Excellon
  3868. poly = geo['geom'].buffer(distance=(tooldia / 1.99999999), resolution=self.steps_per_circle)
  3869. poly = poly.simplify(tool_tolerance)
  3870. if kind == 'all':
  3871. obj.add_shape(shape=poly, color=color[geo['kind'][0]][1], face_color=color[geo['kind'][0]][0],
  3872. visible=visible, layer=1 if geo['kind'][0] == 'C' else 2)
  3873. elif kind == 'travel':
  3874. if geo['kind'][0] == 'T':
  3875. obj.add_shape(shape=poly, color=color['T'][1], face_color=color['T'][0],
  3876. visible=visible, layer=2)
  3877. elif kind == 'cut':
  3878. if geo['kind'][0] == 'C':
  3879. obj.add_shape(shape=poly, color=color['C'][1], face_color=color['C'][0],
  3880. visible=visible, layer=1)
  3881. else:
  3882. # For Incremental coordinates type G91
  3883. self.app.inform.emit('[ERROR_NOTCL] %s' % _('G91 coordinates not implemented ...'))
  3884. for geo in gcode_parsed:
  3885. if geo['kind'][0] == 'T':
  3886. current_position = geo['geom'].coords[0]
  3887. if current_position not in pos:
  3888. pos.append(current_position)
  3889. path_num += 1
  3890. text.append(str(path_num))
  3891. current_position = geo['geom'].coords[-1]
  3892. if current_position not in pos:
  3893. pos.append(current_position)
  3894. path_num += 1
  3895. text.append(str(path_num))
  3896. # plot the geometry of Excellon objects
  3897. if self.origin_kind == 'excellon':
  3898. try:
  3899. poly = Polygon(geo['geom'])
  3900. except ValueError:
  3901. # if the geos are travel lines it will enter into Exception
  3902. poly = geo['geom'].buffer(distance=(tooldia / 1.99999999), resolution=self.steps_per_circle)
  3903. poly = poly.simplify(tool_tolerance)
  3904. else:
  3905. # plot the geometry of any objects other than Excellon
  3906. poly = geo['geom'].buffer(distance=(tooldia / 1.99999999), resolution=self.steps_per_circle)
  3907. poly = poly.simplify(tool_tolerance)
  3908. if kind == 'all':
  3909. obj.add_shape(shape=poly, color=color[geo['kind'][0]][1], face_color=color[geo['kind'][0]][0],
  3910. visible=visible, layer=1 if geo['kind'][0] == 'C' else 2)
  3911. elif kind == 'travel':
  3912. if geo['kind'][0] == 'T':
  3913. obj.add_shape(shape=poly, color=color['T'][1], face_color=color['T'][0],
  3914. visible=visible, layer=2)
  3915. elif kind == 'cut':
  3916. if geo['kind'][0] == 'C':
  3917. obj.add_shape(shape=poly, color=color['C'][1], face_color=color['C'][0],
  3918. visible=visible, layer=1)
  3919. # current_x = gcode_parsed[0]['geom'].coords[0][0]
  3920. # current_y = gcode_parsed[0]['geom'].coords[0][1]
  3921. # old_pos = (
  3922. # current_x,
  3923. # current_y
  3924. # )
  3925. #
  3926. # for geo in gcode_parsed:
  3927. # if geo['kind'][0] == 'T':
  3928. # current_position = (
  3929. # geo['geom'].coords[0][0] + old_pos[0],
  3930. # geo['geom'].coords[0][1] + old_pos[1]
  3931. # )
  3932. # if current_position not in pos:
  3933. # pos.append(current_position)
  3934. # path_num += 1
  3935. # text.append(str(path_num))
  3936. #
  3937. # delta = (
  3938. # geo['geom'].coords[-1][0] - geo['geom'].coords[0][0],
  3939. # geo['geom'].coords[-1][1] - geo['geom'].coords[0][1]
  3940. # )
  3941. # current_position = (
  3942. # current_position[0] + geo['geom'].coords[-1][0],
  3943. # current_position[1] + geo['geom'].coords[-1][1]
  3944. # )
  3945. # if current_position not in pos:
  3946. # pos.append(current_position)
  3947. # path_num += 1
  3948. # text.append(str(path_num))
  3949. #
  3950. # # plot the geometry of Excellon objects
  3951. # if self.origin_kind == 'excellon':
  3952. # if isinstance(geo['geom'], Point):
  3953. # # if geo is Point
  3954. # current_position = (
  3955. # current_position[0] + geo['geom'].x,
  3956. # current_position[1] + geo['geom'].y
  3957. # )
  3958. # poly = Polygon(Point(current_position))
  3959. # elif isinstance(geo['geom'], LineString):
  3960. # # if the geos are travel lines (LineStrings)
  3961. # new_line_pts = []
  3962. # old_line_pos = deepcopy(current_position)
  3963. # for p in list(geo['geom'].coords):
  3964. # current_position = (
  3965. # current_position[0] + p[0],
  3966. # current_position[1] + p[1]
  3967. # )
  3968. # new_line_pts.append(current_position)
  3969. # old_line_pos = p
  3970. # new_line = LineString(new_line_pts)
  3971. #
  3972. # poly = new_line.buffer(distance=(tooldia / 1.99999999), resolution=self.steps_per_circle)
  3973. # poly = poly.simplify(tool_tolerance)
  3974. # else:
  3975. # # plot the geometry of any objects other than Excellon
  3976. # new_line_pts = []
  3977. # old_line_pos = deepcopy(current_position)
  3978. # for p in list(geo['geom'].coords):
  3979. # current_position = (
  3980. # current_position[0] + p[0],
  3981. # current_position[1] + p[1]
  3982. # )
  3983. # new_line_pts.append(current_position)
  3984. # old_line_pos = p
  3985. # new_line = LineString(new_line_pts)
  3986. #
  3987. # poly = new_line.buffer(distance=(tooldia / 1.99999999), resolution=self.steps_per_circle)
  3988. # poly = poly.simplify(tool_tolerance)
  3989. #
  3990. # old_pos = deepcopy(current_position)
  3991. #
  3992. # if kind == 'all':
  3993. # obj.add_shape(shape=poly, color=color[geo['kind'][0]][1], face_color=color[geo['kind'][0]][0],
  3994. # visible=visible, layer=1 if geo['kind'][0] == 'C' else 2)
  3995. # elif kind == 'travel':
  3996. # if geo['kind'][0] == 'T':
  3997. # obj.add_shape(shape=poly, color=color['T'][1], face_color=color['T'][0],
  3998. # visible=visible, layer=2)
  3999. # elif kind == 'cut':
  4000. # if geo['kind'][0] == 'C':
  4001. # obj.add_shape(shape=poly, color=color['C'][1], face_color=color['C'][0],
  4002. # visible=visible, layer=1)
  4003. try:
  4004. obj.annotation.set(text=text, pos=pos, visible=obj.options['plot'],
  4005. font_size=self.app.defaults["cncjob_annotation_fontsize"],
  4006. color=self.app.defaults["cncjob_annotation_fontcolor"])
  4007. except Exception:
  4008. pass
  4009. def create_geometry(self):
  4010. self.app.inform.emit('%s: %s' % (_("Unifying Geometry from parsed Geometry segments"),
  4011. str(len(self.gcode_parsed))))
  4012. # TODO: This takes forever. Too much data?
  4013. # self.solid_geometry = cascaded_union([geo['geom'] for geo in self.gcode_parsed])
  4014. # This is much faster but not so nice to look at as you can see different segments of the geometry
  4015. self.solid_geometry = [geo['geom'] for geo in self.gcode_parsed]
  4016. return self.solid_geometry
  4017. # code snippet added by Lei Zheng in a rejected pull request on FlatCAM https://bitbucket.org/realthunder/
  4018. def segment(self, coords):
  4019. """
  4020. break long linear lines to make it more auto level friendly
  4021. """
  4022. if len(coords) < 2 or self.segx <= 0 and self.segy <= 0:
  4023. return list(coords)
  4024. path = [coords[0]]
  4025. # break the line in either x or y dimension only
  4026. def linebreak_single(line, dim, dmax):
  4027. if dmax <= 0:
  4028. return None
  4029. if line[1][dim] > line[0][dim]:
  4030. sign = 1.0
  4031. d = line[1][dim] - line[0][dim]
  4032. else:
  4033. sign = -1.0
  4034. d = line[0][dim] - line[1][dim]
  4035. if d > dmax:
  4036. # make sure we don't make any new lines too short
  4037. if d > dmax * 2:
  4038. dd = dmax
  4039. else:
  4040. dd = d / 2
  4041. other = dim ^ 1
  4042. return (line[0][dim] + dd * sign, line[0][other] + \
  4043. dd * (line[1][other] - line[0][other]) / d)
  4044. return None
  4045. # recursively breaks down a given line until it is within the
  4046. # required step size
  4047. def linebreak(line):
  4048. pt_new = linebreak_single(line, 0, self.segx)
  4049. if pt_new is None:
  4050. pt_new2 = linebreak_single(line, 1, self.segy)
  4051. else:
  4052. pt_new2 = linebreak_single((line[0], pt_new), 1, self.segy)
  4053. if pt_new2 is not None:
  4054. pt_new = pt_new2[::-1]
  4055. if pt_new is None:
  4056. path.append(line[1])
  4057. else:
  4058. path.append(pt_new)
  4059. linebreak((pt_new, line[1]))
  4060. for pt in coords[1:]:
  4061. linebreak((path[-1], pt))
  4062. return path
  4063. def linear2gcode(self, linear, tolerance=0, down=True, up=True,
  4064. z_cut=None, z_move=None, zdownrate=None,
  4065. feedrate=None, feedrate_z=None, feedrate_rapid=None, cont=False, old_point=(0, 0)):
  4066. """
  4067. Generates G-code to cut along the linear feature.
  4068. :param linear: The path to cut along.
  4069. :type: Shapely.LinearRing or Shapely.Linear String
  4070. :param tolerance: All points in the simplified object will be within the
  4071. tolerance distance of the original geometry.
  4072. :type tolerance: float
  4073. :param feedrate: speed for cut on X - Y plane
  4074. :param feedrate_z: speed for cut on Z plane
  4075. :param feedrate_rapid: speed to move between cuts; usually is G0 but some CNC require to specify it
  4076. :return: G-code to cut along the linear feature.
  4077. :rtype: str
  4078. """
  4079. if z_cut is None:
  4080. z_cut = self.z_cut
  4081. if z_move is None:
  4082. z_move = self.z_move
  4083. #
  4084. # if zdownrate is None:
  4085. # zdownrate = self.zdownrate
  4086. if feedrate is None:
  4087. feedrate = self.feedrate
  4088. if feedrate_z is None:
  4089. feedrate_z = self.z_feedrate
  4090. if feedrate_rapid is None:
  4091. feedrate_rapid = self.feedrate_rapid
  4092. # Simplify paths?
  4093. if tolerance > 0:
  4094. target_linear = linear.simplify(tolerance)
  4095. else:
  4096. target_linear = linear
  4097. gcode = ""
  4098. # path = list(target_linear.coords)
  4099. path = self.segment(target_linear.coords)
  4100. p = self.pp_geometry
  4101. self.coordinates_type = self.app.defaults["cncjob_coords_type"]
  4102. if self.coordinates_type == "G90":
  4103. # For Absolute coordinates type G90
  4104. first_x = path[0][0]
  4105. first_y = path[0][1]
  4106. else:
  4107. # For Incremental coordinates type G91
  4108. first_x = path[0][0] - old_point[0]
  4109. first_y = path[0][1] - old_point[1]
  4110. # Move fast to 1st point
  4111. if not cont:
  4112. gcode += self.doformat(p.rapid_code, x=first_x, y=first_y) # Move to first point
  4113. # Move down to cutting depth
  4114. if down:
  4115. # Different feedrate for vertical cut?
  4116. gcode += self.doformat(p.z_feedrate_code)
  4117. # gcode += self.doformat(p.feedrate_code)
  4118. gcode += self.doformat(p.down_code, x=first_x, y=first_y, z_cut=z_cut)
  4119. gcode += self.doformat(p.feedrate_code, feedrate=feedrate)
  4120. # Cutting...
  4121. prev_x = first_x
  4122. prev_y = first_y
  4123. for pt in path[1:]:
  4124. if self.app.abort_flag:
  4125. # graceful abort requested by the user
  4126. raise FlatCAMApp.GracefulException
  4127. if self.coordinates_type == "G90":
  4128. # For Absolute coordinates type G90
  4129. next_x = pt[0]
  4130. next_y = pt[1]
  4131. else:
  4132. # For Incremental coordinates type G91
  4133. # next_x = pt[0] - prev_x
  4134. # next_y = pt[1] - prev_y
  4135. self.app.inform.emit('[ERROR_NOTCL] %s' %
  4136. _('G91 coordinates not implemented ...'))
  4137. next_x = pt[0]
  4138. next_y = pt[1]
  4139. gcode += self.doformat(p.linear_code, x=next_x, y=next_y, z=z_cut) # Linear motion to point
  4140. prev_x = pt[0]
  4141. prev_y = pt[1]
  4142. # Up to travelling height.
  4143. if up:
  4144. gcode += self.doformat(p.lift_code, x=prev_x, y=prev_y, z_move=z_move) # Stop cutting
  4145. return gcode
  4146. def linear2gcode_extra(self, linear, extracut_length, tolerance=0, down=True, up=True,
  4147. z_cut=None, z_move=None, zdownrate=None,
  4148. feedrate=None, feedrate_z=None, feedrate_rapid=None, cont=False, old_point=(0, 0)):
  4149. """
  4150. Generates G-code to cut along the linear feature.
  4151. :param linear: The path to cut along.
  4152. :param extracut_length: how much to cut extra over the first point at the end of the path
  4153. :type: Shapely.LinearRing or Shapely.Linear String
  4154. :param tolerance: All points in the simplified object will be within the
  4155. tolerance distance of the original geometry.
  4156. :type tolerance: float
  4157. :param feedrate: speed for cut on X - Y plane
  4158. :param feedrate_z: speed for cut on Z plane
  4159. :param feedrate_rapid: speed to move between cuts; usually is G0 but some CNC require to specify it
  4160. :return: G-code to cut along the linear feature.
  4161. :rtype: str
  4162. """
  4163. if z_cut is None:
  4164. z_cut = self.z_cut
  4165. if z_move is None:
  4166. z_move = self.z_move
  4167. #
  4168. # if zdownrate is None:
  4169. # zdownrate = self.zdownrate
  4170. if feedrate is None:
  4171. feedrate = self.feedrate
  4172. if feedrate_z is None:
  4173. feedrate_z = self.z_feedrate
  4174. if feedrate_rapid is None:
  4175. feedrate_rapid = self.feedrate_rapid
  4176. # Simplify paths?
  4177. if tolerance > 0:
  4178. target_linear = linear.simplify(tolerance)
  4179. else:
  4180. target_linear = linear
  4181. gcode = ""
  4182. path = list(target_linear.coords)
  4183. p = self.pp_geometry
  4184. self.coordinates_type = self.app.defaults["cncjob_coords_type"]
  4185. if self.coordinates_type == "G90":
  4186. # For Absolute coordinates type G90
  4187. first_x = path[0][0]
  4188. first_y = path[0][1]
  4189. else:
  4190. # For Incremental coordinates type G91
  4191. first_x = path[0][0] - old_point[0]
  4192. first_y = path[0][1] - old_point[1]
  4193. # Move fast to 1st point
  4194. if not cont:
  4195. gcode += self.doformat(p.rapid_code, x=first_x, y=first_y) # Move to first point
  4196. # Move down to cutting depth
  4197. if down:
  4198. # Different feedrate for vertical cut?
  4199. if self.z_feedrate is not None:
  4200. gcode += self.doformat(p.z_feedrate_code)
  4201. # gcode += self.doformat(p.feedrate_code)
  4202. gcode += self.doformat(p.down_code, x=first_x, y=first_y, z_cut=z_cut)
  4203. gcode += self.doformat(p.feedrate_code, feedrate=feedrate)
  4204. else:
  4205. gcode += self.doformat(p.down_code, x=first_x, y=first_y, z_cut=z_cut) # Start cutting
  4206. # Cutting...
  4207. prev_x = first_x
  4208. prev_y = first_y
  4209. for pt in path[1:]:
  4210. if self.app.abort_flag:
  4211. # graceful abort requested by the user
  4212. raise FlatCAMApp.GracefulException
  4213. if self.coordinates_type == "G90":
  4214. # For Absolute coordinates type G90
  4215. next_x = pt[0]
  4216. next_y = pt[1]
  4217. else:
  4218. # For Incremental coordinates type G91
  4219. # For Incremental coordinates type G91
  4220. # next_x = pt[0] - prev_x
  4221. # next_y = pt[1] - prev_y
  4222. self.app.inform.emit('[ERROR_NOTCL] %s' % _('G91 coordinates not implemented ...'))
  4223. next_x = pt[0]
  4224. next_y = pt[1]
  4225. gcode += self.doformat(p.linear_code, x=next_x, y=next_y, z=z_cut) # Linear motion to point
  4226. prev_x = pt[0]
  4227. prev_y = pt[1]
  4228. # this line is added to create an extra cut over the first point in patch
  4229. # to make sure that we remove the copper leftovers
  4230. # Linear motion to the 1st point in the cut path
  4231. # if self.coordinates_type == "G90":
  4232. # # For Absolute coordinates type G90
  4233. # last_x = path[1][0]
  4234. # last_y = path[1][1]
  4235. # else:
  4236. # # For Incremental coordinates type G91
  4237. # last_x = path[1][0] - first_x
  4238. # last_y = path[1][1] - first_y
  4239. # gcode += self.doformat(p.linear_code, x=last_x, y=last_y)
  4240. # the first point for extracut is always mandatory if the extracut is enabled. But if the length of distance
  4241. # between point 0 and point 1 is more than the distance we set for the extra cut then make an interpolation
  4242. # along the path and find the point at the distance extracut_length
  4243. if extracut_length == 0.0:
  4244. gcode += self.doformat(p.linear_code, x=path[1][0], y=path[1][1])
  4245. last_pt = path[1]
  4246. else:
  4247. if abs(distance(path[1], path[0])) > extracut_length:
  4248. i_point = LineString([path[0], path[1]]).interpolate(extracut_length)
  4249. gcode += self.doformat(p.linear_code, x=i_point.x, y=i_point.y)
  4250. last_pt = (i_point.x, i_point.y)
  4251. else:
  4252. last_pt = path[0]
  4253. for pt in path[1:]:
  4254. extracut_distance = abs(distance(pt, last_pt))
  4255. if extracut_distance <= extracut_length:
  4256. gcode += self.doformat(p.linear_code, x=pt[0], y=pt[1])
  4257. last_pt = pt
  4258. else:
  4259. break
  4260. # Up to travelling height.
  4261. if up:
  4262. gcode += self.doformat(p.lift_code, x=last_pt[0], y=last_pt[1], z_move=z_move) # Stop cutting
  4263. return gcode
  4264. def point2gcode(self, point, old_point=(0, 0)):
  4265. gcode = ""
  4266. if self.app.abort_flag:
  4267. # graceful abort requested by the user
  4268. raise FlatCAMApp.GracefulException
  4269. path = list(point.coords)
  4270. p = self.pp_geometry
  4271. self.coordinates_type = self.app.defaults["cncjob_coords_type"]
  4272. if self.coordinates_type == "G90":
  4273. # For Absolute coordinates type G90
  4274. first_x = path[0][0]
  4275. first_y = path[0][1]
  4276. else:
  4277. # For Incremental coordinates type G91
  4278. # first_x = path[0][0] - old_point[0]
  4279. # first_y = path[0][1] - old_point[1]
  4280. self.app.inform.emit('[ERROR_NOTCL] %s' %
  4281. _('G91 coordinates not implemented ...'))
  4282. first_x = path[0][0]
  4283. first_y = path[0][1]
  4284. gcode += self.doformat(p.linear_code, x=first_x, y=first_y) # Move to first point
  4285. if self.z_feedrate is not None:
  4286. gcode += self.doformat(p.z_feedrate_code)
  4287. gcode += self.doformat(p.down_code, x=first_x, y=first_y, z_cut=self.z_cut)
  4288. gcode += self.doformat(p.feedrate_code)
  4289. else:
  4290. gcode += self.doformat(p.down_code, x=first_x, y=first_y, z_cut=self.z_cut) # Start cutting
  4291. gcode += self.doformat(p.lift_code, x=first_x, y=first_y) # Stop cutting
  4292. return gcode
  4293. def export_svg(self, scale_stroke_factor=0.00):
  4294. """
  4295. Exports the CNC Job as a SVG Element
  4296. :scale_factor: float
  4297. :return: SVG Element string
  4298. """
  4299. # scale_factor is a multiplication factor for the SVG stroke-width used within shapely's svg export
  4300. # If not specified then try and use the tool diameter
  4301. # This way what is on screen will match what is outputed for the svg
  4302. # This is quite a useful feature for svg's used with visicut
  4303. if scale_stroke_factor <= 0:
  4304. scale_stroke_factor = self.options['tooldia'] / 2
  4305. # If still 0 then default to 0.05
  4306. # This value appears to work for zooming, and getting the output svg line width
  4307. # to match that viewed on screen with FlatCam
  4308. if scale_stroke_factor == 0:
  4309. scale_stroke_factor = 0.01
  4310. # Separate the list of cuts and travels into 2 distinct lists
  4311. # This way we can add different formatting / colors to both
  4312. cuts = []
  4313. travels = []
  4314. for g in self.gcode_parsed:
  4315. if self.app.abort_flag:
  4316. # graceful abort requested by the user
  4317. raise FlatCAMApp.GracefulException
  4318. if g['kind'][0] == 'C':
  4319. cuts.append(g)
  4320. if g['kind'][0] == 'T':
  4321. travels.append(g)
  4322. # Used to determine the overall board size
  4323. self.solid_geometry = cascaded_union([geo['geom'] for geo in self.gcode_parsed])
  4324. # Convert the cuts and travels into single geometry objects we can render as svg xml
  4325. if travels:
  4326. travelsgeom = cascaded_union([geo['geom'] for geo in travels])
  4327. if self.app.abort_flag:
  4328. # graceful abort requested by the user
  4329. raise FlatCAMApp.GracefulException
  4330. if cuts:
  4331. cutsgeom = cascaded_union([geo['geom'] for geo in cuts])
  4332. # Render the SVG Xml
  4333. # The scale factor affects the size of the lines, and the stroke color adds different formatting for each set
  4334. # It's better to have the travels sitting underneath the cuts for visicut
  4335. svg_elem = ""
  4336. if travels:
  4337. svg_elem = travelsgeom.svg(scale_factor=scale_stroke_factor, stroke_color="#F0E24D")
  4338. if cuts:
  4339. svg_elem += cutsgeom.svg(scale_factor=scale_stroke_factor, stroke_color="#5E6CFF")
  4340. return svg_elem
  4341. def bounds(self):
  4342. """
  4343. Returns coordinates of rectangular bounds
  4344. of geometry: (xmin, ymin, xmax, ymax).
  4345. """
  4346. # fixed issue of getting bounds only for one level lists of objects
  4347. # now it can get bounds for nested lists of objects
  4348. log.debug("camlib.CNCJob.bounds()")
  4349. def bounds_rec(obj):
  4350. if type(obj) is list:
  4351. minx = np.Inf
  4352. miny = np.Inf
  4353. maxx = -np.Inf
  4354. maxy = -np.Inf
  4355. for k in obj:
  4356. if type(k) is dict:
  4357. for key in k:
  4358. minx_, miny_, maxx_, maxy_ = bounds_rec(k[key])
  4359. minx = min(minx, minx_)
  4360. miny = min(miny, miny_)
  4361. maxx = max(maxx, maxx_)
  4362. maxy = max(maxy, maxy_)
  4363. else:
  4364. minx_, miny_, maxx_, maxy_ = bounds_rec(k)
  4365. minx = min(minx, minx_)
  4366. miny = min(miny, miny_)
  4367. maxx = max(maxx, maxx_)
  4368. maxy = max(maxy, maxy_)
  4369. return minx, miny, maxx, maxy
  4370. else:
  4371. # it's a Shapely object, return it's bounds
  4372. return obj.bounds
  4373. if self.multitool is False:
  4374. log.debug("CNCJob->bounds()")
  4375. if self.solid_geometry is None:
  4376. log.debug("solid_geometry is None")
  4377. return 0, 0, 0, 0
  4378. bounds_coords = bounds_rec(self.solid_geometry)
  4379. else:
  4380. minx = np.Inf
  4381. miny = np.Inf
  4382. maxx = -np.Inf
  4383. maxy = -np.Inf
  4384. for k, v in self.cnc_tools.items():
  4385. minx = np.Inf
  4386. miny = np.Inf
  4387. maxx = -np.Inf
  4388. maxy = -np.Inf
  4389. try:
  4390. for k in v['solid_geometry']:
  4391. minx_, miny_, maxx_, maxy_ = bounds_rec(k)
  4392. minx = min(minx, minx_)
  4393. miny = min(miny, miny_)
  4394. maxx = max(maxx, maxx_)
  4395. maxy = max(maxy, maxy_)
  4396. except TypeError:
  4397. minx_, miny_, maxx_, maxy_ = bounds_rec(v['solid_geometry'])
  4398. minx = min(minx, minx_)
  4399. miny = min(miny, miny_)
  4400. maxx = max(maxx, maxx_)
  4401. maxy = max(maxy, maxy_)
  4402. bounds_coords = minx, miny, maxx, maxy
  4403. return bounds_coords
  4404. # TODO This function should be replaced at some point with a "real" function. Until then it's an ugly hack ...
  4405. def scale(self, xfactor, yfactor=None, point=None):
  4406. """
  4407. Scales all the geometry on the XY plane in the object by the
  4408. given factor. Tool sizes, feedrates, or Z-axis dimensions are
  4409. not altered.
  4410. :param factor: Number by which to scale the object.
  4411. :type factor: float
  4412. :param point: the (x,y) coords for the point of origin of scale
  4413. :type tuple of floats
  4414. :return: None
  4415. :rtype: None
  4416. """
  4417. log.debug("camlib.CNCJob.scale()")
  4418. if yfactor is None:
  4419. yfactor = xfactor
  4420. if point is None:
  4421. px = 0
  4422. py = 0
  4423. else:
  4424. px, py = point
  4425. def scale_g(g):
  4426. """
  4427. :param g: 'g' parameter it's a gcode string
  4428. :return: scaled gcode string
  4429. """
  4430. temp_gcode = ''
  4431. header_start = False
  4432. header_stop = False
  4433. units = self.app.defaults['units'].upper()
  4434. lines = StringIO(g)
  4435. for line in lines:
  4436. # this changes the GCODE header ---- UGLY HACK
  4437. if "TOOL DIAMETER" in line or "Feedrate:" in line:
  4438. header_start = True
  4439. if "G20" in line or "G21" in line:
  4440. header_start = False
  4441. header_stop = True
  4442. if header_start is True:
  4443. header_stop = False
  4444. if "in" in line:
  4445. if units == 'MM':
  4446. line = line.replace("in", "mm")
  4447. if "mm" in line:
  4448. if units == 'IN':
  4449. line = line.replace("mm", "in")
  4450. # find any float number in header (even multiple on the same line) and convert it
  4451. numbers_in_header = re.findall(self.g_nr_re, line)
  4452. if numbers_in_header:
  4453. for nr in numbers_in_header:
  4454. new_nr = float(nr) * xfactor
  4455. # replace the updated string
  4456. line = line.replace(nr, ('%.*f' % (self.app.defaults["cncjob_coords_decimals"], new_nr))
  4457. )
  4458. # this scales all the X and Y and Z and F values and also the Tool Dia in the toolchange message
  4459. if header_stop is True:
  4460. if "G20" in line:
  4461. if units == 'MM':
  4462. line = line.replace("G20", "G21")
  4463. if "G21" in line:
  4464. if units == 'IN':
  4465. line = line.replace("G21", "G20")
  4466. # find the X group
  4467. match_x = self.g_x_re.search(line)
  4468. if match_x:
  4469. if match_x.group(1) is not None:
  4470. new_x = float(match_x.group(1)[1:]) * xfactor
  4471. # replace the updated string
  4472. line = line.replace(
  4473. match_x.group(1),
  4474. 'X%.*f' % (self.app.defaults["cncjob_coords_decimals"], new_x)
  4475. )
  4476. # find the Y group
  4477. match_y = self.g_y_re.search(line)
  4478. if match_y:
  4479. if match_y.group(1) is not None:
  4480. new_y = float(match_y.group(1)[1:]) * yfactor
  4481. line = line.replace(
  4482. match_y.group(1),
  4483. 'Y%.*f' % (self.app.defaults["cncjob_coords_decimals"], new_y)
  4484. )
  4485. # find the Z group
  4486. match_z = self.g_z_re.search(line)
  4487. if match_z:
  4488. if match_z.group(1) is not None:
  4489. new_z = float(match_z.group(1)[1:]) * xfactor
  4490. line = line.replace(
  4491. match_z.group(1),
  4492. 'Z%.*f' % (self.app.defaults["cncjob_coords_decimals"], new_z)
  4493. )
  4494. # find the F group
  4495. match_f = self.g_f_re.search(line)
  4496. if match_f:
  4497. if match_f.group(1) is not None:
  4498. new_f = float(match_f.group(1)[1:]) * xfactor
  4499. line = line.replace(
  4500. match_f.group(1),
  4501. 'F%.*f' % (self.app.defaults["cncjob_fr_decimals"], new_f)
  4502. )
  4503. # find the T group (tool dia on toolchange)
  4504. match_t = self.g_t_re.search(line)
  4505. if match_t:
  4506. if match_t.group(1) is not None:
  4507. new_t = float(match_t.group(1)[1:]) * xfactor
  4508. line = line.replace(
  4509. match_t.group(1),
  4510. '= %.*f' % (self.app.defaults["cncjob_coords_decimals"], new_t)
  4511. )
  4512. temp_gcode += line
  4513. lines.close()
  4514. header_stop = False
  4515. return temp_gcode
  4516. if self.multitool is False:
  4517. # offset Gcode
  4518. self.gcode = scale_g(self.gcode)
  4519. # variables to display the percentage of work done
  4520. self.geo_len = 0
  4521. try:
  4522. for g in self.gcode_parsed:
  4523. self.geo_len += 1
  4524. except TypeError:
  4525. self.geo_len = 1
  4526. self.old_disp_number = 0
  4527. self.el_count = 0
  4528. # scale geometry
  4529. for g in self.gcode_parsed:
  4530. try:
  4531. g['geom'] = affinity.scale(g['geom'], xfactor, yfactor, origin=(px, py))
  4532. except AttributeError:
  4533. return g['geom']
  4534. self.el_count += 1
  4535. disp_number = int(np.interp(self.el_count, [0, self.geo_len], [0, 100]))
  4536. if self.old_disp_number < disp_number <= 100:
  4537. self.app.proc_container.update_view_text(' %d%%' % disp_number)
  4538. self.old_disp_number = disp_number
  4539. self.create_geometry()
  4540. else:
  4541. for k, v in self.cnc_tools.items():
  4542. # scale Gcode
  4543. v['gcode'] = scale_g(v['gcode'])
  4544. # variables to display the percentage of work done
  4545. self.geo_len = 0
  4546. try:
  4547. for g in v['gcode_parsed']:
  4548. self.geo_len += 1
  4549. except TypeError:
  4550. self.geo_len = 1
  4551. self.old_disp_number = 0
  4552. self.el_count = 0
  4553. # scale gcode_parsed
  4554. for g in v['gcode_parsed']:
  4555. try:
  4556. g['geom'] = affinity.scale(g['geom'], xfactor, yfactor, origin=(px, py))
  4557. except AttributeError:
  4558. return g['geom']
  4559. self.el_count += 1
  4560. disp_number = int(np.interp(self.el_count, [0, self.geo_len], [0, 100]))
  4561. if self.old_disp_number < disp_number <= 100:
  4562. self.app.proc_container.update_view_text(' %d%%' % disp_number)
  4563. self.old_disp_number = disp_number
  4564. v['solid_geometry'] = cascaded_union([geo['geom'] for geo in v['gcode_parsed']])
  4565. self.create_geometry()
  4566. self.app.proc_container.new_text = ''
  4567. def offset(self, vect):
  4568. """
  4569. Offsets all the geometry on the XY plane in the object by the
  4570. given vector.
  4571. Offsets all the GCODE on the XY plane in the object by the
  4572. given vector.
  4573. g_offsetx_re, g_offsety_re, multitool, cnnc_tools are attributes of FlatCAMCNCJob class in camlib
  4574. :param vect: (x, y) offset vector.
  4575. :type vect: tuple
  4576. :return: None
  4577. """
  4578. log.debug("camlib.CNCJob.offset()")
  4579. dx, dy = vect
  4580. def offset_g(g):
  4581. """
  4582. :param g: 'g' parameter it's a gcode string
  4583. :return: offseted gcode string
  4584. """
  4585. temp_gcode = ''
  4586. lines = StringIO(g)
  4587. for line in lines:
  4588. # find the X group
  4589. match_x = self.g_x_re.search(line)
  4590. if match_x:
  4591. if match_x.group(1) is not None:
  4592. # get the coordinate and add X offset
  4593. new_x = float(match_x.group(1)[1:]) + dx
  4594. # replace the updated string
  4595. line = line.replace(
  4596. match_x.group(1),
  4597. 'X%.*f' % (self.app.defaults["cncjob_coords_decimals"], new_x)
  4598. )
  4599. match_y = self.g_y_re.search(line)
  4600. if match_y:
  4601. if match_y.group(1) is not None:
  4602. new_y = float(match_y.group(1)[1:]) + dy
  4603. line = line.replace(
  4604. match_y.group(1),
  4605. 'Y%.*f' % (self.app.defaults["cncjob_coords_decimals"], new_y)
  4606. )
  4607. temp_gcode += line
  4608. lines.close()
  4609. return temp_gcode
  4610. if self.multitool is False:
  4611. # offset Gcode
  4612. self.gcode = offset_g(self.gcode)
  4613. # variables to display the percentage of work done
  4614. self.geo_len = 0
  4615. try:
  4616. for g in self.gcode_parsed:
  4617. self.geo_len += 1
  4618. except TypeError:
  4619. self.geo_len = 1
  4620. self.old_disp_number = 0
  4621. self.el_count = 0
  4622. # offset geometry
  4623. for g in self.gcode_parsed:
  4624. try:
  4625. g['geom'] = affinity.translate(g['geom'], xoff=dx, yoff=dy)
  4626. except AttributeError:
  4627. return g['geom']
  4628. self.el_count += 1
  4629. disp_number = int(np.interp(self.el_count, [0, self.geo_len], [0, 100]))
  4630. if self.old_disp_number < disp_number <= 100:
  4631. self.app.proc_container.update_view_text(' %d%%' % disp_number)
  4632. self.old_disp_number = disp_number
  4633. self.create_geometry()
  4634. else:
  4635. for k, v in self.cnc_tools.items():
  4636. # offset Gcode
  4637. v['gcode'] = offset_g(v['gcode'])
  4638. # variables to display the percentage of work done
  4639. self.geo_len = 0
  4640. try:
  4641. for g in v['gcode_parsed']:
  4642. self.geo_len += 1
  4643. except TypeError:
  4644. self.geo_len = 1
  4645. self.old_disp_number = 0
  4646. self.el_count = 0
  4647. # offset gcode_parsed
  4648. for g in v['gcode_parsed']:
  4649. try:
  4650. g['geom'] = affinity.translate(g['geom'], xoff=dx, yoff=dy)
  4651. except AttributeError:
  4652. return g['geom']
  4653. self.el_count += 1
  4654. disp_number = int(np.interp(self.el_count, [0, self.geo_len], [0, 100]))
  4655. if self.old_disp_number < disp_number <= 100:
  4656. self.app.proc_container.update_view_text(' %d%%' % disp_number)
  4657. self.old_disp_number = disp_number
  4658. # for the bounding box
  4659. v['solid_geometry'] = cascaded_union([geo['geom'] for geo in v['gcode_parsed']])
  4660. self.app.proc_container.new_text = ''
  4661. def mirror(self, axis, point):
  4662. """
  4663. Mirror the geometrys of an object by an given axis around the coordinates of the 'point'
  4664. :param angle:
  4665. :param point: tupple of coordinates (x,y)
  4666. :return:
  4667. """
  4668. log.debug("camlib.CNCJob.mirror()")
  4669. px, py = point
  4670. xscale, yscale = {"X": (1.0, -1.0), "Y": (-1.0, 1.0)}[axis]
  4671. # variables to display the percentage of work done
  4672. self.geo_len = 0
  4673. try:
  4674. for g in self.gcode_parsed:
  4675. self.geo_len += 1
  4676. except TypeError:
  4677. self.geo_len = 1
  4678. self.old_disp_number = 0
  4679. self.el_count = 0
  4680. for g in self.gcode_parsed:
  4681. try:
  4682. g['geom'] = affinity.scale(g['geom'], xscale, yscale, origin=(px, py))
  4683. except AttributeError:
  4684. return g['geom']
  4685. self.el_count += 1
  4686. disp_number = int(np.interp(self.el_count, [0, self.geo_len], [0, 100]))
  4687. if self.old_disp_number < disp_number <= 100:
  4688. self.app.proc_container.update_view_text(' %d%%' % disp_number)
  4689. self.old_disp_number = disp_number
  4690. self.create_geometry()
  4691. self.app.proc_container.new_text = ''
  4692. def skew(self, angle_x, angle_y, point):
  4693. """
  4694. Shear/Skew the geometries of an object by angles along x and y dimensions.
  4695. Parameters
  4696. ----------
  4697. angle_x, angle_y : float, float
  4698. The shear angle(s) for the x and y axes respectively. These can be
  4699. specified in either degrees (default) or radians by setting
  4700. use_radians=True.
  4701. point: tupple of coordinates (x,y)
  4702. See shapely manual for more information:
  4703. http://toblerity.org/shapely/manual.html#affine-transformations
  4704. """
  4705. log.debug("camlib.CNCJob.skew()")
  4706. px, py = point
  4707. # variables to display the percentage of work done
  4708. self.geo_len = 0
  4709. try:
  4710. for g in self.gcode_parsed:
  4711. self.geo_len += 1
  4712. except TypeError:
  4713. self.geo_len = 1
  4714. self.old_disp_number = 0
  4715. self.el_count = 0
  4716. for g in self.gcode_parsed:
  4717. try:
  4718. g['geom'] = affinity.skew(g['geom'], angle_x, angle_y, origin=(px, py))
  4719. except AttributeError:
  4720. return g['geom']
  4721. self.el_count += 1
  4722. disp_number = int(np.interp(self.el_count, [0, self.geo_len], [0, 100]))
  4723. if self.old_disp_number < disp_number <= 100:
  4724. self.app.proc_container.update_view_text(' %d%%' % disp_number)
  4725. self.old_disp_number = disp_number
  4726. self.create_geometry()
  4727. self.app.proc_container.new_text = ''
  4728. def rotate(self, angle, point):
  4729. """
  4730. Rotate the geometrys of an object by an given angle around the coordinates of the 'point'
  4731. :param angle:
  4732. :param point: tupple of coordinates (x,y)
  4733. :return:
  4734. """
  4735. log.debug("camlib.CNCJob.rotate()")
  4736. px, py = point
  4737. # variables to display the percentage of work done
  4738. self.geo_len = 0
  4739. try:
  4740. for g in self.gcode_parsed:
  4741. self.geo_len += 1
  4742. except TypeError:
  4743. self.geo_len = 1
  4744. self.old_disp_number = 0
  4745. self.el_count = 0
  4746. for g in self.gcode_parsed:
  4747. try:
  4748. g['geom'] = affinity.rotate(g['geom'], angle, origin=(px, py))
  4749. except AttributeError:
  4750. return g['geom']
  4751. self.el_count += 1
  4752. disp_number = int(np.interp(self.el_count, [0, self.geo_len], [0, 100]))
  4753. if self.old_disp_number < disp_number <= 100:
  4754. self.app.proc_container.update_view_text(' %d%%' % disp_number)
  4755. self.old_disp_number = disp_number
  4756. self.create_geometry()
  4757. self.app.proc_container.new_text = ''
  4758. def get_bounds(geometry_list):
  4759. xmin = np.Inf
  4760. ymin = np.Inf
  4761. xmax = -np.Inf
  4762. ymax = -np.Inf
  4763. for gs in geometry_list:
  4764. try:
  4765. gxmin, gymin, gxmax, gymax = gs.bounds()
  4766. xmin = min([xmin, gxmin])
  4767. ymin = min([ymin, gymin])
  4768. xmax = max([xmax, gxmax])
  4769. ymax = max([ymax, gymax])
  4770. except Exception:
  4771. log.warning("DEVELOPMENT: Tried to get bounds of empty geometry.")
  4772. return [xmin, ymin, xmax, ymax]
  4773. def arc(center, radius, start, stop, direction, steps_per_circ):
  4774. """
  4775. Creates a list of point along the specified arc.
  4776. :param center: Coordinates of the center [x, y]
  4777. :type center: list
  4778. :param radius: Radius of the arc.
  4779. :type radius: float
  4780. :param start: Starting angle in radians
  4781. :type start: float
  4782. :param stop: End angle in radians
  4783. :type stop: float
  4784. :param direction: Orientation of the arc, "CW" or "CCW"
  4785. :type direction: string
  4786. :param steps_per_circ: Number of straight line segments to
  4787. represent a circle.
  4788. :type steps_per_circ: int
  4789. :return: The desired arc, as list of tuples
  4790. :rtype: list
  4791. """
  4792. # TODO: Resolution should be established by maximum error from the exact arc.
  4793. da_sign = {"cw": -1.0, "ccw": 1.0}
  4794. points = []
  4795. if direction == "ccw" and stop <= start:
  4796. stop += 2 * np.pi
  4797. if direction == "cw" and stop >= start:
  4798. stop -= 2 * np.pi
  4799. angle = abs(stop - start)
  4800. # angle = stop-start
  4801. steps = max([int(np.ceil(angle / (2 * np.pi) * steps_per_circ)), 2])
  4802. delta_angle = da_sign[direction] * angle * 1.0 / steps
  4803. for i in range(steps + 1):
  4804. theta = start + delta_angle * i
  4805. points.append((center[0] + radius * np.cos(theta), center[1] + radius * np.sin(theta)))
  4806. return points
  4807. def arc2(p1, p2, center, direction, steps_per_circ):
  4808. r = np.sqrt((center[0] - p1[0]) ** 2 + (center[1] - p1[1]) ** 2)
  4809. start = np.arctan2(p1[1] - center[1], p1[0] - center[0])
  4810. stop = np.arctan2(p2[1] - center[1], p2[0] - center[0])
  4811. return arc(center, r, start, stop, direction, steps_per_circ)
  4812. def arc_angle(start, stop, direction):
  4813. if direction == "ccw" and stop <= start:
  4814. stop += 2 * np.pi
  4815. if direction == "cw" and stop >= start:
  4816. stop -= 2 * np.pi
  4817. angle = abs(stop - start)
  4818. return angle
  4819. # def find_polygon(poly, point):
  4820. # """
  4821. # Find an object that object.contains(Point(point)) in
  4822. # poly, which can can be iterable, contain iterable of, or
  4823. # be itself an implementer of .contains().
  4824. #
  4825. # :param poly: See description
  4826. # :return: Polygon containing point or None.
  4827. # """
  4828. #
  4829. # if poly is None:
  4830. # return None
  4831. #
  4832. # try:
  4833. # for sub_poly in poly:
  4834. # p = find_polygon(sub_poly, point)
  4835. # if p is not None:
  4836. # return p
  4837. # except TypeError:
  4838. # try:
  4839. # if poly.contains(Point(point)):
  4840. # return poly
  4841. # except AttributeError:
  4842. # return None
  4843. #
  4844. # return None
  4845. def to_dict(obj):
  4846. """
  4847. Makes the following types into serializable form:
  4848. * ApertureMacro
  4849. * BaseGeometry
  4850. :param obj: Shapely geometry.
  4851. :type obj: BaseGeometry
  4852. :return: Dictionary with serializable form if ``obj`` was
  4853. BaseGeometry or ApertureMacro, otherwise returns ``obj``.
  4854. """
  4855. if isinstance(obj, ApertureMacro):
  4856. return {
  4857. "__class__": "ApertureMacro",
  4858. "__inst__": obj.to_dict()
  4859. }
  4860. if isinstance(obj, BaseGeometry):
  4861. return {
  4862. "__class__": "Shply",
  4863. "__inst__": sdumps(obj)
  4864. }
  4865. return obj
  4866. def dict2obj(d):
  4867. """
  4868. Default deserializer.
  4869. :param d: Serializable dictionary representation of an object
  4870. to be reconstructed.
  4871. :return: Reconstructed object.
  4872. """
  4873. if '__class__' in d and '__inst__' in d:
  4874. if d['__class__'] == "Shply":
  4875. return sloads(d['__inst__'])
  4876. if d['__class__'] == "ApertureMacro":
  4877. am = ApertureMacro()
  4878. am.from_dict(d['__inst__'])
  4879. return am
  4880. return d
  4881. else:
  4882. return d
  4883. # def plotg(geo, solid_poly=False, color="black"):
  4884. # try:
  4885. # __ = iter(geo)
  4886. # except:
  4887. # geo = [geo]
  4888. #
  4889. # for g in geo:
  4890. # if type(g) == Polygon:
  4891. # if solid_poly:
  4892. # patch = PolygonPatch(g,
  4893. # facecolor="#BBF268",
  4894. # edgecolor="#006E20",
  4895. # alpha=0.75,
  4896. # zorder=2)
  4897. # ax = subplot(111)
  4898. # ax.add_patch(patch)
  4899. # else:
  4900. # x, y = g.exterior.coords.xy
  4901. # plot(x, y, color=color)
  4902. # for ints in g.interiors:
  4903. # x, y = ints.coords.xy
  4904. # plot(x, y, color=color)
  4905. # continue
  4906. #
  4907. # if type(g) == LineString or type(g) == LinearRing:
  4908. # x, y = g.coords.xy
  4909. # plot(x, y, color=color)
  4910. # continue
  4911. #
  4912. # if type(g) == Point:
  4913. # x, y = g.coords.xy
  4914. # plot(x, y, 'o')
  4915. # continue
  4916. #
  4917. # try:
  4918. # __ = iter(g)
  4919. # plotg(g, color=color)
  4920. # except:
  4921. # log.error("Cannot plot: " + str(type(g)))
  4922. # continue
  4923. # def alpha_shape(points, alpha):
  4924. # """
  4925. # Compute the alpha shape (concave hull) of a set of points.
  4926. #
  4927. # @param points: Iterable container of points.
  4928. # @param alpha: alpha value to influence the gooeyness of the border. Smaller
  4929. # numbers don't fall inward as much as larger numbers. Too large,
  4930. # and you lose everything!
  4931. # """
  4932. # if len(points) < 4:
  4933. # # When you have a triangle, there is no sense in computing an alpha
  4934. # # shape.
  4935. # return MultiPoint(list(points)).convex_hull
  4936. #
  4937. # def add_edge(edges, edge_points, coords, i, j):
  4938. # """Add a line between the i-th and j-th points, if not in the list already"""
  4939. # if (i, j) in edges or (j, i) in edges:
  4940. # # already added
  4941. # return
  4942. # edges.add( (i, j) )
  4943. # edge_points.append(coords[ [i, j] ])
  4944. #
  4945. # coords = np.array([point.coords[0] for point in points])
  4946. #
  4947. # tri = Delaunay(coords)
  4948. # edges = set()
  4949. # edge_points = []
  4950. # # loop over triangles:
  4951. # # ia, ib, ic = indices of corner points of the triangle
  4952. # for ia, ib, ic in tri.vertices:
  4953. # pa = coords[ia]
  4954. # pb = coords[ib]
  4955. # pc = coords[ic]
  4956. #
  4957. # # Lengths of sides of triangle
  4958. # a = math.sqrt((pa[0]-pb[0])**2 + (pa[1]-pb[1])**2)
  4959. # b = math.sqrt((pb[0]-pc[0])**2 + (pb[1]-pc[1])**2)
  4960. # c = math.sqrt((pc[0]-pa[0])**2 + (pc[1]-pa[1])**2)
  4961. #
  4962. # # Semiperimeter of triangle
  4963. # s = (a + b + c)/2.0
  4964. #
  4965. # # Area of triangle by Heron's formula
  4966. # area = math.sqrt(s*(s-a)*(s-b)*(s-c))
  4967. # circum_r = a*b*c/(4.0*area)
  4968. #
  4969. # # Here's the radius filter.
  4970. # #print circum_r
  4971. # if circum_r < 1.0/alpha:
  4972. # add_edge(edges, edge_points, coords, ia, ib)
  4973. # add_edge(edges, edge_points, coords, ib, ic)
  4974. # add_edge(edges, edge_points, coords, ic, ia)
  4975. #
  4976. # m = MultiLineString(edge_points)
  4977. # triangles = list(polygonize(m))
  4978. # return cascaded_union(triangles), edge_points
  4979. # def voronoi(P):
  4980. # """
  4981. # Returns a list of all edges of the voronoi diagram for the given input points.
  4982. # """
  4983. # delauny = Delaunay(P)
  4984. # triangles = delauny.points[delauny.vertices]
  4985. #
  4986. # circum_centers = np.array([triangle_csc(tri) for tri in triangles])
  4987. # long_lines_endpoints = []
  4988. #
  4989. # lineIndices = []
  4990. # for i, triangle in enumerate(triangles):
  4991. # circum_center = circum_centers[i]
  4992. # for j, neighbor in enumerate(delauny.neighbors[i]):
  4993. # if neighbor != -1:
  4994. # lineIndices.append((i, neighbor))
  4995. # else:
  4996. # ps = triangle[(j+1)%3] - triangle[(j-1)%3]
  4997. # ps = np.array((ps[1], -ps[0]))
  4998. #
  4999. # middle = (triangle[(j+1)%3] + triangle[(j-1)%3]) * 0.5
  5000. # di = middle - triangle[j]
  5001. #
  5002. # ps /= np.linalg.norm(ps)
  5003. # di /= np.linalg.norm(di)
  5004. #
  5005. # if np.dot(di, ps) < 0.0:
  5006. # ps *= -1000.0
  5007. # else:
  5008. # ps *= 1000.0
  5009. #
  5010. # long_lines_endpoints.append(circum_center + ps)
  5011. # lineIndices.append((i, len(circum_centers) + len(long_lines_endpoints)-1))
  5012. #
  5013. # vertices = np.vstack((circum_centers, long_lines_endpoints))
  5014. #
  5015. # # filter out any duplicate lines
  5016. # lineIndicesSorted = np.sort(lineIndices) # make (1,2) and (2,1) both (1,2)
  5017. # lineIndicesTupled = [tuple(row) for row in lineIndicesSorted]
  5018. # lineIndicesUnique = np.unique(lineIndicesTupled)
  5019. #
  5020. # return vertices, lineIndicesUnique
  5021. #
  5022. #
  5023. # def triangle_csc(pts):
  5024. # rows, cols = pts.shape
  5025. #
  5026. # A = np.bmat([[2 * np.dot(pts, pts.T), np.ones((rows, 1))],
  5027. # [np.ones((1, rows)), np.zeros((1, 1))]])
  5028. #
  5029. # b = np.hstack((np.sum(pts * pts, axis=1), np.ones((1))))
  5030. # x = np.linalg.solve(A,b)
  5031. # bary_coords = x[:-1]
  5032. # return np.sum(pts * np.tile(bary_coords.reshape((pts.shape[0], 1)), (1, pts.shape[1])), axis=0)
  5033. #
  5034. #
  5035. # def voronoi_cell_lines(points, vertices, lineIndices):
  5036. # """
  5037. # Returns a mapping from a voronoi cell to its edges.
  5038. #
  5039. # :param points: shape (m,2)
  5040. # :param vertices: shape (n,2)
  5041. # :param lineIndices: shape (o,2)
  5042. # :rtype: dict point index -> list of shape (n,2) with vertex indices
  5043. # """
  5044. # kd = KDTree(points)
  5045. #
  5046. # cells = collections.defaultdict(list)
  5047. # for i1, i2 in lineIndices:
  5048. # v1, v2 = vertices[i1], vertices[i2]
  5049. # mid = (v1+v2)/2
  5050. # _, (p1Idx, p2Idx) = kd.query(mid, 2)
  5051. # cells[p1Idx].append((i1, i2))
  5052. # cells[p2Idx].append((i1, i2))
  5053. #
  5054. # return cells
  5055. #
  5056. #
  5057. # def voronoi_edges2polygons(cells):
  5058. # """
  5059. # Transforms cell edges into polygons.
  5060. #
  5061. # :param cells: as returned from voronoi_cell_lines
  5062. # :rtype: dict point index -> list of vertex indices which form a polygon
  5063. # """
  5064. #
  5065. # # first, close the outer cells
  5066. # for pIdx, lineIndices_ in cells.items():
  5067. # dangling_lines = []
  5068. # for i1, i2 in lineIndices_:
  5069. # p = (i1, i2)
  5070. # connections = filter(lambda k: p != k and
  5071. # (p[0] == k[0] or p[0] == k[1] or p[1] == k[0] or p[1] == k[1]), lineIndices_)
  5072. # # connections = filter(lambda (i1_, i2_): (i1, i2) != (i1_, i2_) and
  5073. # (i1 == i1_ or i1 == i2_ or i2 == i1_ or i2 == i2_), lineIndices_)
  5074. # assert 1 <= len(connections) <= 2
  5075. # if len(connections) == 1:
  5076. # dangling_lines.append((i1, i2))
  5077. # assert len(dangling_lines) in [0, 2]
  5078. # if len(dangling_lines) == 2:
  5079. # (i11, i12), (i21, i22) = dangling_lines
  5080. # s = (i11, i12)
  5081. # t = (i21, i22)
  5082. #
  5083. # # determine which line ends are unconnected
  5084. # connected = filter(lambda k: k != s and (k[0] == s[0] or k[1] == s[0]), lineIndices_)
  5085. # # connected = filter(lambda (i1,i2): (i1,i2) != (i11,i12) and (i1 == i11 or i2 == i11), lineIndices_)
  5086. # i11Unconnected = len(connected) == 0
  5087. #
  5088. # connected = filter(lambda k: k != t and (k[0] == t[0] or k[1] == t[0]), lineIndices_)
  5089. # # connected = filter(lambda (i1,i2): (i1,i2) != (i21,i22) and (i1 == i21 or i2 == i21), lineIndices_)
  5090. # i21Unconnected = len(connected) == 0
  5091. #
  5092. # startIdx = i11 if i11Unconnected else i12
  5093. # endIdx = i21 if i21Unconnected else i22
  5094. #
  5095. # cells[pIdx].append((startIdx, endIdx))
  5096. #
  5097. # # then, form polygons by storing vertex indices in (counter-)clockwise order
  5098. # polys = dict()
  5099. # for pIdx, lineIndices_ in cells.items():
  5100. # # get a directed graph which contains both directions and arbitrarily follow one of both
  5101. # directedGraph = lineIndices_ + [(i2, i1) for (i1, i2) in lineIndices_]
  5102. # directedGraphMap = collections.defaultdict(list)
  5103. # for (i1, i2) in directedGraph:
  5104. # directedGraphMap[i1].append(i2)
  5105. # orderedEdges = []
  5106. # currentEdge = directedGraph[0]
  5107. # while len(orderedEdges) < len(lineIndices_):
  5108. # i1 = currentEdge[1]
  5109. # i2 = directedGraphMap[i1][0] if directedGraphMap[i1][0] != currentEdge[0] else directedGraphMap[i1][1]
  5110. # nextEdge = (i1, i2)
  5111. # orderedEdges.append(nextEdge)
  5112. # currentEdge = nextEdge
  5113. #
  5114. # polys[pIdx] = [i1 for (i1, i2) in orderedEdges]
  5115. #
  5116. # return polys
  5117. #
  5118. #
  5119. # def voronoi_polygons(points):
  5120. # """
  5121. # Returns the voronoi polygon for each input point.
  5122. #
  5123. # :param points: shape (n,2)
  5124. # :rtype: list of n polygons where each polygon is an array of vertices
  5125. # """
  5126. # vertices, lineIndices = voronoi(points)
  5127. # cells = voronoi_cell_lines(points, vertices, lineIndices)
  5128. # polys = voronoi_edges2polygons(cells)
  5129. # polylist = []
  5130. # for i in range(len(points)):
  5131. # poly = vertices[np.asarray(polys[i])]
  5132. # polylist.append(poly)
  5133. # return polylist
  5134. #
  5135. #
  5136. # class Zprofile:
  5137. # def __init__(self):
  5138. #
  5139. # # data contains lists of [x, y, z]
  5140. # self.data = []
  5141. #
  5142. # # Computed voronoi polygons (shapely)
  5143. # self.polygons = []
  5144. # pass
  5145. #
  5146. # # def plot_polygons(self):
  5147. # # axes = plt.subplot(1, 1, 1)
  5148. # #
  5149. # # plt.axis([-0.05, 1.05, -0.05, 1.05])
  5150. # #
  5151. # # for poly in self.polygons:
  5152. # # p = PolygonPatch(poly, facecolor=np.random.rand(3, 1), alpha=0.3)
  5153. # # axes.add_patch(p)
  5154. #
  5155. # def init_from_csv(self, filename):
  5156. # pass
  5157. #
  5158. # def init_from_string(self, zpstring):
  5159. # pass
  5160. #
  5161. # def init_from_list(self, zplist):
  5162. # self.data = zplist
  5163. #
  5164. # def generate_polygons(self):
  5165. # self.polygons = [Polygon(p) for p in voronoi_polygons(array([[x[0], x[1]] for x in self.data]))]
  5166. #
  5167. # def normalize(self, origin):
  5168. # pass
  5169. #
  5170. # def paste(self, path):
  5171. # """
  5172. # Return a list of dictionaries containing the parts of the original
  5173. # path and their z-axis offset.
  5174. # """
  5175. #
  5176. # # At most one region/polygon will contain the path
  5177. # containing = [i for i in range(len(self.polygons)) if self.polygons[i].contains(path)]
  5178. #
  5179. # if len(containing) > 0:
  5180. # return [{"path": path, "z": self.data[containing[0]][2]}]
  5181. #
  5182. # # All region indexes that intersect with the path
  5183. # crossing = [i for i in range(len(self.polygons)) if self.polygons[i].intersects(path)]
  5184. #
  5185. # return [{"path": path.intersection(self.polygons[i]),
  5186. # "z": self.data[i][2]} for i in crossing]
  5187. def autolist(obj):
  5188. try:
  5189. __ = iter(obj)
  5190. return obj
  5191. except TypeError:
  5192. return [obj]
  5193. def three_point_circle(p1, p2, p3):
  5194. """
  5195. Computes the center and radius of a circle from
  5196. 3 points on its circumference.
  5197. :param p1: Point 1
  5198. :param p2: Point 2
  5199. :param p3: Point 3
  5200. :return: center, radius
  5201. """
  5202. # Midpoints
  5203. a1 = (p1 + p2) / 2.0
  5204. a2 = (p2 + p3) / 2.0
  5205. # Normals
  5206. b1 = np.dot((p2 - p1), np.array([[0, -1], [1, 0]], dtype=np.float32))
  5207. b2 = np.dot((p3 - p2), np.array([[0, 1], [-1, 0]], dtype=np.float32))
  5208. # Params
  5209. try:
  5210. T = solve(np.transpose(np.array([-b1, b2])), a1 - a2)
  5211. except Exception as e:
  5212. log.debug("camlib.three_point_circle() --> %s" % str(e))
  5213. return
  5214. # Center
  5215. center = a1 + b1 * T[0]
  5216. # Radius
  5217. radius = np.linalg.norm(center - p1)
  5218. return center, radius, T[0]
  5219. def distance(pt1, pt2):
  5220. return np.sqrt((pt1[0] - pt2[0]) ** 2 + (pt1[1] - pt2[1]) ** 2)
  5221. def distance_euclidian(x1, y1, x2, y2):
  5222. return np.sqrt((x1 - x2) ** 2 + (y1 - y2) ** 2)
  5223. class FlatCAMRTree(object):
  5224. """
  5225. Indexes geometry (Any object with "cooords" property containing
  5226. a list of tuples with x, y values). Objects are indexed by
  5227. all their points by default. To index by arbitrary points,
  5228. override self.points2obj.
  5229. """
  5230. def __init__(self):
  5231. # Python RTree Index
  5232. self.rti = rtindex.Index()
  5233. # ## Track object-point relationship
  5234. # Each is list of points in object.
  5235. self.obj2points = []
  5236. # Index is index in rtree, value is index of
  5237. # object in obj2points.
  5238. self.points2obj = []
  5239. self.get_points = lambda go: go.coords
  5240. def grow_obj2points(self, idx):
  5241. """
  5242. Increases the size of self.obj2points to fit
  5243. idx + 1 items.
  5244. :param idx: Index to fit into list.
  5245. :return: None
  5246. """
  5247. if len(self.obj2points) > idx:
  5248. # len == 2, idx == 1, ok.
  5249. return
  5250. else:
  5251. # len == 2, idx == 2, need 1 more.
  5252. # range(2, 3)
  5253. for i in range(len(self.obj2points), idx + 1):
  5254. self.obj2points.append([])
  5255. def insert(self, objid, obj):
  5256. self.grow_obj2points(objid)
  5257. self.obj2points[objid] = []
  5258. for pt in self.get_points(obj):
  5259. self.rti.insert(len(self.points2obj), (pt[0], pt[1], pt[0], pt[1]), obj=objid)
  5260. self.obj2points[objid].append(len(self.points2obj))
  5261. self.points2obj.append(objid)
  5262. def remove_obj(self, objid, obj):
  5263. # Use all ptids to delete from index
  5264. for i, pt in enumerate(self.get_points(obj)):
  5265. try:
  5266. self.rti.delete(self.obj2points[objid][i], (pt[0], pt[1], pt[0], pt[1]))
  5267. except IndexError:
  5268. pass
  5269. def nearest(self, pt):
  5270. """
  5271. Will raise StopIteration if no items are found.
  5272. :param pt:
  5273. :return:
  5274. """
  5275. return next(self.rti.nearest(pt, objects=True))
  5276. class FlatCAMRTreeStorage(FlatCAMRTree):
  5277. """
  5278. Just like FlatCAMRTree it indexes geometry, but also serves
  5279. as storage for the geometry.
  5280. """
  5281. def __init__(self):
  5282. # super(FlatCAMRTreeStorage, self).__init__()
  5283. super().__init__()
  5284. self.objects = []
  5285. # Optimization attempt!
  5286. self.indexes = {}
  5287. def insert(self, obj):
  5288. self.objects.append(obj)
  5289. idx = len(self.objects) - 1
  5290. # Note: Shapely objects are not hashable any more, although
  5291. # there seem to be plans to re-introduce the feature in
  5292. # version 2.0. For now, we will index using the object's id,
  5293. # but it's important to remember that shapely geometry is
  5294. # mutable, ie. it can be modified to a totally different shape
  5295. # and continue to have the same id.
  5296. # self.indexes[obj] = idx
  5297. self.indexes[id(obj)] = idx
  5298. # super(FlatCAMRTreeStorage, self).insert(idx, obj)
  5299. super().insert(idx, obj)
  5300. # @profile
  5301. def remove(self, obj):
  5302. # See note about self.indexes in insert().
  5303. # objidx = self.indexes[obj]
  5304. objidx = self.indexes[id(obj)]
  5305. # Remove from list
  5306. self.objects[objidx] = None
  5307. # Remove from index
  5308. self.remove_obj(objidx, obj)
  5309. def get_objects(self):
  5310. return (o for o in self.objects if o is not None)
  5311. def nearest(self, pt):
  5312. """
  5313. Returns the nearest matching points and the object
  5314. it belongs to.
  5315. :param pt: Query point.
  5316. :return: (match_x, match_y), Object owner of
  5317. matching point.
  5318. :rtype: tuple
  5319. """
  5320. tidx = super(FlatCAMRTreeStorage, self).nearest(pt)
  5321. return (tidx.bbox[0], tidx.bbox[1]), self.objects[tidx.object]
  5322. # class myO:
  5323. # def __init__(self, coords):
  5324. # self.coords = coords
  5325. #
  5326. #
  5327. # def test_rti():
  5328. #
  5329. # o1 = myO([(0, 0), (0, 1), (1, 1)])
  5330. # o2 = myO([(2, 0), (2, 1), (2, 1)])
  5331. # o3 = myO([(2, 0), (2, 1), (3, 1)])
  5332. #
  5333. # os = [o1, o2]
  5334. #
  5335. # idx = FlatCAMRTree()
  5336. #
  5337. # for o in range(len(os)):
  5338. # idx.insert(o, os[o])
  5339. #
  5340. # print [x.bbox for x in idx.rti.nearest((0, 0), num_results=20, objects=True)]
  5341. #
  5342. # idx.remove_obj(0, o1)
  5343. #
  5344. # print [x.bbox for x in idx.rti.nearest((0, 0), num_results=20, objects=True)]
  5345. #
  5346. # idx.remove_obj(1, o2)
  5347. #
  5348. # print [x.bbox for x in idx.rti.nearest((0, 0), num_results=20, objects=True)]
  5349. #
  5350. #
  5351. # def test_rtis():
  5352. #
  5353. # o1 = myO([(0, 0), (0, 1), (1, 1)])
  5354. # o2 = myO([(2, 0), (2, 1), (2, 1)])
  5355. # o3 = myO([(2, 0), (2, 1), (3, 1)])
  5356. #
  5357. # os = [o1, o2]
  5358. #
  5359. # idx = FlatCAMRTreeStorage()
  5360. #
  5361. # for o in range(len(os)):
  5362. # idx.insert(os[o])
  5363. #
  5364. # #os = None
  5365. # #o1 = None
  5366. # #o2 = None
  5367. #
  5368. # print [x.bbox for x in idx.rti.nearest((0, 0), num_results=20, objects=True)]
  5369. #
  5370. # idx.remove(idx.nearest((2,0))[1])
  5371. #
  5372. # print [x.bbox for x in idx.rti.nearest((0, 0), num_results=20, objects=True)]
  5373. #
  5374. # idx.remove(idx.nearest((0,0))[1])
  5375. #
  5376. # print [x.bbox for x in idx.rti.nearest((0, 0), num_results=20, objects=True)]