camlib.py 240 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154
  1. # ########################################################## ##
  2. # FlatCAM: 2D Post-processing for Manufacturing #
  3. # http://flatcam.org #
  4. # Author: Juan Pablo Caram (c) #
  5. # Date: 2/5/2014 #
  6. # MIT Licence #
  7. # ########################################################## ##
  8. from PyQt5 import QtWidgets, QtCore
  9. from io import StringIO
  10. import numpy as np
  11. from numpy.linalg import solve, norm
  12. import platform
  13. from copy import deepcopy
  14. import traceback
  15. from decimal import Decimal
  16. from rtree import index as rtindex
  17. from lxml import etree as ET
  18. # See: http://toblerity.org/shapely/manual.html
  19. from shapely.geometry import Polygon, LineString, Point, LinearRing, MultiLineString, MultiPoint, MultiPolygon
  20. from shapely.geometry import box as shply_box
  21. from shapely.ops import cascaded_union, unary_union, polygonize
  22. import shapely.affinity as affinity
  23. from shapely.wkt import loads as sloads
  24. from shapely.wkt import dumps as sdumps
  25. from shapely.geometry.base import BaseGeometry
  26. from shapely.geometry import shape
  27. # needed for legacy mode
  28. # Used for solid polygons in Matplotlib
  29. from descartes.patch import PolygonPatch
  30. import collections
  31. from collections import Iterable
  32. import rasterio
  33. from rasterio.features import shapes
  34. import ezdxf
  35. # TODO: Commented for FlatCAM packaging with cx_freeze
  36. # from scipy.spatial import KDTree, Delaunay
  37. # from scipy.spatial import Delaunay
  38. from flatcamParsers.ParseSVG import *
  39. from flatcamParsers.ParseDXF import *
  40. if platform.architecture()[0] == '64bit':
  41. from ortools.constraint_solver import pywrapcp
  42. from ortools.constraint_solver import routing_enums_pb2
  43. import logging
  44. import FlatCAMApp
  45. import gettext
  46. import FlatCAMTranslation as fcTranslate
  47. import builtins
  48. fcTranslate.apply_language('strings')
  49. log = logging.getLogger('base2')
  50. log.setLevel(logging.DEBUG)
  51. formatter = logging.Formatter('[%(levelname)s] %(message)s')
  52. handler = logging.StreamHandler()
  53. handler.setFormatter(formatter)
  54. log.addHandler(handler)
  55. if '_' not in builtins.__dict__:
  56. _ = gettext.gettext
  57. class ParseError(Exception):
  58. pass
  59. class ApertureMacro:
  60. """
  61. Syntax of aperture macros.
  62. <AM command>: AM<Aperture macro name>*<Macro content>
  63. <Macro content>: {{<Variable definition>*}{<Primitive>*}}
  64. <Variable definition>: $K=<Arithmetic expression>
  65. <Primitive>: <Primitive code>,<Modifier>{,<Modifier>}|<Comment>
  66. <Modifier>: $M|< Arithmetic expression>
  67. <Comment>: 0 <Text>
  68. """
  69. # ## Regular expressions
  70. am1_re = re.compile(r'^%AM([^\*]+)\*(.+)?(%)?$')
  71. am2_re = re.compile(r'(.*)%$')
  72. amcomm_re = re.compile(r'^0(.*)')
  73. amprim_re = re.compile(r'^[1-9].*')
  74. amvar_re = re.compile(r'^\$([0-9a-zA-z]+)=(.*)')
  75. def __init__(self, name=None):
  76. self.name = name
  77. self.raw = ""
  78. # ## These below are recomputed for every aperture
  79. # ## definition, in other words, are temporary variables.
  80. self.primitives = []
  81. self.locvars = {}
  82. self.geometry = None
  83. def to_dict(self):
  84. """
  85. Returns the object in a serializable form. Only the name and
  86. raw are required.
  87. :return: Dictionary representing the object. JSON ready.
  88. :rtype: dict
  89. """
  90. return {
  91. 'name': self.name,
  92. 'raw': self.raw
  93. }
  94. def from_dict(self, d):
  95. """
  96. Populates the object from a serial representation created
  97. with ``self.to_dict()``.
  98. :param d: Serial representation of an ApertureMacro object.
  99. :return: None
  100. """
  101. for attr in ['name', 'raw']:
  102. setattr(self, attr, d[attr])
  103. def parse_content(self):
  104. """
  105. Creates numerical lists for all primitives in the aperture
  106. macro (in ``self.raw``) by replacing all variables by their
  107. values iteratively and evaluating expressions. Results
  108. are stored in ``self.primitives``.
  109. :return: None
  110. """
  111. # Cleanup
  112. self.raw = self.raw.replace('\n', '').replace('\r', '').strip(" *")
  113. self.primitives = []
  114. # Separate parts
  115. parts = self.raw.split('*')
  116. # ### Every part in the macro ####
  117. for part in parts:
  118. # ## Comments. Ignored.
  119. match = ApertureMacro.amcomm_re.search(part)
  120. if match:
  121. continue
  122. # ## Variables
  123. # These are variables defined locally inside the macro. They can be
  124. # numerical constant or defined in terms of previously define
  125. # variables, which can be defined locally or in an aperture
  126. # definition. All replacements occur here.
  127. match = ApertureMacro.amvar_re.search(part)
  128. if match:
  129. var = match.group(1)
  130. val = match.group(2)
  131. # Replace variables in value
  132. for v in self.locvars:
  133. # replaced the following line with the next to fix Mentor custom apertures not parsed OK
  134. # val = re.sub((r'\$'+str(v)+r'(?![0-9a-zA-Z])'), str(self.locvars[v]), val)
  135. val = val.replace('$' + str(v), str(self.locvars[v]))
  136. # Make all others 0
  137. val = re.sub(r'\$[0-9a-zA-Z](?![0-9a-zA-Z])', "0", val)
  138. # Change x with *
  139. val = re.sub(r'[xX]', "*", val)
  140. # Eval() and store.
  141. self.locvars[var] = eval(val)
  142. continue
  143. # ## Primitives
  144. # Each is an array. The first identifies the primitive, while the
  145. # rest depend on the primitive. All are strings representing a
  146. # number and may contain variable definition. The values of these
  147. # variables are defined in an aperture definition.
  148. match = ApertureMacro.amprim_re.search(part)
  149. if match:
  150. # ## Replace all variables
  151. for v in self.locvars:
  152. # replaced the following line with the next to fix Mentor custom apertures not parsed OK
  153. # part = re.sub(r'\$' + str(v) + r'(?![0-9a-zA-Z])', str(self.locvars[v]), part)
  154. part = part.replace('$' + str(v), str(self.locvars[v]))
  155. # Make all others 0
  156. part = re.sub(r'\$[0-9a-zA-Z](?![0-9a-zA-Z])', "0", part)
  157. # Change x with *
  158. part = re.sub(r'[xX]', "*", part)
  159. # ## Store
  160. elements = part.split(",")
  161. self.primitives.append([eval(x) for x in elements])
  162. continue
  163. log.warning("Unknown syntax of aperture macro part: %s" % str(part))
  164. def append(self, data):
  165. """
  166. Appends a string to the raw macro.
  167. :param data: Part of the macro.
  168. :type data: str
  169. :return: None
  170. """
  171. self.raw += data
  172. @staticmethod
  173. def default2zero(n, mods):
  174. """
  175. Pads the ``mods`` list with zeros resulting in an
  176. list of length n.
  177. :param n: Length of the resulting list.
  178. :type n: int
  179. :param mods: List to be padded.
  180. :type mods: list
  181. :return: Zero-padded list.
  182. :rtype: list
  183. """
  184. x = [0.0] * n
  185. na = len(mods)
  186. x[0:na] = mods
  187. return x
  188. @staticmethod
  189. def make_circle(mods):
  190. """
  191. :param mods: (Exposure 0/1, Diameter >=0, X-coord, Y-coord)
  192. :return:
  193. """
  194. pol, dia, x, y = ApertureMacro.default2zero(4, mods)
  195. return {"pol": int(pol), "geometry": Point(x, y).buffer(dia/2)}
  196. @staticmethod
  197. def make_vectorline(mods):
  198. """
  199. :param mods: (Exposure 0/1, Line width >= 0, X-start, Y-start, X-end, Y-end,
  200. rotation angle around origin in degrees)
  201. :return:
  202. """
  203. pol, width, xs, ys, xe, ye, angle = ApertureMacro.default2zero(7, mods)
  204. line = LineString([(xs, ys), (xe, ye)])
  205. box = line.buffer(width/2, cap_style=2)
  206. box_rotated = affinity.rotate(box, angle, origin=(0, 0))
  207. return {"pol": int(pol), "geometry": box_rotated}
  208. @staticmethod
  209. def make_centerline(mods):
  210. """
  211. :param mods: (Exposure 0/1, width >=0, height >=0, x-center, y-center,
  212. rotation angle around origin in degrees)
  213. :return:
  214. """
  215. pol, width, height, x, y, angle = ApertureMacro.default2zero(6, mods)
  216. box = shply_box(x-width/2, y-height/2, x+width/2, y+height/2)
  217. box_rotated = affinity.rotate(box, angle, origin=(0, 0))
  218. return {"pol": int(pol), "geometry": box_rotated}
  219. @staticmethod
  220. def make_lowerleftline(mods):
  221. """
  222. :param mods: (exposure 0/1, width >=0, height >=0, x-lowerleft, y-lowerleft,
  223. rotation angle around origin in degrees)
  224. :return:
  225. """
  226. pol, width, height, x, y, angle = ApertureMacro.default2zero(6, mods)
  227. box = shply_box(x, y, x+width, y+height)
  228. box_rotated = affinity.rotate(box, angle, origin=(0, 0))
  229. return {"pol": int(pol), "geometry": box_rotated}
  230. @staticmethod
  231. def make_outline(mods):
  232. """
  233. :param mods:
  234. :return:
  235. """
  236. pol = mods[0]
  237. n = mods[1]
  238. points = [(0, 0)]*(n+1)
  239. for i in range(n+1):
  240. points[i] = mods[2*i + 2:2*i + 4]
  241. angle = mods[2*n + 4]
  242. poly = Polygon(points)
  243. poly_rotated = affinity.rotate(poly, angle, origin=(0, 0))
  244. return {"pol": int(pol), "geometry": poly_rotated}
  245. @staticmethod
  246. def make_polygon(mods):
  247. """
  248. Note: Specs indicate that rotation is only allowed if the center
  249. (x, y) == (0, 0). I will tolerate breaking this rule.
  250. :param mods: (exposure 0/1, n_verts 3<=n<=12, x-center, y-center,
  251. diameter of circumscribed circle >=0, rotation angle around origin)
  252. :return:
  253. """
  254. pol, nverts, x, y, dia, angle = ApertureMacro.default2zero(6, mods)
  255. points = [(0, 0)]*nverts
  256. for i in range(nverts):
  257. points[i] = (x + 0.5 * dia * np.cos(2*np.pi * i/nverts),
  258. y + 0.5 * dia * np.sin(2*np.pi * i/nverts))
  259. poly = Polygon(points)
  260. poly_rotated = affinity.rotate(poly, angle, origin=(0, 0))
  261. return {"pol": int(pol), "geometry": poly_rotated}
  262. @staticmethod
  263. def make_moire(mods):
  264. """
  265. Note: Specs indicate that rotation is only allowed if the center
  266. (x, y) == (0, 0). I will tolerate breaking this rule.
  267. :param mods: (x-center, y-center, outer_dia_outer_ring, ring thickness,
  268. gap, max_rings, crosshair_thickness, crosshair_len, rotation
  269. angle around origin in degrees)
  270. :return:
  271. """
  272. x, y, dia, thickness, gap, nrings, cross_th, cross_len, angle = ApertureMacro.default2zero(9, mods)
  273. r = dia/2 - thickness/2
  274. result = Point((x, y)).buffer(r).exterior.buffer(thickness/2.0)
  275. ring = Point((x, y)).buffer(r).exterior.buffer(thickness/2.0) # Need a copy!
  276. i = 1 # Number of rings created so far
  277. # ## If the ring does not have an interior it means that it is
  278. # ## a disk. Then stop.
  279. while len(ring.interiors) > 0 and i < nrings:
  280. r -= thickness + gap
  281. if r <= 0:
  282. break
  283. ring = Point((x, y)).buffer(r).exterior.buffer(thickness/2.0)
  284. result = cascaded_union([result, ring])
  285. i += 1
  286. # ## Crosshair
  287. hor = LineString([(x - cross_len, y), (x + cross_len, y)]).buffer(cross_th/2.0, cap_style=2)
  288. ver = LineString([(x, y-cross_len), (x, y + cross_len)]).buffer(cross_th/2.0, cap_style=2)
  289. result = cascaded_union([result, hor, ver])
  290. return {"pol": 1, "geometry": result}
  291. @staticmethod
  292. def make_thermal(mods):
  293. """
  294. Note: Specs indicate that rotation is only allowed if the center
  295. (x, y) == (0, 0). I will tolerate breaking this rule.
  296. :param mods: [x-center, y-center, diameter-outside, diameter-inside,
  297. gap-thickness, rotation angle around origin]
  298. :return:
  299. """
  300. x, y, dout, din, t, angle = ApertureMacro.default2zero(6, mods)
  301. ring = Point((x, y)).buffer(dout/2.0).difference(Point((x, y)).buffer(din/2.0))
  302. hline = LineString([(x - dout/2.0, y), (x + dout/2.0, y)]).buffer(t/2.0, cap_style=3)
  303. vline = LineString([(x, y - dout/2.0), (x, y + dout/2.0)]).buffer(t/2.0, cap_style=3)
  304. thermal = ring.difference(hline.union(vline))
  305. return {"pol": 1, "geometry": thermal}
  306. def make_geometry(self, modifiers):
  307. """
  308. Runs the macro for the given modifiers and generates
  309. the corresponding geometry.
  310. :param modifiers: Modifiers (parameters) for this macro
  311. :type modifiers: list
  312. :return: Shapely geometry
  313. :rtype: shapely.geometry.polygon
  314. """
  315. # ## Primitive makers
  316. makers = {
  317. "1": ApertureMacro.make_circle,
  318. "2": ApertureMacro.make_vectorline,
  319. "20": ApertureMacro.make_vectorline,
  320. "21": ApertureMacro.make_centerline,
  321. "22": ApertureMacro.make_lowerleftline,
  322. "4": ApertureMacro.make_outline,
  323. "5": ApertureMacro.make_polygon,
  324. "6": ApertureMacro.make_moire,
  325. "7": ApertureMacro.make_thermal
  326. }
  327. # ## Store modifiers as local variables
  328. modifiers = modifiers or []
  329. modifiers = [float(m) for m in modifiers]
  330. self.locvars = {}
  331. for i in range(0, len(modifiers)):
  332. self.locvars[str(i + 1)] = modifiers[i]
  333. # ## Parse
  334. self.primitives = [] # Cleanup
  335. self.geometry = Polygon()
  336. self.parse_content()
  337. # ## Make the geometry
  338. for primitive in self.primitives:
  339. # Make the primitive
  340. prim_geo = makers[str(int(primitive[0]))](primitive[1:])
  341. # Add it (according to polarity)
  342. # if self.geometry is None and prim_geo['pol'] == 1:
  343. # self.geometry = prim_geo['geometry']
  344. # continue
  345. if prim_geo['pol'] == 1:
  346. self.geometry = self.geometry.union(prim_geo['geometry'])
  347. continue
  348. if prim_geo['pol'] == 0:
  349. self.geometry = self.geometry.difference(prim_geo['geometry'])
  350. continue
  351. return self.geometry
  352. class Geometry(object):
  353. """
  354. Base geometry class.
  355. """
  356. defaults = {
  357. "units": 'mm',
  358. # "geo_steps_per_circle": 128
  359. }
  360. def __init__(self, geo_steps_per_circle=None):
  361. # Units (in or mm)
  362. self.units = self.app.defaults["units"]
  363. self.decimals = self.app.decimals
  364. # Final geometry: MultiPolygon or list (of geometry constructs)
  365. self.solid_geometry = None
  366. # Final geometry: MultiLineString or list (of LineString or Points)
  367. self.follow_geometry = None
  368. # Attributes to be included in serialization
  369. self.ser_attrs = ["units", 'solid_geometry', 'follow_geometry']
  370. # Flattened geometry (list of paths only)
  371. self.flat_geometry = []
  372. # this is the calculated conversion factor when the file units are different than the ones in the app
  373. self.file_units_factor = 1
  374. # Index
  375. self.index = None
  376. self.geo_steps_per_circle = geo_steps_per_circle
  377. # variables to display the percentage of work done
  378. self.geo_len = 0
  379. self.old_disp_number = 0
  380. self.el_count = 0
  381. if self.app.is_legacy is False:
  382. self.temp_shapes = self.app.plotcanvas.new_shape_group()
  383. else:
  384. from flatcamGUI.PlotCanvasLegacy import ShapeCollectionLegacy
  385. self.temp_shapes = ShapeCollectionLegacy(obj=self, app=self.app, name='camlib.geometry')
  386. def plot_temp_shapes(self, element, color='red'):
  387. try:
  388. for sub_el in element:
  389. self.plot_temp_shapes(sub_el)
  390. except TypeError: # Element is not iterable...
  391. # self.add_shape(shape=element, color=color, visible=visible, layer=0)
  392. self.temp_shapes.add(tolerance=float(self.app.defaults["global_tolerance"]),
  393. shape=element, color=color, visible=True, layer=0)
  394. def make_index(self):
  395. self.flatten()
  396. self.index = FlatCAMRTree()
  397. for i, g in enumerate(self.flat_geometry):
  398. self.index.insert(i, g)
  399. def add_circle(self, origin, radius):
  400. """
  401. Adds a circle to the object.
  402. :param origin: Center of the circle.
  403. :param radius: Radius of the circle.
  404. :return: None
  405. """
  406. if self.solid_geometry is None:
  407. self.solid_geometry = []
  408. if type(self.solid_geometry) is list:
  409. self.solid_geometry.append(Point(origin).buffer(radius, int(self.geo_steps_per_circle)))
  410. return
  411. try:
  412. self.solid_geometry = self.solid_geometry.union(
  413. Point(origin).buffer(radius, int(self.geo_steps_per_circle))
  414. )
  415. except Exception as e:
  416. log.error("Failed to run union on polygons. %s" % str(e))
  417. return
  418. def add_polygon(self, points):
  419. """
  420. Adds a polygon to the object (by union)
  421. :param points: The vertices of the polygon.
  422. :return: None
  423. """
  424. if self.solid_geometry is None:
  425. self.solid_geometry = []
  426. if type(self.solid_geometry) is list:
  427. self.solid_geometry.append(Polygon(points))
  428. return
  429. try:
  430. self.solid_geometry = self.solid_geometry.union(Polygon(points))
  431. except Exception as e:
  432. log.error("Failed to run union on polygons. %s" % str(e))
  433. return
  434. def add_polyline(self, points):
  435. """
  436. Adds a polyline to the object (by union)
  437. :param points: The vertices of the polyline.
  438. :return: None
  439. """
  440. if self.solid_geometry is None:
  441. self.solid_geometry = []
  442. if type(self.solid_geometry) is list:
  443. self.solid_geometry.append(LineString(points))
  444. return
  445. try:
  446. self.solid_geometry = self.solid_geometry.union(LineString(points))
  447. except Exception as e:
  448. log.error("Failed to run union on polylines. %s" % str(e))
  449. return
  450. def is_empty(self):
  451. if isinstance(self.solid_geometry, BaseGeometry):
  452. return self.solid_geometry.is_empty
  453. if isinstance(self.solid_geometry, list):
  454. return len(self.solid_geometry) == 0
  455. self.app.inform.emit('[ERROR_NOTCL] %s' %
  456. _("self.solid_geometry is neither BaseGeometry or list."))
  457. return
  458. def subtract_polygon(self, points):
  459. """
  460. Subtract polygon from the given object. This only operates on the paths in the original geometry,
  461. i.e. it converts polygons into paths.
  462. :param points: The vertices of the polygon.
  463. :return: none
  464. """
  465. if self.solid_geometry is None:
  466. self.solid_geometry = []
  467. # pathonly should be allways True, otherwise polygons are not subtracted
  468. flat_geometry = self.flatten(pathonly=True)
  469. log.debug("%d paths" % len(flat_geometry))
  470. polygon = Polygon(points)
  471. toolgeo = cascaded_union(polygon)
  472. diffs = []
  473. for target in flat_geometry:
  474. if type(target) == LineString or type(target) == LinearRing:
  475. diffs.append(target.difference(toolgeo))
  476. else:
  477. log.warning("Not implemented.")
  478. self.solid_geometry = cascaded_union(diffs)
  479. def bounds(self):
  480. """
  481. Returns coordinates of rectangular bounds
  482. of geometry: (xmin, ymin, xmax, ymax).
  483. """
  484. # fixed issue of getting bounds only for one level lists of objects
  485. # now it can get bounds for nested lists of objects
  486. log.debug("camlib.Geometry.bounds()")
  487. if self.solid_geometry is None:
  488. log.debug("solid_geometry is None")
  489. return 0, 0, 0, 0
  490. def bounds_rec(obj):
  491. if type(obj) is list:
  492. minx = np.Inf
  493. miny = np.Inf
  494. maxx = -np.Inf
  495. maxy = -np.Inf
  496. for k in obj:
  497. if type(k) is dict:
  498. for key in k:
  499. minx_, miny_, maxx_, maxy_ = bounds_rec(k[key])
  500. minx = min(minx, minx_)
  501. miny = min(miny, miny_)
  502. maxx = max(maxx, maxx_)
  503. maxy = max(maxy, maxy_)
  504. else:
  505. minx_, miny_, maxx_, maxy_ = bounds_rec(k)
  506. minx = min(minx, minx_)
  507. miny = min(miny, miny_)
  508. maxx = max(maxx, maxx_)
  509. maxy = max(maxy, maxy_)
  510. return minx, miny, maxx, maxy
  511. else:
  512. # it's a Shapely object, return it's bounds
  513. return obj.bounds
  514. if self.multigeo is True:
  515. minx_list = []
  516. miny_list = []
  517. maxx_list = []
  518. maxy_list = []
  519. for tool in self.tools:
  520. minx, miny, maxx, maxy = bounds_rec(self.tools[tool]['solid_geometry'])
  521. minx_list.append(minx)
  522. miny_list.append(miny)
  523. maxx_list.append(maxx)
  524. maxy_list.append(maxy)
  525. return(min(minx_list), min(miny_list), max(maxx_list), max(maxy_list))
  526. else:
  527. bounds_coords = bounds_rec(self.solid_geometry)
  528. return bounds_coords
  529. # try:
  530. # # from here: http://rightfootin.blogspot.com/2006/09/more-on-python-flatten.html
  531. # def flatten(l, ltypes=(list, tuple)):
  532. # ltype = type(l)
  533. # l = list(l)
  534. # i = 0
  535. # while i < len(l):
  536. # while isinstance(l[i], ltypes):
  537. # if not l[i]:
  538. # l.pop(i)
  539. # i -= 1
  540. # break
  541. # else:
  542. # l[i:i + 1] = l[i]
  543. # i += 1
  544. # return ltype(l)
  545. #
  546. # log.debug("Geometry->bounds()")
  547. # if self.solid_geometry is None:
  548. # log.debug("solid_geometry is None")
  549. # return 0, 0, 0, 0
  550. #
  551. # if type(self.solid_geometry) is list:
  552. # # TODO: This can be done faster. See comment from Shapely mailing lists.
  553. # if len(self.solid_geometry) == 0:
  554. # log.debug('solid_geometry is empty []')
  555. # return 0, 0, 0, 0
  556. # return cascaded_union(flatten(self.solid_geometry)).bounds
  557. # else:
  558. # return self.solid_geometry.bounds
  559. # except Exception as e:
  560. # self.app.inform.emit("[ERROR_NOTCL] Error cause: %s" % str(e))
  561. # log.debug("Geometry->bounds()")
  562. # if self.solid_geometry is None:
  563. # log.debug("solid_geometry is None")
  564. # return 0, 0, 0, 0
  565. #
  566. # if type(self.solid_geometry) is list:
  567. # # TODO: This can be done faster. See comment from Shapely mailing lists.
  568. # if len(self.solid_geometry) == 0:
  569. # log.debug('solid_geometry is empty []')
  570. # return 0, 0, 0, 0
  571. # return cascaded_union(self.solid_geometry).bounds
  572. # else:
  573. # return self.solid_geometry.bounds
  574. def find_polygon(self, point, geoset=None):
  575. """
  576. Find an object that object.contains(Point(point)) in
  577. poly, which can can be iterable, contain iterable of, or
  578. be itself an implementer of .contains().
  579. :param point: See description
  580. :param geoset: a polygon or list of polygons where to find if the param point is contained
  581. :return: Polygon containing point or None.
  582. """
  583. if geoset is None:
  584. geoset = self.solid_geometry
  585. try: # Iterable
  586. for sub_geo in geoset:
  587. p = self.find_polygon(point, geoset=sub_geo)
  588. if p is not None:
  589. return p
  590. except TypeError: # Non-iterable
  591. try: # Implements .contains()
  592. if isinstance(geoset, LinearRing):
  593. geoset = Polygon(geoset)
  594. if geoset.contains(Point(point)):
  595. return geoset
  596. except AttributeError: # Does not implement .contains()
  597. return None
  598. return None
  599. def get_interiors(self, geometry=None):
  600. interiors = []
  601. if geometry is None:
  602. geometry = self.solid_geometry
  603. # ## If iterable, expand recursively.
  604. try:
  605. for geo in geometry:
  606. interiors.extend(self.get_interiors(geometry=geo))
  607. # ## Not iterable, get the interiors if polygon.
  608. except TypeError:
  609. if type(geometry) == Polygon:
  610. interiors.extend(geometry.interiors)
  611. return interiors
  612. def get_exteriors(self, geometry=None):
  613. """
  614. Returns all exteriors of polygons in geometry. Uses
  615. ``self.solid_geometry`` if geometry is not provided.
  616. :param geometry: Shapely type or list or list of list of such.
  617. :return: List of paths constituting the exteriors
  618. of polygons in geometry.
  619. """
  620. exteriors = []
  621. if geometry is None:
  622. geometry = self.solid_geometry
  623. # ## If iterable, expand recursively.
  624. try:
  625. for geo in geometry:
  626. exteriors.extend(self.get_exteriors(geometry=geo))
  627. # ## Not iterable, get the exterior if polygon.
  628. except TypeError:
  629. if type(geometry) == Polygon:
  630. exteriors.append(geometry.exterior)
  631. return exteriors
  632. def flatten(self, geometry=None, reset=True, pathonly=False):
  633. """
  634. Creates a list of non-iterable linear geometry objects.
  635. Polygons are expanded into its exterior and interiors if specified.
  636. Results are placed in self.flat_geometry
  637. :param geometry: Shapely type or list or list of list of such.
  638. :param reset: Clears the contents of self.flat_geometry.
  639. :param pathonly: Expands polygons into linear elements.
  640. """
  641. if geometry is None:
  642. geometry = self.solid_geometry
  643. if reset:
  644. self.flat_geometry = []
  645. # ## If iterable, expand recursively.
  646. try:
  647. for geo in geometry:
  648. if geo is not None:
  649. self.flatten(geometry=geo,
  650. reset=False,
  651. pathonly=pathonly)
  652. # ## Not iterable, do the actual indexing and add.
  653. except TypeError:
  654. if pathonly and type(geometry) == Polygon:
  655. self.flat_geometry.append(geometry.exterior)
  656. self.flatten(geometry=geometry.interiors,
  657. reset=False,
  658. pathonly=True)
  659. else:
  660. self.flat_geometry.append(geometry)
  661. return self.flat_geometry
  662. # def make2Dstorage(self):
  663. #
  664. # self.flatten()
  665. #
  666. # def get_pts(o):
  667. # pts = []
  668. # if type(o) == Polygon:
  669. # g = o.exterior
  670. # pts += list(g.coords)
  671. # for i in o.interiors:
  672. # pts += list(i.coords)
  673. # else:
  674. # pts += list(o.coords)
  675. # return pts
  676. #
  677. # storage = FlatCAMRTreeStorage()
  678. # storage.get_points = get_pts
  679. # for shape in self.flat_geometry:
  680. # storage.insert(shape)
  681. # return storage
  682. # def flatten_to_paths(self, geometry=None, reset=True):
  683. # """
  684. # Creates a list of non-iterable linear geometry elements and
  685. # indexes them in rtree.
  686. #
  687. # :param geometry: Iterable geometry
  688. # :param reset: Wether to clear (True) or append (False) to self.flat_geometry
  689. # :return: self.flat_geometry, self.flat_geometry_rtree
  690. # """
  691. #
  692. # if geometry is None:
  693. # geometry = self.solid_geometry
  694. #
  695. # if reset:
  696. # self.flat_geometry = []
  697. #
  698. # # ## If iterable, expand recursively.
  699. # try:
  700. # for geo in geometry:
  701. # self.flatten_to_paths(geometry=geo, reset=False)
  702. #
  703. # # ## Not iterable, do the actual indexing and add.
  704. # except TypeError:
  705. # if type(geometry) == Polygon:
  706. # g = geometry.exterior
  707. # self.flat_geometry.append(g)
  708. #
  709. # # ## Add first and last points of the path to the index.
  710. # self.flat_geometry_rtree.insert(len(self.flat_geometry) - 1, g.coords[0])
  711. # self.flat_geometry_rtree.insert(len(self.flat_geometry) - 1, g.coords[-1])
  712. #
  713. # for interior in geometry.interiors:
  714. # g = interior
  715. # self.flat_geometry.append(g)
  716. # self.flat_geometry_rtree.insert(len(self.flat_geometry) - 1, g.coords[0])
  717. # self.flat_geometry_rtree.insert(len(self.flat_geometry) - 1, g.coords[-1])
  718. # else:
  719. # g = geometry
  720. # self.flat_geometry.append(g)
  721. # self.flat_geometry_rtree.insert(len(self.flat_geometry) - 1, g.coords[0])
  722. # self.flat_geometry_rtree.insert(len(self.flat_geometry) - 1, g.coords[-1])
  723. #
  724. # return self.flat_geometry, self.flat_geometry_rtree
  725. def isolation_geometry(self, offset, geometry=None, iso_type=2, corner=None, follow=None, passes=0):
  726. """
  727. Creates contours around geometry at a given
  728. offset distance.
  729. :param offset: Offset distance.
  730. :type offset: float
  731. :param iso_type: type of isolation, can be 0 = exteriors or 1 = interiors or 2 = both (complete)
  732. :param corner: type of corner for the isolation: 0 = round; 1 = square; 2= beveled (line that connects the ends)
  733. :param follow: whether the geometry to be isolated is a follow_geometry
  734. :param passes: current pass out of possible multiple passes for which the isolation is done
  735. :return: The buffered geometry.
  736. :rtype: Shapely.MultiPolygon or Shapely.Polygon
  737. """
  738. if self.app.abort_flag:
  739. # graceful abort requested by the user
  740. raise FlatCAMApp.GracefulException
  741. geo_iso = list()
  742. if follow:
  743. return geometry
  744. if geometry:
  745. working_geo = geometry
  746. else:
  747. working_geo = self.solid_geometry
  748. try:
  749. geo_len = len(working_geo)
  750. except TypeError:
  751. geo_len = 1
  752. old_disp_number = 0
  753. pol_nr = 0
  754. # yet, it can be done by issuing an unary_union in the end, thus getting rid of the overlapping geo
  755. try:
  756. for pol in working_geo:
  757. if self.app.abort_flag:
  758. # graceful abort requested by the user
  759. raise FlatCAMApp.GracefulException
  760. if offset == 0:
  761. geo_iso.append(pol)
  762. else:
  763. corner_type = 1 if corner is None else corner
  764. geo_iso.append(pol.buffer(offset, int(self.geo_steps_per_circle), join_style=corner_type))
  765. pol_nr += 1
  766. disp_number = int(np.interp(pol_nr, [0, geo_len], [0, 100]))
  767. if old_disp_number < disp_number <= 100:
  768. self.app.proc_container.update_view_text(' %s %d: %d%%' %
  769. (_("Pass"), int(passes + 1), int(disp_number)))
  770. old_disp_number = disp_number
  771. except TypeError:
  772. # taking care of the case when the self.solid_geometry is just a single Polygon, not a list or a
  773. # MultiPolygon (not an iterable)
  774. if offset == 0:
  775. geo_iso.append(working_geo)
  776. else:
  777. corner_type = 1 if corner is None else corner
  778. geo_iso.append(working_geo.buffer(offset, int(self.geo_steps_per_circle), join_style=corner_type))
  779. self.app.proc_container.update_view_text(' %s' % _("Buffering"))
  780. geo_iso = unary_union(geo_iso)
  781. self.app.proc_container.update_view_text('')
  782. # end of replaced block
  783. if iso_type == 2:
  784. return geo_iso
  785. elif iso_type == 0:
  786. self.app.proc_container.update_view_text(' %s' % _("Get Exteriors"))
  787. return self.get_exteriors(geo_iso)
  788. elif iso_type == 1:
  789. self.app.proc_container.update_view_text(' %s' % _("Get Interiors"))
  790. return self.get_interiors(geo_iso)
  791. else:
  792. log.debug("Geometry.isolation_geometry() --> Type of isolation not supported")
  793. return "fail"
  794. def flatten_list(self, list):
  795. for item in list:
  796. if isinstance(item, Iterable) and not isinstance(item, (str, bytes)):
  797. yield from self.flatten_list(item)
  798. else:
  799. yield item
  800. def import_svg(self, filename, object_type=None, flip=True, units='MM'):
  801. """
  802. Imports shapes from an SVG file into the object's geometry.
  803. :param filename: Path to the SVG file.
  804. :type filename: str
  805. :param object_type: parameter passed further along
  806. :param flip: Flip the vertically.
  807. :type flip: bool
  808. :param units: FlatCAM units
  809. :return: None
  810. """
  811. log.debug("camlib.Geometry.import_svg()")
  812. # Parse into list of shapely objects
  813. svg_tree = ET.parse(filename)
  814. svg_root = svg_tree.getroot()
  815. # Change origin to bottom left
  816. # h = float(svg_root.get('height'))
  817. # w = float(svg_root.get('width'))
  818. h = svgparselength(svg_root.get('height'))[0] # TODO: No units support yet
  819. geos = getsvggeo(svg_root, object_type)
  820. if flip:
  821. geos = [translate(scale(g, 1.0, -1.0, origin=(0, 0)), yoff=h) for g in geos]
  822. # Add to object
  823. if self.solid_geometry is None:
  824. self.solid_geometry = list()
  825. if type(self.solid_geometry) is list:
  826. if type(geos) is list:
  827. self.solid_geometry += geos
  828. else:
  829. self.solid_geometry.append(geos)
  830. else: # It's shapely geometry
  831. self.solid_geometry = [self.solid_geometry, geos]
  832. # flatten the self.solid_geometry list for import_svg() to import SVG as Gerber
  833. self.solid_geometry = list(self.flatten_list(self.solid_geometry))
  834. geos_text = getsvgtext(svg_root, object_type, units=units)
  835. if geos_text is not None:
  836. geos_text_f = list()
  837. if flip:
  838. # Change origin to bottom left
  839. for i in geos_text:
  840. _, minimy, _, maximy = i.bounds
  841. h2 = (maximy - minimy) * 0.5
  842. geos_text_f.append(translate(scale(i, 1.0, -1.0, origin=(0, 0)), yoff=(h + h2)))
  843. if geos_text_f:
  844. self.solid_geometry = self.solid_geometry + geos_text_f
  845. def import_dxf(self, filename, object_type=None, units='MM'):
  846. """
  847. Imports shapes from an DXF file into the object's geometry.
  848. :param filename: Path to the DXF file.
  849. :type filename: str
  850. :param units: Application units
  851. :type flip: str
  852. :return: None
  853. """
  854. # Parse into list of shapely objects
  855. dxf = ezdxf.readfile(filename)
  856. geos = getdxfgeo(dxf)
  857. # Add to object
  858. if self.solid_geometry is None:
  859. self.solid_geometry = []
  860. if type(self.solid_geometry) is list:
  861. if type(geos) is list:
  862. self.solid_geometry += geos
  863. else:
  864. self.solid_geometry.append(geos)
  865. else: # It's shapely geometry
  866. self.solid_geometry = [self.solid_geometry, geos]
  867. # flatten the self.solid_geometry list for import_dxf() to import DXF as Gerber
  868. self.solid_geometry = list(self.flatten_list(self.solid_geometry))
  869. if self.solid_geometry is not None:
  870. self.solid_geometry = cascaded_union(self.solid_geometry)
  871. else:
  872. return
  873. # commented until this function is ready
  874. # geos_text = getdxftext(dxf, object_type, units=units)
  875. # if geos_text is not None:
  876. # geos_text_f = []
  877. # self.solid_geometry = [self.solid_geometry, geos_text_f]
  878. def import_image(self, filename, flip=True, units='MM', dpi=96, mode='black', mask=None):
  879. """
  880. Imports shapes from an IMAGE file into the object's geometry.
  881. :param filename: Path to the IMAGE file.
  882. :type filename: str
  883. :param flip: Flip the object vertically.
  884. :type flip: bool
  885. :param units: FlatCAM units
  886. :param dpi: dots per inch on the imported image
  887. :param mode: how to import the image: as 'black' or 'color'
  888. :param mask: level of detail for the import
  889. :return: None
  890. """
  891. if mask is None:
  892. mask = [128, 128, 128, 128]
  893. scale_factor = 25.4 / dpi if units.lower() == 'mm' else 1 / dpi
  894. geos = list()
  895. unscaled_geos = list()
  896. with rasterio.open(filename) as src:
  897. # if filename.lower().rpartition('.')[-1] == 'bmp':
  898. # red = green = blue = src.read(1)
  899. # print("BMP")
  900. # elif filename.lower().rpartition('.')[-1] == 'png':
  901. # red, green, blue, alpha = src.read()
  902. # elif filename.lower().rpartition('.')[-1] == 'jpg':
  903. # red, green, blue = src.read()
  904. red = green = blue = src.read(1)
  905. try:
  906. green = src.read(2)
  907. except Exception:
  908. pass
  909. try:
  910. blue = src.read(3)
  911. except Exception:
  912. pass
  913. if mode == 'black':
  914. mask_setting = red <= mask[0]
  915. total = red
  916. log.debug("Image import as monochrome.")
  917. else:
  918. mask_setting = (red <= mask[1]) + (green <= mask[2]) + (blue <= mask[3])
  919. total = np.zeros(red.shape, dtype=np.float32)
  920. for band in red, green, blue:
  921. total += band
  922. total /= 3
  923. log.debug("Image import as colored. Thresholds are: R = %s , G = %s, B = %s" %
  924. (str(mask[1]), str(mask[2]), str(mask[3])))
  925. for geom, val in shapes(total, mask=mask_setting):
  926. unscaled_geos.append(shape(geom))
  927. for g in unscaled_geos:
  928. geos.append(scale(g, scale_factor, scale_factor, origin=(0, 0)))
  929. if flip:
  930. geos = [translate(scale(g, 1.0, -1.0, origin=(0, 0))) for g in geos]
  931. # Add to object
  932. if self.solid_geometry is None:
  933. self.solid_geometry = list()
  934. if type(self.solid_geometry) is list:
  935. # self.solid_geometry.append(cascaded_union(geos))
  936. if type(geos) is list:
  937. self.solid_geometry += geos
  938. else:
  939. self.solid_geometry.append(geos)
  940. else: # It's shapely geometry
  941. self.solid_geometry = [self.solid_geometry, geos]
  942. # flatten the self.solid_geometry list for import_svg() to import SVG as Gerber
  943. self.solid_geometry = list(self.flatten_list(self.solid_geometry))
  944. self.solid_geometry = cascaded_union(self.solid_geometry)
  945. # self.solid_geometry = MultiPolygon(self.solid_geometry)
  946. # self.solid_geometry = self.solid_geometry.buffer(0.00000001)
  947. # self.solid_geometry = self.solid_geometry.buffer(-0.00000001)
  948. def size(self):
  949. """
  950. Returns (width, height) of rectangular
  951. bounds of geometry.
  952. """
  953. if self.solid_geometry is None:
  954. log.warning("Solid_geometry not computed yet.")
  955. return 0
  956. bounds = self.bounds()
  957. return bounds[2] - bounds[0], bounds[3] - bounds[1]
  958. def get_empty_area(self, boundary=None):
  959. """
  960. Returns the complement of self.solid_geometry within
  961. the given boundary polygon. If not specified, it defaults to
  962. the rectangular bounding box of self.solid_geometry.
  963. """
  964. if boundary is None:
  965. boundary = self.solid_geometry.envelope
  966. return boundary.difference(self.solid_geometry)
  967. def clear_polygon(self, polygon, tooldia, steps_per_circle, overlap=0.15, connect=True, contour=True,
  968. prog_plot=False):
  969. """
  970. Creates geometry inside a polygon for a tool to cover
  971. the whole area.
  972. This algorithm shrinks the edges of the polygon and takes
  973. the resulting edges as toolpaths.
  974. :param polygon: Polygon to clear.
  975. :param tooldia: Diameter of the tool.
  976. :param steps_per_circle: number of linear segments to be used to approximate a circle
  977. :param overlap: Overlap of toolpasses.
  978. :param connect: Draw lines between disjoint segments to
  979. minimize tool lifts.
  980. :param contour: Paint around the edges. Inconsequential in
  981. this painting method.
  982. :param prog_plot: boolean; if Ture use the progressive plotting
  983. :return:
  984. """
  985. # log.debug("camlib.clear_polygon()")
  986. assert type(polygon) == Polygon or type(polygon) == MultiPolygon, \
  987. "Expected a Polygon or MultiPolygon, got %s" % type(polygon)
  988. # ## The toolpaths
  989. # Index first and last points in paths
  990. def get_pts(o):
  991. return [o.coords[0], o.coords[-1]]
  992. geoms = FlatCAMRTreeStorage()
  993. geoms.get_points = get_pts
  994. # Can only result in a Polygon or MultiPolygon
  995. # NOTE: The resulting polygon can be "empty".
  996. current = polygon.buffer((-tooldia / 1.999999), int(steps_per_circle))
  997. if current.area == 0:
  998. # Otherwise, trying to to insert current.exterior == None
  999. # into the FlatCAMStorage will fail.
  1000. # print("Area is None")
  1001. return None
  1002. # current can be a MultiPolygon
  1003. try:
  1004. for p in current:
  1005. geoms.insert(p.exterior)
  1006. for i in p.interiors:
  1007. geoms.insert(i)
  1008. # Not a Multipolygon. Must be a Polygon
  1009. except TypeError:
  1010. geoms.insert(current.exterior)
  1011. for i in current.interiors:
  1012. geoms.insert(i)
  1013. while True:
  1014. if self.app.abort_flag:
  1015. # graceful abort requested by the user
  1016. raise FlatCAMApp.GracefulException
  1017. # provide the app with a way to process the GUI events when in a blocking loop
  1018. QtWidgets.QApplication.processEvents()
  1019. # Can only result in a Polygon or MultiPolygon
  1020. current = current.buffer(-tooldia * (1 - overlap), int(steps_per_circle))
  1021. if current.area > 0:
  1022. # current can be a MultiPolygon
  1023. try:
  1024. for p in current:
  1025. geoms.insert(p.exterior)
  1026. for i in p.interiors:
  1027. geoms.insert(i)
  1028. if prog_plot:
  1029. self.plot_temp_shapes(p)
  1030. # Not a Multipolygon. Must be a Polygon
  1031. except TypeError:
  1032. geoms.insert(current.exterior)
  1033. if prog_plot:
  1034. self.plot_temp_shapes(current.exterior)
  1035. for i in current.interiors:
  1036. geoms.insert(i)
  1037. if prog_plot:
  1038. self.plot_temp_shapes(i)
  1039. else:
  1040. log.debug("camlib.Geometry.clear_polygon() --> Current Area is zero")
  1041. break
  1042. if prog_plot:
  1043. self.temp_shapes.redraw()
  1044. # Optimization: Reduce lifts
  1045. if connect:
  1046. # log.debug("Reducing tool lifts...")
  1047. geoms = Geometry.paint_connect(geoms, polygon, tooldia, int(steps_per_circle))
  1048. return geoms
  1049. def clear_polygon2(self, polygon_to_clear, tooldia, steps_per_circle, seedpoint=None, overlap=0.15,
  1050. connect=True, contour=True, prog_plot=False):
  1051. """
  1052. Creates geometry inside a polygon for a tool to cover
  1053. the whole area.
  1054. This algorithm starts with a seed point inside the polygon
  1055. and draws circles around it. Arcs inside the polygons are
  1056. valid cuts. Finalizes by cutting around the inside edge of
  1057. the polygon.
  1058. :param polygon_to_clear: Shapely.geometry.Polygon
  1059. :param steps_per_circle: how many linear segments to use to approximate a circle
  1060. :param tooldia: Diameter of the tool
  1061. :param seedpoint: Shapely.geometry.Point or None
  1062. :param overlap: Tool fraction overlap bewteen passes
  1063. :param connect: Connect disjoint segment to minumize tool lifts
  1064. :param contour: Cut countour inside the polygon.
  1065. :return: List of toolpaths covering polygon.
  1066. :rtype: FlatCAMRTreeStorage | None
  1067. :param prog_plot: boolean; if True use the progressive plotting
  1068. """
  1069. # log.debug("camlib.clear_polygon2()")
  1070. # Current buffer radius
  1071. radius = tooldia / 2 * (1 - overlap)
  1072. # ## The toolpaths
  1073. # Index first and last points in paths
  1074. def get_pts(o):
  1075. return [o.coords[0], o.coords[-1]]
  1076. geoms = FlatCAMRTreeStorage()
  1077. geoms.get_points = get_pts
  1078. # Path margin
  1079. path_margin = polygon_to_clear.buffer(-tooldia / 2, int(steps_per_circle))
  1080. if path_margin.is_empty or path_margin is None:
  1081. return
  1082. # Estimate good seedpoint if not provided.
  1083. if seedpoint is None:
  1084. seedpoint = path_margin.representative_point()
  1085. # Grow from seed until outside the box. The polygons will
  1086. # never have an interior, so take the exterior LinearRing.
  1087. while True:
  1088. if self.app.abort_flag:
  1089. # graceful abort requested by the user
  1090. raise FlatCAMApp.GracefulException
  1091. # provide the app with a way to process the GUI events when in a blocking loop
  1092. QtWidgets.QApplication.processEvents()
  1093. path = Point(seedpoint).buffer(radius, int(steps_per_circle)).exterior
  1094. path = path.intersection(path_margin)
  1095. # Touches polygon?
  1096. if path.is_empty:
  1097. break
  1098. else:
  1099. # geoms.append(path)
  1100. # geoms.insert(path)
  1101. # path can be a collection of paths.
  1102. try:
  1103. for p in path:
  1104. geoms.insert(p)
  1105. if prog_plot:
  1106. self.plot_temp_shapes(p)
  1107. except TypeError:
  1108. geoms.insert(path)
  1109. if prog_plot:
  1110. self.plot_temp_shapes(path)
  1111. if prog_plot:
  1112. self.temp_shapes.redraw()
  1113. radius += tooldia * (1 - overlap)
  1114. # Clean inside edges (contours) of the original polygon
  1115. if contour:
  1116. outer_edges = [
  1117. x.exterior for x in autolist(polygon_to_clear.buffer(-tooldia / 2, int(steps_per_circle)))
  1118. ]
  1119. inner_edges = []
  1120. # Over resulting polygons
  1121. for x in autolist(polygon_to_clear.buffer(-tooldia / 2, int(steps_per_circle))):
  1122. for y in x.interiors: # Over interiors of each polygon
  1123. inner_edges.append(y)
  1124. # geoms += outer_edges + inner_edges
  1125. for g in outer_edges + inner_edges:
  1126. if g and not g.is_empty:
  1127. geoms.insert(g)
  1128. if prog_plot:
  1129. self.plot_temp_shapes(g)
  1130. if prog_plot:
  1131. self.temp_shapes.redraw()
  1132. # Optimization connect touching paths
  1133. # log.debug("Connecting paths...")
  1134. # geoms = Geometry.path_connect(geoms)
  1135. # Optimization: Reduce lifts
  1136. if connect:
  1137. # log.debug("Reducing tool lifts...")
  1138. geoms_conn = Geometry.paint_connect(geoms, polygon_to_clear, tooldia, steps_per_circle)
  1139. if geoms_conn:
  1140. return geoms_conn
  1141. return geoms
  1142. def clear_polygon3(self, polygon, tooldia, steps_per_circle, overlap=0.15, connect=True, contour=True,
  1143. prog_plot=False):
  1144. """
  1145. Creates geometry inside a polygon for a tool to cover
  1146. the whole area.
  1147. This algorithm draws horizontal lines inside the polygon.
  1148. :param polygon: The polygon being painted.
  1149. :type polygon: shapely.geometry.Polygon
  1150. :param tooldia: Tool diameter.
  1151. :param steps_per_circle: how many linear segments to use to approximate a circle
  1152. :param overlap: Tool path overlap percentage.
  1153. :param connect: Connect lines to avoid tool lifts.
  1154. :param contour: Paint around the edges.
  1155. :param prog_plot: boolean; if to use the progressive plotting
  1156. :return:
  1157. """
  1158. # log.debug("camlib.clear_polygon3()")
  1159. if not isinstance(polygon, Polygon):
  1160. log.debug("camlib.Geometry.clear_polygon3() --> Not a Polygon but %s" % str(type(polygon)))
  1161. return None
  1162. # ## The toolpaths
  1163. # Index first and last points in paths
  1164. def get_pts(o):
  1165. return [o.coords[0], o.coords[-1]]
  1166. geoms = FlatCAMRTreeStorage()
  1167. geoms.get_points = get_pts
  1168. lines_trimmed = []
  1169. # Bounding box
  1170. left, bot, right, top = polygon.bounds
  1171. try:
  1172. margin_poly = polygon.buffer(-tooldia / 1.99999999, (int(steps_per_circle)))
  1173. except Exception as e:
  1174. log.debug("camlib.Geometry.clear_polygon3() --> Could not buffer the Polygon")
  1175. return None
  1176. # First line
  1177. try:
  1178. y = top - tooldia / 1.99999999
  1179. while y > bot + tooldia / 1.999999999:
  1180. if self.app.abort_flag:
  1181. # graceful abort requested by the user
  1182. raise FlatCAMApp.GracefulException
  1183. # provide the app with a way to process the GUI events when in a blocking loop
  1184. QtWidgets.QApplication.processEvents()
  1185. line = LineString([(left, y), (right, y)])
  1186. line = line.intersection(margin_poly)
  1187. lines_trimmed.append(line)
  1188. y -= tooldia * (1 - overlap)
  1189. if prog_plot:
  1190. self.plot_temp_shapes(line)
  1191. self.temp_shapes.redraw()
  1192. # Last line
  1193. y = bot + tooldia / 2
  1194. line = LineString([(left, y), (right, y)])
  1195. line = line.intersection(margin_poly)
  1196. for ll in line:
  1197. lines_trimmed.append(ll)
  1198. if prog_plot:
  1199. self.plot_temp_shapes(line)
  1200. except Exception as e:
  1201. log.debug('camlib.Geometry.clear_polygon3() Processing poly --> %s' % str(e))
  1202. return None
  1203. if prog_plot:
  1204. self.temp_shapes.redraw()
  1205. lines_trimmed = unary_union(lines_trimmed)
  1206. # Add lines to storage
  1207. try:
  1208. for line in lines_trimmed:
  1209. if isinstance(line, LineString) or isinstance(line, LinearRing):
  1210. geoms.insert(line)
  1211. else:
  1212. log.debug("camlib.Geometry.clear_polygon3(). Not a line: %s" % str(type(line)))
  1213. except TypeError:
  1214. # in case lines_trimmed are not iterable (Linestring, LinearRing)
  1215. geoms.insert(lines_trimmed)
  1216. # Add margin (contour) to storage
  1217. if contour:
  1218. try:
  1219. for poly in margin_poly:
  1220. if isinstance(poly, Polygon) and not poly.is_empty:
  1221. geoms.insert(poly.exterior)
  1222. if prog_plot:
  1223. self.plot_temp_shapes(poly.exterior)
  1224. for ints in poly.interiors:
  1225. geoms.insert(ints)
  1226. if prog_plot:
  1227. self.plot_temp_shapes(ints)
  1228. except TypeError:
  1229. if isinstance(margin_poly, Polygon) and not margin_poly.is_empty:
  1230. marg_ext = margin_poly.exterior
  1231. geoms.insert(marg_ext)
  1232. if prog_plot:
  1233. self.plot_temp_shapes(margin_poly.exterior)
  1234. for ints in margin_poly.interiors:
  1235. geoms.insert(ints)
  1236. if prog_plot:
  1237. self.plot_temp_shapes(ints)
  1238. if prog_plot:
  1239. self.temp_shapes.redraw()
  1240. # Optimization: Reduce lifts
  1241. if connect:
  1242. # log.debug("Reducing tool lifts...")
  1243. geoms_conn = Geometry.paint_connect(geoms, polygon, tooldia, steps_per_circle)
  1244. if geoms_conn:
  1245. return geoms_conn
  1246. return geoms
  1247. def scale(self, xfactor, yfactor, point=None):
  1248. """
  1249. Scales all of the object's geometry by a given factor. Override
  1250. this method.
  1251. :param xfactor: Number by which to scale on X axis.
  1252. :type xfactor: float
  1253. :param yfactor: Number by which to scale on Y axis.
  1254. :type yfactor: float
  1255. :param point: point to be used as reference for scaling; a tuple
  1256. :return: None
  1257. :rtype: None
  1258. """
  1259. return
  1260. def offset(self, vect):
  1261. """
  1262. Offset the geometry by the given vector. Override this method.
  1263. :param vect: (x, y) vector by which to offset the object.
  1264. :type vect: tuple
  1265. :return: None
  1266. """
  1267. return
  1268. @staticmethod
  1269. def paint_connect(storage, boundary, tooldia, steps_per_circle, max_walk=None):
  1270. """
  1271. Connects paths that results in a connection segment that is
  1272. within the paint area. This avoids unnecessary tool lifting.
  1273. :param storage: Geometry to be optimized.
  1274. :type storage: FlatCAMRTreeStorage
  1275. :param boundary: Polygon defining the limits of the paintable area.
  1276. :type boundary: Polygon
  1277. :param tooldia: Tool diameter.
  1278. :rtype tooldia: float
  1279. :param steps_per_circle: how many linear segments to use to approximate a circle
  1280. :param max_walk: Maximum allowable distance without lifting tool.
  1281. :type max_walk: float or None
  1282. :return: Optimized geometry.
  1283. :rtype: FlatCAMRTreeStorage
  1284. """
  1285. # If max_walk is not specified, the maximum allowed is
  1286. # 10 times the tool diameter
  1287. max_walk = max_walk or 10 * tooldia
  1288. # Assuming geolist is a flat list of flat elements
  1289. # ## Index first and last points in paths
  1290. def get_pts(o):
  1291. return [o.coords[0], o.coords[-1]]
  1292. # storage = FlatCAMRTreeStorage()
  1293. # storage.get_points = get_pts
  1294. #
  1295. # for shape in geolist:
  1296. # if shape is not None: # TODO: This shouldn't have happened.
  1297. # # Make LlinearRings into linestrings otherwise
  1298. # # When chaining the coordinates path is messed up.
  1299. # storage.insert(LineString(shape))
  1300. # #storage.insert(shape)
  1301. # ## Iterate over geometry paths getting the nearest each time.
  1302. #optimized_paths = []
  1303. optimized_paths = FlatCAMRTreeStorage()
  1304. optimized_paths.get_points = get_pts
  1305. path_count = 0
  1306. current_pt = (0, 0)
  1307. try:
  1308. pt, geo = storage.nearest(current_pt)
  1309. except StopIteration:
  1310. log.debug("camlib.Geometry.paint_connect(). Storage empty")
  1311. return None
  1312. storage.remove(geo)
  1313. geo = LineString(geo)
  1314. current_pt = geo.coords[-1]
  1315. try:
  1316. while True:
  1317. path_count += 1
  1318. # log.debug("Path %d" % path_count)
  1319. pt, candidate = storage.nearest(current_pt)
  1320. storage.remove(candidate)
  1321. candidate = LineString(candidate)
  1322. # If last point in geometry is the nearest
  1323. # then reverse coordinates.
  1324. # but prefer the first one if last == first
  1325. if pt != candidate.coords[0] and pt == candidate.coords[-1]:
  1326. candidate.coords = list(candidate.coords)[::-1]
  1327. # Straight line from current_pt to pt.
  1328. # Is the toolpath inside the geometry?
  1329. walk_path = LineString([current_pt, pt])
  1330. walk_cut = walk_path.buffer(tooldia / 2, int(steps_per_circle))
  1331. if walk_cut.within(boundary) and walk_path.length < max_walk:
  1332. # log.debug("Walk to path #%d is inside. Joining." % path_count)
  1333. # Completely inside. Append...
  1334. geo.coords = list(geo.coords) + list(candidate.coords)
  1335. # try:
  1336. # last = optimized_paths[-1]
  1337. # last.coords = list(last.coords) + list(geo.coords)
  1338. # except IndexError:
  1339. # optimized_paths.append(geo)
  1340. else:
  1341. # Have to lift tool. End path.
  1342. # log.debug("Path #%d not within boundary. Next." % path_count)
  1343. # optimized_paths.append(geo)
  1344. optimized_paths.insert(geo)
  1345. geo = candidate
  1346. current_pt = geo.coords[-1]
  1347. # Next
  1348. # pt, geo = storage.nearest(current_pt)
  1349. except StopIteration: # Nothing left in storage.
  1350. # pass
  1351. optimized_paths.insert(geo)
  1352. return optimized_paths
  1353. @staticmethod
  1354. def path_connect(storage, origin=(0, 0)):
  1355. """
  1356. Simplifies paths in the FlatCAMRTreeStorage storage by
  1357. connecting paths that touch on their enpoints.
  1358. :param storage: Storage containing the initial paths.
  1359. :rtype storage: FlatCAMRTreeStorage
  1360. :return: Simplified storage.
  1361. :rtype: FlatCAMRTreeStorage
  1362. """
  1363. log.debug("path_connect()")
  1364. # ## Index first and last points in paths
  1365. def get_pts(o):
  1366. return [o.coords[0], o.coords[-1]]
  1367. #
  1368. # storage = FlatCAMRTreeStorage()
  1369. # storage.get_points = get_pts
  1370. #
  1371. # for shape in pathlist:
  1372. # if shape is not None: # TODO: This shouldn't have happened.
  1373. # storage.insert(shape)
  1374. path_count = 0
  1375. pt, geo = storage.nearest(origin)
  1376. storage.remove(geo)
  1377. # optimized_geometry = [geo]
  1378. optimized_geometry = FlatCAMRTreeStorage()
  1379. optimized_geometry.get_points = get_pts
  1380. # optimized_geometry.insert(geo)
  1381. try:
  1382. while True:
  1383. path_count += 1
  1384. _, left = storage.nearest(geo.coords[0])
  1385. # If left touches geo, remove left from original
  1386. # storage and append to geo.
  1387. if type(left) == LineString:
  1388. if left.coords[0] == geo.coords[0]:
  1389. storage.remove(left)
  1390. geo.coords = list(geo.coords)[::-1] + list(left.coords)
  1391. continue
  1392. if left.coords[-1] == geo.coords[0]:
  1393. storage.remove(left)
  1394. geo.coords = list(left.coords) + list(geo.coords)
  1395. continue
  1396. if left.coords[0] == geo.coords[-1]:
  1397. storage.remove(left)
  1398. geo.coords = list(geo.coords) + list(left.coords)
  1399. continue
  1400. if left.coords[-1] == geo.coords[-1]:
  1401. storage.remove(left)
  1402. geo.coords = list(geo.coords) + list(left.coords)[::-1]
  1403. continue
  1404. _, right = storage.nearest(geo.coords[-1])
  1405. # If right touches geo, remove left from original
  1406. # storage and append to geo.
  1407. if type(right) == LineString:
  1408. if right.coords[0] == geo.coords[-1]:
  1409. storage.remove(right)
  1410. geo.coords = list(geo.coords) + list(right.coords)
  1411. continue
  1412. if right.coords[-1] == geo.coords[-1]:
  1413. storage.remove(right)
  1414. geo.coords = list(geo.coords) + list(right.coords)[::-1]
  1415. continue
  1416. if right.coords[0] == geo.coords[0]:
  1417. storage.remove(right)
  1418. geo.coords = list(geo.coords)[::-1] + list(right.coords)
  1419. continue
  1420. if right.coords[-1] == geo.coords[0]:
  1421. storage.remove(right)
  1422. geo.coords = list(left.coords) + list(geo.coords)
  1423. continue
  1424. # right is either a LinearRing or it does not connect
  1425. # to geo (nothing left to connect to geo), so we continue
  1426. # with right as geo.
  1427. storage.remove(right)
  1428. if type(right) == LinearRing:
  1429. optimized_geometry.insert(right)
  1430. else:
  1431. # Cannot extend geo any further. Put it away.
  1432. optimized_geometry.insert(geo)
  1433. # Continue with right.
  1434. geo = right
  1435. except StopIteration: # Nothing found in storage.
  1436. optimized_geometry.insert(geo)
  1437. # print path_count
  1438. log.debug("path_count = %d" % path_count)
  1439. return optimized_geometry
  1440. def convert_units(self, obj_units):
  1441. """
  1442. Converts the units of the object to ``units`` by scaling all
  1443. the geometry appropriately. This call ``scale()``. Don't call
  1444. it again in descendents.
  1445. :param units: "IN" or "MM"
  1446. :type units: str
  1447. :return: Scaling factor resulting from unit change.
  1448. :rtype: float
  1449. """
  1450. if obj_units.upper() == self.units.upper():
  1451. log.debug("camlib.Geometry.convert_units() --> Factor: 1")
  1452. return 1.0
  1453. if obj_units.upper() == "MM":
  1454. factor = 25.4
  1455. log.debug("camlib.Geometry.convert_units() --> Factor: 25.4")
  1456. elif obj_units.upper() == "IN":
  1457. factor = 1 / 25.4
  1458. log.debug("camlib.Geometry.convert_units() --> Factor: %s" % str(1 / 25.4))
  1459. else:
  1460. log.error("Unsupported units: %s" % str(obj_units))
  1461. log.debug("camlib.Geometry.convert_units() --> Factor: 1")
  1462. return 1.0
  1463. self.units = obj_units
  1464. self.scale(factor, factor)
  1465. self.file_units_factor = factor
  1466. return factor
  1467. def to_dict(self):
  1468. """
  1469. Returns a representation of the object as a dictionary.
  1470. Attributes to include are listed in ``self.ser_attrs``.
  1471. :return: A dictionary-encoded copy of the object.
  1472. :rtype: dict
  1473. """
  1474. d = {}
  1475. for attr in self.ser_attrs:
  1476. d[attr] = getattr(self, attr)
  1477. return d
  1478. def from_dict(self, d):
  1479. """
  1480. Sets object's attributes from a dictionary.
  1481. Attributes to include are listed in ``self.ser_attrs``.
  1482. This method will look only for only and all the
  1483. attributes in ``self.ser_attrs``. They must all
  1484. be present. Use only for deserializing saved
  1485. objects.
  1486. :param d: Dictionary of attributes to set in the object.
  1487. :type d: dict
  1488. :return: None
  1489. """
  1490. for attr in self.ser_attrs:
  1491. setattr(self, attr, d[attr])
  1492. def union(self):
  1493. """
  1494. Runs a cascaded union on the list of objects in
  1495. solid_geometry.
  1496. :return: None
  1497. """
  1498. self.solid_geometry = [cascaded_union(self.solid_geometry)]
  1499. def export_svg(self, scale_stroke_factor=0.00,
  1500. scale_factor_x=None, scale_factor_y=None,
  1501. skew_factor_x=None, skew_factor_y=None,
  1502. skew_reference='center',
  1503. mirror=None):
  1504. """
  1505. Exports the Geometry Object as a SVG Element
  1506. :return: SVG Element
  1507. """
  1508. # Make sure we see a Shapely Geometry class and not a list
  1509. if self.kind.lower() == 'geometry':
  1510. flat_geo = []
  1511. if self.multigeo:
  1512. for tool in self.tools:
  1513. flat_geo += self.flatten(self.tools[tool]['solid_geometry'])
  1514. geom_svg = cascaded_union(flat_geo)
  1515. else:
  1516. geom_svg = cascaded_union(self.flatten())
  1517. else:
  1518. geom_svg = cascaded_union(self.flatten())
  1519. skew_ref = 'center'
  1520. if skew_reference != 'center':
  1521. xmin, ymin, xmax, ymax = geom_svg.bounds
  1522. if skew_reference == 'topleft':
  1523. skew_ref = (xmin, ymax)
  1524. elif skew_reference == 'bottomleft':
  1525. skew_ref = (xmin, ymin)
  1526. elif skew_reference == 'topright':
  1527. skew_ref = (xmax, ymax)
  1528. elif skew_reference == 'bottomright':
  1529. skew_ref = (xmax, ymin)
  1530. geom = geom_svg
  1531. if scale_factor_x:
  1532. geom = affinity.scale(geom_svg, scale_factor_x, 1.0)
  1533. if scale_factor_y:
  1534. geom = affinity.scale(geom_svg, 1.0, scale_factor_y)
  1535. if skew_factor_x:
  1536. geom = affinity.skew(geom_svg, skew_factor_x, 0.0, origin=skew_ref)
  1537. if skew_factor_y:
  1538. geom = affinity.skew(geom_svg, 0.0, skew_factor_y, origin=skew_ref)
  1539. if mirror:
  1540. if mirror == 'x':
  1541. geom = affinity.scale(geom_svg, 1.0, -1.0)
  1542. if mirror == 'y':
  1543. geom = affinity.scale(geom_svg, -1.0, 1.0)
  1544. if mirror == 'both':
  1545. geom = affinity.scale(geom_svg, -1.0, -1.0)
  1546. # scale_factor is a multiplication factor for the SVG stroke-width used within shapely's svg export
  1547. # If 0 or less which is invalid then default to 0.01
  1548. # This value appears to work for zooming, and getting the output svg line width
  1549. # to match that viewed on screen with FlatCam
  1550. # MS: I choose a factor of 0.01 so the scale is right for PCB UV film
  1551. if scale_stroke_factor <= 0:
  1552. scale_stroke_factor = 0.01
  1553. # Convert to a SVG
  1554. svg_elem = geom.svg(scale_factor=scale_stroke_factor)
  1555. return svg_elem
  1556. def mirror(self, axis, point):
  1557. """
  1558. Mirrors the object around a specified axis passign through
  1559. the given point.
  1560. :param axis: "X" or "Y" indicates around which axis to mirror.
  1561. :type axis: str
  1562. :param point: [x, y] point belonging to the mirror axis.
  1563. :type point: list
  1564. :return: None
  1565. """
  1566. log.debug("camlib.Geometry.mirror()")
  1567. px, py = point
  1568. xscale, yscale = {"X": (1.0, -1.0), "Y": (-1.0, 1.0)}[axis]
  1569. def mirror_geom(obj):
  1570. if type(obj) is list:
  1571. new_obj = []
  1572. for g in obj:
  1573. new_obj.append(mirror_geom(g))
  1574. return new_obj
  1575. else:
  1576. try:
  1577. self.el_count += 1
  1578. disp_number = int(np.interp(self.el_count, [0, self.geo_len], [0, 100]))
  1579. if self.old_disp_number < disp_number <= 100:
  1580. self.app.proc_container.update_view_text(' %d%%' % disp_number)
  1581. self.old_disp_number = disp_number
  1582. return affinity.scale(obj, xscale, yscale, origin=(px, py))
  1583. except AttributeError:
  1584. return obj
  1585. try:
  1586. if self.multigeo is True:
  1587. for tool in self.tools:
  1588. # variables to display the percentage of work done
  1589. self.geo_len = 0
  1590. try:
  1591. for g in self.tools[tool]['solid_geometry']:
  1592. self.geo_len += 1
  1593. except TypeError:
  1594. self.geo_len = 1
  1595. self.old_disp_number = 0
  1596. self.el_count = 0
  1597. self.tools[tool]['solid_geometry'] = mirror_geom(self.tools[tool]['solid_geometry'])
  1598. else:
  1599. # variables to display the percentage of work done
  1600. self.geo_len = 0
  1601. try:
  1602. for g in self.solid_geometry:
  1603. self.geo_len += 1
  1604. except TypeError:
  1605. self.geo_len = 1
  1606. self.old_disp_number = 0
  1607. self.el_count = 0
  1608. self.solid_geometry = mirror_geom(self.solid_geometry)
  1609. self.app.inform.emit('[success] %s...' %
  1610. _('Object was mirrored'))
  1611. except AttributeError:
  1612. self.app.inform.emit('[ERROR_NOTCL] %s' %
  1613. _("Failed to mirror. No object selected"))
  1614. self.app.proc_container.new_text = ''
  1615. def rotate(self, angle, point):
  1616. """
  1617. Rotate an object by an angle (in degrees) around the provided coordinates.
  1618. Parameters
  1619. ----------
  1620. The angle of rotation are specified in degrees (default). Positive angles are
  1621. counter-clockwise and negative are clockwise rotations.
  1622. The point of origin can be a keyword 'center' for the bounding box
  1623. center (default), 'centroid' for the geometry's centroid, a Point object
  1624. or a coordinate tuple (x0, y0).
  1625. See shapely manual for more information:
  1626. http://toblerity.org/shapely/manual.html#affine-transformations
  1627. """
  1628. log.debug("camlib.Geometry.rotate()")
  1629. px, py = point
  1630. def rotate_geom(obj):
  1631. if type(obj) is list:
  1632. new_obj = []
  1633. for g in obj:
  1634. new_obj.append(rotate_geom(g))
  1635. return new_obj
  1636. else:
  1637. try:
  1638. self.el_count += 1
  1639. disp_number = int(np.interp(self.el_count, [0, self.geo_len], [0, 100]))
  1640. if self.old_disp_number < disp_number <= 100:
  1641. self.app.proc_container.update_view_text(' %d%%' % disp_number)
  1642. self.old_disp_number = disp_number
  1643. return affinity.rotate(obj, angle, origin=(px, py))
  1644. except AttributeError:
  1645. return obj
  1646. try:
  1647. if self.multigeo is True:
  1648. for tool in self.tools:
  1649. # variables to display the percentage of work done
  1650. self.geo_len = 0
  1651. try:
  1652. for g in self.tools[tool]['solid_geometry']:
  1653. self.geo_len += 1
  1654. except TypeError:
  1655. self.geo_len = 1
  1656. self.old_disp_number = 0
  1657. self.el_count = 0
  1658. self.tools[tool]['solid_geometry'] = rotate_geom(self.tools[tool]['solid_geometry'])
  1659. else:
  1660. # variables to display the percentage of work done
  1661. self.geo_len = 0
  1662. try:
  1663. for g in self.solid_geometry:
  1664. self.geo_len += 1
  1665. except TypeError:
  1666. self.geo_len = 1
  1667. self.old_disp_number = 0
  1668. self.el_count = 0
  1669. self.solid_geometry = rotate_geom(self.solid_geometry)
  1670. self.app.inform.emit('[success] %s...' %
  1671. _('Object was rotated'))
  1672. except AttributeError:
  1673. self.app.inform.emit('[ERROR_NOTCL] %s' %
  1674. _("Failed to rotate. No object selected"))
  1675. self.app.proc_container.new_text = ''
  1676. def skew(self, angle_x, angle_y, point):
  1677. """
  1678. Shear/Skew the geometries of an object by angles along x and y dimensions.
  1679. Parameters
  1680. ----------
  1681. angle_x, angle_y : float, float
  1682. The shear angle(s) for the x and y axes respectively. These can be
  1683. specified in either degrees (default) or radians by setting
  1684. use_radians=True.
  1685. point: tuple of coordinates (x,y)
  1686. See shapely manual for more information:
  1687. http://toblerity.org/shapely/manual.html#affine-transformations
  1688. """
  1689. log.debug("camlib.Geometry.skew()")
  1690. px, py = point
  1691. def skew_geom(obj):
  1692. if type(obj) is list:
  1693. new_obj = []
  1694. for g in obj:
  1695. new_obj.append(skew_geom(g))
  1696. return new_obj
  1697. else:
  1698. try:
  1699. self.el_count += 1
  1700. disp_number = int(np.interp(self.el_count, [0, self.geo_len], [0, 100]))
  1701. if self.old_disp_number < disp_number <= 100:
  1702. self.app.proc_container.update_view_text(' %d%%' % disp_number)
  1703. self.old_disp_number = disp_number
  1704. return affinity.skew(obj, angle_x, angle_y, origin=(px, py))
  1705. except AttributeError:
  1706. return obj
  1707. try:
  1708. if self.multigeo is True:
  1709. for tool in self.tools:
  1710. # variables to display the percentage of work done
  1711. self.geo_len = 0
  1712. try:
  1713. for g in self.tools[tool]['solid_geometry']:
  1714. self.geo_len += 1
  1715. except TypeError:
  1716. self.geo_len = 1
  1717. self.old_disp_number = 0
  1718. self.el_count = 0
  1719. self.tools[tool]['solid_geometry'] = skew_geom(self.tools[tool]['solid_geometry'])
  1720. else:
  1721. # variables to display the percentage of work done
  1722. self.geo_len = 0
  1723. try:
  1724. for g in self.solid_geometry:
  1725. self.geo_len += 1
  1726. except TypeError:
  1727. self.geo_len = 1
  1728. self.old_disp_number = 0
  1729. self.el_count = 0
  1730. self.solid_geometry = skew_geom(self.solid_geometry)
  1731. self.app.inform.emit('[success] %s...' %
  1732. _('Object was skewed'))
  1733. except AttributeError:
  1734. self.app.inform.emit('[ERROR_NOTCL] %s' %
  1735. _("Failed to skew. No object selected"))
  1736. self.app.proc_container.new_text = ''
  1737. # if type(self.solid_geometry) == list:
  1738. # self.solid_geometry = [affinity.skew(g, angle_x, angle_y, origin=(px, py))
  1739. # for g in self.solid_geometry]
  1740. # else:
  1741. # self.solid_geometry = affinity.skew(self.solid_geometry, angle_x, angle_y,
  1742. # origin=(px, py))
  1743. def buffer(self, distance, join, factor):
  1744. """
  1745. :param distance: if 'factor' is True then distance is the factor
  1746. :param factor: True or False (None)
  1747. :return:
  1748. """
  1749. log.debug("camlib.Geometry.buffer()")
  1750. if distance == 0:
  1751. return
  1752. def buffer_geom(obj):
  1753. if type(obj) is list:
  1754. new_obj = []
  1755. for g in obj:
  1756. new_obj.append(buffer_geom(g))
  1757. return new_obj
  1758. else:
  1759. try:
  1760. self.el_count += 1
  1761. disp_number = int(np.interp(self.el_count, [0, self.geo_len], [0, 100]))
  1762. if self.old_disp_number < disp_number <= 100:
  1763. self.app.proc_container.update_view_text(' %d%%' % disp_number)
  1764. self.old_disp_number = disp_number
  1765. if factor is None:
  1766. return obj.buffer(distance, resolution=self.geo_steps_per_circle, join_style=join)
  1767. else:
  1768. return affinity.scale(obj, xfact=distance, yfact=distance, origin='center')
  1769. except AttributeError:
  1770. return obj
  1771. try:
  1772. if self.multigeo is True:
  1773. for tool in self.tools:
  1774. # variables to display the percentage of work done
  1775. self.geo_len = 0
  1776. try:
  1777. self.geo_len += len(self.tools[tool]['solid_geometry'])
  1778. except TypeError:
  1779. self.geo_len += 1
  1780. self.old_disp_number = 0
  1781. self.el_count = 0
  1782. res = buffer_geom(self.tools[tool]['solid_geometry'])
  1783. try:
  1784. __ = iter(res)
  1785. self.tools[tool]['solid_geometry'] = res
  1786. except TypeError:
  1787. self.tools[tool]['solid_geometry'] = [res]
  1788. # variables to display the percentage of work done
  1789. self.geo_len = 0
  1790. try:
  1791. self.geo_len = len(self.solid_geometry)
  1792. except TypeError:
  1793. self.geo_len = 1
  1794. self.old_disp_number = 0
  1795. self.el_count = 0
  1796. self.solid_geometry = buffer_geom(self.solid_geometry)
  1797. self.app.inform.emit('[success] %s...' % _('Object was buffered'))
  1798. except AttributeError:
  1799. self.app.inform.emit('[ERROR_NOTCL] %s' % _("Failed to buffer. No object selected"))
  1800. self.app.proc_container.new_text = ''
  1801. class AttrDict(dict):
  1802. def __init__(self, *args, **kwargs):
  1803. super(AttrDict, self).__init__(*args, **kwargs)
  1804. self.__dict__ = self
  1805. class CNCjob(Geometry):
  1806. """
  1807. Represents work to be done by a CNC machine.
  1808. *ATTRIBUTES*
  1809. * ``gcode_parsed`` (list): Each is a dictionary:
  1810. ===================== =========================================
  1811. Key Value
  1812. ===================== =========================================
  1813. geom (Shapely.LineString) Tool path (XY plane)
  1814. kind (string) "AB", A is "T" (travel) or
  1815. "C" (cut). B is "F" (fast) or "S" (slow).
  1816. ===================== =========================================
  1817. """
  1818. defaults = {
  1819. "global_zdownrate": None,
  1820. "pp_geometry_name":'default',
  1821. "pp_excellon_name":'default',
  1822. "excellon_optimization_type": "B",
  1823. }
  1824. settings = QtCore.QSettings("Open Source", "FlatCAM")
  1825. if settings.contains("machinist"):
  1826. machinist_setting = settings.value('machinist', type=int)
  1827. else:
  1828. machinist_setting = 0
  1829. def __init__(self,
  1830. units="in", kind="generic", tooldia=0.0,
  1831. z_cut=-0.002, z_move=0.1,
  1832. feedrate=3.0, feedrate_z=3.0, feedrate_rapid=3.0, feedrate_probe=3.0,
  1833. pp_geometry_name='default', pp_excellon_name='default',
  1834. depthpercut=0.1, z_pdepth=-0.02,
  1835. spindlespeed=None, spindledir='CW', dwell=True, dwelltime=1000,
  1836. toolchangez=0.787402, toolchange_xy=[0.0, 0.0],
  1837. endz=2.0,
  1838. segx=None,
  1839. segy=None,
  1840. steps_per_circle=None):
  1841. self.decimals = self.app.decimals
  1842. # Used when parsing G-code arcs
  1843. self.steps_per_circle = int(self.app.defaults['cncjob_steps_per_circle'])
  1844. Geometry.__init__(self, geo_steps_per_circle=self.steps_per_circle)
  1845. self.kind = kind
  1846. self.units = units
  1847. self.z_cut = z_cut
  1848. self.tool_offset = dict()
  1849. self.z_move = z_move
  1850. self.feedrate = feedrate
  1851. self.z_feedrate = feedrate_z
  1852. self.feedrate_rapid = feedrate_rapid
  1853. self.tooldia = tooldia
  1854. self.z_toolchange = toolchangez
  1855. self.xy_toolchange = toolchange_xy
  1856. self.toolchange_xy_type = None
  1857. self.toolC = tooldia
  1858. self.startz = None
  1859. self.z_end = endz
  1860. self.multidepth = False
  1861. self.z_depthpercut = depthpercut
  1862. self.unitcode = {"IN": "G20", "MM": "G21"}
  1863. self.feedminutecode = "G94"
  1864. # self.absolutecode = "G90"
  1865. # self.incrementalcode = "G91"
  1866. self.coordinates_type = self.app.defaults["cncjob_coords_type"]
  1867. self.gcode = ""
  1868. self.gcode_parsed = None
  1869. self.pp_geometry_name = pp_geometry_name
  1870. self.pp_geometry = self.app.preprocessors[self.pp_geometry_name]
  1871. self.pp_excellon_name = pp_excellon_name
  1872. self.pp_excellon = self.app.preprocessors[self.pp_excellon_name]
  1873. self.pp_solderpaste_name = None
  1874. # Controls if the move from Z_Toolchange to Z_Move is done fast with G0 or normally with G1
  1875. self.f_plunge = None
  1876. # Controls if the move from Z_Cutto Z_Move is done fast with G0 or G1 until zero and then G0 to Z_move
  1877. self.f_retract = None
  1878. # how much depth the probe can probe before error
  1879. self.z_pdepth = z_pdepth if z_pdepth else None
  1880. # the feedrate(speed) with which the probel travel while probing
  1881. self.feedrate_probe = feedrate_probe if feedrate_probe else None
  1882. self.spindlespeed = spindlespeed
  1883. self.spindledir = spindledir
  1884. self.dwell = dwell
  1885. self.dwelltime = dwelltime
  1886. self.segx = float(segx) if segx is not None else 0.0
  1887. self.segy = float(segy) if segy is not None else 0.0
  1888. self.input_geometry_bounds = None
  1889. self.oldx = None
  1890. self.oldy = None
  1891. self.tool = 0.0
  1892. # here store the travelled distance
  1893. self.travel_distance = 0.0
  1894. # here store the routing time
  1895. self.routing_time = 0.0
  1896. # used for creating drill CCode geometry; will be updated in the generate_from_excellon_by_tool()
  1897. self.exc_drills = None
  1898. self.exc_tools = None
  1899. # search for toolchange parameters in the Toolchange Custom Code
  1900. self.re_toolchange_custom = re.compile(r'(%[a-zA-Z0-9\-_]+%)')
  1901. # search for toolchange code: M6
  1902. self.re_toolchange = re.compile(r'^\s*(M6)$')
  1903. # Attributes to be included in serialization
  1904. # Always append to it because it carries contents
  1905. # from Geometry.
  1906. self.ser_attrs += ['kind', 'z_cut', 'z_move', 'z_toolchange', 'feedrate', 'z_feedrate', 'feedrate_rapid',
  1907. 'tooldia', 'gcode', 'input_geometry_bounds', 'gcode_parsed', 'steps_per_circle',
  1908. 'z_depthpercut', 'spindlespeed', 'dwell', 'dwelltime']
  1909. @property
  1910. def postdata(self):
  1911. return self.__dict__
  1912. def convert_units(self, units):
  1913. log.debug("camlib.CNCJob.convert_units()")
  1914. factor = Geometry.convert_units(self, units)
  1915. self.z_cut = float(self.z_cut) * factor
  1916. self.z_move *= factor
  1917. self.feedrate *= factor
  1918. self.z_feedrate *= factor
  1919. self.feedrate_rapid *= factor
  1920. self.tooldia *= factor
  1921. self.z_toolchange *= factor
  1922. self.z_end *= factor
  1923. self.z_depthpercut = float(self.z_depthpercut) * factor
  1924. return factor
  1925. def doformat(self, fun, **kwargs):
  1926. return self.doformat2(fun, **kwargs) + "\n"
  1927. def doformat2(self, fun, **kwargs):
  1928. attributes = AttrDict()
  1929. attributes.update(self.postdata)
  1930. attributes.update(kwargs)
  1931. try:
  1932. returnvalue = fun(attributes)
  1933. return returnvalue
  1934. except Exception:
  1935. self.app.log.error('Exception occurred within a preprocessor: ' + traceback.format_exc())
  1936. return ''
  1937. def parse_custom_toolchange_code(self, data):
  1938. text = data
  1939. match_list = self.re_toolchange_custom.findall(text)
  1940. if match_list:
  1941. for match in match_list:
  1942. command = match.strip('%')
  1943. try:
  1944. value = getattr(self, command)
  1945. except AttributeError:
  1946. self.app.inform.emit('[ERROR] %s: %s' %
  1947. (_("There is no such parameter"), str(match)))
  1948. log.debug("CNCJob.parse_custom_toolchange_code() --> AttributeError ")
  1949. return 'fail'
  1950. text = text.replace(match, str(value))
  1951. return text
  1952. def optimized_travelling_salesman(self, points, start=None):
  1953. """
  1954. As solving the problem in the brute force way is too slow,
  1955. this function implements a simple heuristic: always
  1956. go to the nearest city.
  1957. Even if this algorithm is extremely simple, it works pretty well
  1958. giving a solution only about 25%% longer than the optimal one (cit. Wikipedia),
  1959. and runs very fast in O(N^2) time complexity.
  1960. >>> optimized_travelling_salesman([[i,j] for i in range(5) for j in range(5)])
  1961. [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [1, 4], [1, 3], [1, 2], [1, 1], [1, 0], [2, 0], [2, 1], [2, 2],
  1962. [2, 3], [2, 4], [3, 4], [3, 3], [3, 2], [3, 1], [3, 0], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4]]
  1963. >>> optimized_travelling_salesman([[0,0],[10,0],[6,0]])
  1964. [[0, 0], [6, 0], [10, 0]]
  1965. """
  1966. if start is None:
  1967. start = points[0]
  1968. must_visit = points
  1969. path = [start]
  1970. # must_visit.remove(start)
  1971. while must_visit:
  1972. nearest = min(must_visit, key=lambda x: distance(path[-1], x))
  1973. path.append(nearest)
  1974. must_visit.remove(nearest)
  1975. return path
  1976. def generate_from_excellon_by_tool(self, exobj, tools="all", drillz = 3.0, toolchange=False, toolchangez=0.1,
  1977. toolchangexy='', endz=2.0, startz=None, excellon_optimization_type='B'):
  1978. """
  1979. Creates gcode for this object from an Excellon object
  1980. for the specified tools.
  1981. :param exobj: Excellon object to process
  1982. :type exobj: Excellon
  1983. :param tools: Comma separated tool names
  1984. :type: tools: str
  1985. :param drillz: drill Z depth
  1986. :type drillz: float
  1987. :param toolchange: Use tool change sequence between tools.
  1988. :type toolchange: bool
  1989. :param toolchangez: Height at which to perform the tool change.
  1990. :type toolchangez: float
  1991. :param toolchangexy: Toolchange X,Y position
  1992. :type toolchangexy: String containing 2 floats separated by comma
  1993. :param startz: Z position just before starting the job
  1994. :type startz: float
  1995. :param endz: final Z position to move to at the end of the CNC job
  1996. :type endz: float
  1997. :param excellon_optimization_type: Single character that defines which drill re-ordering optimisation algorithm
  1998. is to be used: 'M' for meta-heuristic and 'B' for basic
  1999. :type excellon_optimization_type: string
  2000. :return: None
  2001. :rtype: None
  2002. """
  2003. # create a local copy of the exobj.drills so it can be used for creating drill CCode geometry
  2004. self.exc_drills = deepcopy(exobj.drills)
  2005. self.exc_tools = deepcopy(exobj.tools)
  2006. self.z_cut = deepcopy(drillz)
  2007. old_zcut = deepcopy(drillz)
  2008. if self.machinist_setting == 0:
  2009. if drillz > 0:
  2010. self.app.inform.emit('[WARNING] %s' %
  2011. _("The Cut Z parameter has positive value. "
  2012. "It is the depth value to drill into material.\n"
  2013. "The Cut Z parameter needs to have a negative value, assuming it is a typo "
  2014. "therefore the app will convert the value to negative. "
  2015. "Check the resulting CNC code (Gcode etc)."))
  2016. self.z_cut = -drillz
  2017. elif drillz == 0:
  2018. self.app.inform.emit('[WARNING] %s: %s' %
  2019. (_("The Cut Z parameter is zero. There will be no cut, skipping file"),
  2020. exobj.options['name']))
  2021. return 'fail'
  2022. self.z_toolchange = toolchangez
  2023. try:
  2024. if toolchangexy == '':
  2025. self.xy_toolchange = None
  2026. else:
  2027. self.xy_toolchange = [float(eval(a)) for a in toolchangexy.split(",")]
  2028. if len(self.xy_toolchange) < 2:
  2029. self.app.inform.emit('[ERROR]%s' %
  2030. _("The Toolchange X,Y field in Edit -> Preferences has to be "
  2031. "in the format (x, y) \nbut now there is only one value, not two. "))
  2032. return 'fail'
  2033. except Exception as e:
  2034. log.debug("camlib.CNCJob.generate_from_excellon_by_tool() --> %s" % str(e))
  2035. pass
  2036. self.startz = startz
  2037. self.z_end = endz
  2038. self.pp_excellon = self.app.preprocessors[self.pp_excellon_name]
  2039. p = self.pp_excellon
  2040. log.debug("Creating CNC Job from Excellon...")
  2041. # Tools
  2042. # sort the tools list by the second item in tuple (here we have a dict with diameter of the tool)
  2043. # so we actually are sorting the tools by diameter
  2044. # sorted_tools = sorted(exobj.tools.items(), key=lambda t1: t1['C'])
  2045. sort = []
  2046. for k, v in list(exobj.tools.items()):
  2047. sort.append((k, v.get('C')))
  2048. sorted_tools = sorted(sort,key=lambda t1: t1[1])
  2049. if tools == "all":
  2050. tools = [i[0] for i in sorted_tools] # we get a array of ordered tools
  2051. log.debug("Tools 'all' and sorted are: %s" % str(tools))
  2052. else:
  2053. selected_tools = [x.strip() for x in tools.split(",")] # we strip spaces and also separate the tools by ','
  2054. selected_tools = [t1 for t1 in selected_tools if t1 in selected_tools]
  2055. # Create a sorted list of selected tools from the sorted_tools list
  2056. tools = [i for i, j in sorted_tools for k in selected_tools if i == k]
  2057. log.debug("Tools selected and sorted are: %s" % str(tools))
  2058. # build a self.options['Tools_in_use'] list from scratch if we don't have one like in the case of
  2059. # running this method from a Tcl Command
  2060. build_tools_in_use_list = False
  2061. if 'Tools_in_use' not in self.options:
  2062. self.options['Tools_in_use'] = list()
  2063. # if the list is empty (either we just added the key or it was already there but empty) signal to build it
  2064. if not self.options['Tools_in_use']:
  2065. build_tools_in_use_list = True
  2066. # fill the data into the self.exc_cnc_tools dictionary
  2067. for it in sorted_tools:
  2068. for to_ol in tools:
  2069. if to_ol == it[0]:
  2070. drill_no = 0
  2071. sol_geo = list()
  2072. for dr in exobj.drills:
  2073. if dr['tool'] == it[0]:
  2074. drill_no += 1
  2075. sol_geo.append(dr['point'])
  2076. slot_no = 0
  2077. for dr in exobj.slots:
  2078. if dr['tool'] == it[0]:
  2079. slot_no += 1
  2080. start = (dr['start'].x, dr['start'].y)
  2081. stop = (dr['stop'].x, dr['stop'].y)
  2082. sol_geo.append(
  2083. LineString([start, stop]).buffer((it[1] / 2.0), resolution=self.geo_steps_per_circle)
  2084. )
  2085. try:
  2086. z_off = float(self.tool_offset[it[1]]) * (-1)
  2087. except KeyError:
  2088. z_off = 0
  2089. default_data = dict()
  2090. for k, v in list(self.options.items()):
  2091. default_data[k] = deepcopy(v)
  2092. self.exc_cnc_tools[it[1]] = dict()
  2093. self.exc_cnc_tools[it[1]]['tool'] = it[0]
  2094. self.exc_cnc_tools[it[1]]['nr_drills'] = drill_no
  2095. self.exc_cnc_tools[it[1]]['nr_slots'] = slot_no
  2096. self.exc_cnc_tools[it[1]]['offset_z'] = z_off
  2097. self.exc_cnc_tools[it[1]]['data'] = default_data
  2098. self.exc_cnc_tools[it[1]]['solid_geometry'] = deepcopy(sol_geo)
  2099. # build a self.options['Tools_in_use'] list from scratch if we don't have one like in the case of
  2100. # running this method from a Tcl Command
  2101. if build_tools_in_use_list is True:
  2102. self.options['Tools_in_use'].append(
  2103. [it[0], it[1], drill_no, slot_no]
  2104. )
  2105. self.app.inform.emit(_("Creating a list of points to drill..."))
  2106. # Points (Group by tool)
  2107. points = dict()
  2108. for drill in exobj.drills:
  2109. if self.app.abort_flag:
  2110. # graceful abort requested by the user
  2111. raise FlatCAMApp.GracefulException
  2112. if drill['tool'] in tools:
  2113. try:
  2114. points[drill['tool']].append(drill['point'])
  2115. except KeyError:
  2116. points[drill['tool']] = [drill['point']]
  2117. # log.debug("Found %d drills." % len(points))
  2118. self.gcode = list()
  2119. self.f_plunge = self.app.defaults["excellon_f_plunge"]
  2120. self.f_retract = self.app.defaults["excellon_f_retract"]
  2121. # Initialization
  2122. gcode = self.doformat(p.start_code)
  2123. gcode += self.doformat(p.feedrate_code)
  2124. if toolchange is False:
  2125. if self.xy_toolchange is not None:
  2126. gcode += self.doformat(p.lift_code, x=self.xy_toolchange[0], y=self.xy_toolchange[1])
  2127. gcode += self.doformat(p.startz_code, x=self.xy_toolchange[0], y=self.xy_toolchange[1])
  2128. else:
  2129. gcode += self.doformat(p.lift_code, x=0.0, y=0.0)
  2130. gcode += self.doformat(p.startz_code, x=0.0, y=0.0)
  2131. # Distance callback
  2132. class CreateDistanceCallback(object):
  2133. """Create callback to calculate distances between points."""
  2134. def __init__(self):
  2135. """Initialize distance array."""
  2136. locations = create_data_array()
  2137. size = len(locations)
  2138. self.matrix = {}
  2139. for from_node in range(size):
  2140. self.matrix[from_node] = {}
  2141. for to_node in range(size):
  2142. if from_node == to_node:
  2143. self.matrix[from_node][to_node] = 0
  2144. else:
  2145. x1 = locations[from_node][0]
  2146. y1 = locations[from_node][1]
  2147. x2 = locations[to_node][0]
  2148. y2 = locations[to_node][1]
  2149. self.matrix[from_node][to_node] = distance_euclidian(x1, y1, x2, y2)
  2150. # def Distance(self, from_node, to_node):
  2151. # return int(self.matrix[from_node][to_node])
  2152. def Distance(self, from_index, to_index):
  2153. # Convert from routing variable Index to distance matrix NodeIndex.
  2154. from_node = manager.IndexToNode(from_index)
  2155. to_node = manager.IndexToNode(to_index)
  2156. return self.matrix[from_node][to_node]
  2157. # Create the data.
  2158. def create_data_array():
  2159. locations = []
  2160. for point in points[tool]:
  2161. locations.append((point.coords.xy[0][0], point.coords.xy[1][0]))
  2162. return locations
  2163. if self.xy_toolchange is not None:
  2164. self.oldx = self.xy_toolchange[0]
  2165. self.oldy = self.xy_toolchange[1]
  2166. else:
  2167. self.oldx = 0.0
  2168. self.oldy = 0.0
  2169. measured_distance = 0.0
  2170. measured_down_distance = 0.0
  2171. measured_up_to_zero_distance = 0.0
  2172. measured_lift_distance = 0.0
  2173. self.app.inform.emit('%s...' % _("Starting G-Code"))
  2174. current_platform = platform.architecture()[0]
  2175. if current_platform == '64bit':
  2176. used_excellon_optimization_type = excellon_optimization_type
  2177. if used_excellon_optimization_type == 'M':
  2178. log.debug("Using OR-Tools Metaheuristic Guided Local Search drill path optimization.")
  2179. if exobj.drills:
  2180. for tool in tools:
  2181. self.tool=tool
  2182. self.postdata['toolC'] = exobj.tools[tool]["C"]
  2183. self.tooldia = exobj.tools[tool]["C"]
  2184. if self.app.abort_flag:
  2185. # graceful abort requested by the user
  2186. raise FlatCAMApp.GracefulException
  2187. # ###############################################
  2188. # ############ Create the data. #################
  2189. # ###############################################
  2190. node_list = []
  2191. locations = create_data_array()
  2192. tsp_size = len(locations)
  2193. num_routes = 1 # The number of routes, which is 1 in the TSP.
  2194. # Nodes are indexed from 0 to tsp_size - 1. The depot is the starting node of the route.
  2195. depot = 0
  2196. # Create routing model.
  2197. if tsp_size > 0:
  2198. manager = pywrapcp.RoutingIndexManager(tsp_size, num_routes, depot)
  2199. routing = pywrapcp.RoutingModel(manager)
  2200. search_parameters = pywrapcp.DefaultRoutingSearchParameters()
  2201. search_parameters.local_search_metaheuristic = (
  2202. routing_enums_pb2.LocalSearchMetaheuristic.GUIDED_LOCAL_SEARCH)
  2203. # Set search time limit in milliseconds.
  2204. if float(self.app.defaults["excellon_search_time"]) != 0:
  2205. search_parameters.time_limit.seconds = int(
  2206. float(self.app.defaults["excellon_search_time"]))
  2207. else:
  2208. search_parameters.time_limit.seconds = 3
  2209. # Callback to the distance function. The callback takes two
  2210. # arguments (the from and to node indices) and returns the distance between them.
  2211. dist_between_locations = CreateDistanceCallback()
  2212. dist_callback = dist_between_locations.Distance
  2213. transit_callback_index = routing.RegisterTransitCallback(dist_callback)
  2214. routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index)
  2215. # Solve, returns a solution if any.
  2216. assignment = routing.SolveWithParameters(search_parameters)
  2217. if assignment:
  2218. # Solution cost.
  2219. log.info("Total distance: " + str(assignment.ObjectiveValue()))
  2220. # Inspect solution.
  2221. # Only one route here; otherwise iterate from 0 to routing.vehicles() - 1.
  2222. route_number = 0
  2223. node = routing.Start(route_number)
  2224. start_node = node
  2225. while not routing.IsEnd(node):
  2226. if self.app.abort_flag:
  2227. # graceful abort requested by the user
  2228. raise FlatCAMApp.GracefulException
  2229. node_list.append(node)
  2230. node = assignment.Value(routing.NextVar(node))
  2231. else:
  2232. log.warning('No solution found.')
  2233. else:
  2234. log.warning('Specify an instance greater than 0.')
  2235. # ############################################# ##
  2236. # Only if tool has points.
  2237. if tool in points:
  2238. if self.app.abort_flag:
  2239. # graceful abort requested by the user
  2240. raise FlatCAMApp.GracefulException
  2241. # Tool change sequence (optional)
  2242. if toolchange:
  2243. gcode += self.doformat(p.toolchange_code, toolchangexy=(self.oldx, self.oldy))
  2244. gcode += self.doformat(p.spindle_code) # Spindle start
  2245. if self.dwell is True:
  2246. gcode += self.doformat(p.dwell_code) # Dwell time
  2247. else:
  2248. gcode += self.doformat(p.spindle_code)
  2249. if self.dwell is True:
  2250. gcode += self.doformat(p.dwell_code) # Dwell time
  2251. current_tooldia = float('%.*f' % (self.decimals, float(exobj.tools[tool]["C"])))
  2252. self.app.inform.emit(
  2253. '%s: %s%s.' % (_("Starting G-Code for tool with diameter"),
  2254. str(current_tooldia),
  2255. str(self.units))
  2256. )
  2257. # TODO apply offset only when using the GUI, for TclCommand this will create an error
  2258. # because the values for Z offset are created in build_ui()
  2259. try:
  2260. z_offset = float(self.tool_offset[current_tooldia]) * (-1)
  2261. except KeyError:
  2262. z_offset = 0
  2263. self.z_cut = z_offset + old_zcut
  2264. self.coordinates_type = self.app.defaults["cncjob_coords_type"]
  2265. if self.coordinates_type == "G90":
  2266. # Drillling! for Absolute coordinates type G90
  2267. # variables to display the percentage of work done
  2268. geo_len = len(node_list)
  2269. old_disp_number = 0
  2270. log.warning("Number of drills for which to generate GCode: %s" % str(geo_len))
  2271. loc_nr = 0
  2272. for k in node_list:
  2273. if self.app.abort_flag:
  2274. # graceful abort requested by the user
  2275. raise FlatCAMApp.GracefulException
  2276. locx = locations[k][0]
  2277. locy = locations[k][1]
  2278. gcode += self.doformat(p.rapid_code, x=locx, y=locy)
  2279. if self.multidepth and abs(self.z_cut) > abs(self.z_depthpercut):
  2280. doc = deepcopy(self.z_cut)
  2281. self.z_cut = 0.0
  2282. while abs(self.z_cut) < abs(doc):
  2283. self.z_cut -= self.z_depthpercut
  2284. if abs(doc) < abs(self.z_cut) < (abs(doc) + self.z_depthpercut):
  2285. self.z_cut = doc
  2286. gcode += self.doformat(p.down_code, x=locx, y=locy)
  2287. measured_down_distance += abs(self.z_cut) + abs(self.z_move)
  2288. if self.f_retract is False:
  2289. gcode += self.doformat(p.up_to_zero_code, x=locx, y=locy)
  2290. measured_up_to_zero_distance += abs(self.z_cut)
  2291. measured_lift_distance += abs(self.z_move)
  2292. else:
  2293. measured_lift_distance += abs(self.z_cut) + abs(self.z_move)
  2294. gcode += self.doformat(p.lift_code, x=locx, y=locy)
  2295. else:
  2296. gcode += self.doformat(p.down_code, x=locx, y=locy)
  2297. measured_down_distance += abs(self.z_cut) + abs(self.z_move)
  2298. if self.f_retract is False:
  2299. gcode += self.doformat(p.up_to_zero_code, x=locx, y=locy)
  2300. measured_up_to_zero_distance += abs(self.z_cut)
  2301. measured_lift_distance += abs(self.z_move)
  2302. else:
  2303. measured_lift_distance += abs(self.z_cut) + abs(self.z_move)
  2304. gcode += self.doformat(p.lift_code, x=locx, y=locy)
  2305. measured_distance += abs(distance_euclidian(locx, locy, self.oldx, self.oldy))
  2306. self.oldx = locx
  2307. self.oldy = locy
  2308. loc_nr += 1
  2309. disp_number = int(np.interp(loc_nr, [0, geo_len], [0, 100]))
  2310. if old_disp_number < disp_number <= 100:
  2311. self.app.proc_container.update_view_text(' %d%%' % disp_number)
  2312. old_disp_number = disp_number
  2313. else:
  2314. self.app.inform.emit('[ERROR_NOTCL] %s...' % _('G91 coordinates not implemented'))
  2315. return 'fail'
  2316. self.z_cut = deepcopy(old_zcut)
  2317. else:
  2318. log.debug("camlib.CNCJob.generate_from_excellon_by_tool() --> "
  2319. "The loaded Excellon file has no drills ...")
  2320. self.app.inform.emit('[ERROR_NOTCL] %s...' % _('The loaded Excellon file has no drills'))
  2321. return 'fail'
  2322. log.debug("The total travel distance with OR-TOOLS Metaheuristics is: %s" % str(measured_distance))
  2323. if used_excellon_optimization_type == 'B':
  2324. log.debug("Using OR-Tools Basic drill path optimization.")
  2325. if exobj.drills:
  2326. for tool in tools:
  2327. if self.app.abort_flag:
  2328. # graceful abort requested by the user
  2329. raise FlatCAMApp.GracefulException
  2330. self.tool=tool
  2331. self.postdata['toolC']=exobj.tools[tool]["C"]
  2332. self.tooldia = exobj.tools[tool]["C"]
  2333. # ############################################# ##
  2334. node_list = []
  2335. locations = create_data_array()
  2336. tsp_size = len(locations)
  2337. num_routes = 1 # The number of routes, which is 1 in the TSP.
  2338. # Nodes are indexed from 0 to tsp_size - 1. The depot is the starting node of the route.
  2339. depot = 0
  2340. # Create routing model.
  2341. if tsp_size > 0:
  2342. manager = pywrapcp.RoutingIndexManager(tsp_size, num_routes, depot)
  2343. routing = pywrapcp.RoutingModel(manager)
  2344. search_parameters = pywrapcp.DefaultRoutingSearchParameters()
  2345. # Callback to the distance function. The callback takes two
  2346. # arguments (the from and to node indices) and returns the distance between them.
  2347. dist_between_locations = CreateDistanceCallback()
  2348. dist_callback = dist_between_locations.Distance
  2349. transit_callback_index = routing.RegisterTransitCallback(dist_callback)
  2350. routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index)
  2351. # Solve, returns a solution if any.
  2352. assignment = routing.SolveWithParameters(search_parameters)
  2353. if assignment:
  2354. # Solution cost.
  2355. log.info("Total distance: " + str(assignment.ObjectiveValue()))
  2356. # Inspect solution.
  2357. # Only one route here; otherwise iterate from 0 to routing.vehicles() - 1.
  2358. route_number = 0
  2359. node = routing.Start(route_number)
  2360. start_node = node
  2361. while not routing.IsEnd(node):
  2362. node_list.append(node)
  2363. node = assignment.Value(routing.NextVar(node))
  2364. else:
  2365. log.warning('No solution found.')
  2366. else:
  2367. log.warning('Specify an instance greater than 0.')
  2368. # ############################################# ##
  2369. # Only if tool has points.
  2370. if tool in points:
  2371. if self.app.abort_flag:
  2372. # graceful abort requested by the user
  2373. raise FlatCAMApp.GracefulException
  2374. # Tool change sequence (optional)
  2375. if toolchange:
  2376. gcode += self.doformat(p.toolchange_code, toolchangexy=(self.oldx, self.oldy))
  2377. gcode += self.doformat(p.spindle_code) # Spindle start)
  2378. if self.dwell is True:
  2379. gcode += self.doformat(p.dwell_code) # Dwell time
  2380. else:
  2381. gcode += self.doformat(p.spindle_code)
  2382. if self.dwell is True:
  2383. gcode += self.doformat(p.dwell_code) # Dwell time
  2384. current_tooldia = float('%.*f' % (self.decimals, float(exobj.tools[tool]["C"])))
  2385. self.app.inform.emit(
  2386. '%s: %s%s.' % (_("Starting G-Code for tool with diameter"),
  2387. str(current_tooldia),
  2388. str(self.units))
  2389. )
  2390. # TODO apply offset only when using the GUI, for TclCommand this will create an error
  2391. # because the values for Z offset are created in build_ui()
  2392. try:
  2393. z_offset = float(self.tool_offset[current_tooldia]) * (-1)
  2394. except KeyError:
  2395. z_offset = 0
  2396. self.z_cut = z_offset + old_zcut
  2397. self.coordinates_type = self.app.defaults["cncjob_coords_type"]
  2398. if self.coordinates_type == "G90":
  2399. # Drillling! for Absolute coordinates type G90
  2400. # variables to display the percentage of work done
  2401. geo_len = len(node_list)
  2402. disp_number = 0
  2403. old_disp_number = 0
  2404. log.warning("Number of drills for which to generate GCode: %s" % str(geo_len))
  2405. loc_nr = 0
  2406. for k in node_list:
  2407. if self.app.abort_flag:
  2408. # graceful abort requested by the user
  2409. raise FlatCAMApp.GracefulException
  2410. locx = locations[k][0]
  2411. locy = locations[k][1]
  2412. gcode += self.doformat(p.rapid_code, x=locx, y=locy)
  2413. if self.multidepth and abs(self.z_cut) > abs(self.z_depthpercut):
  2414. doc = deepcopy(self.z_cut)
  2415. self.z_cut = 0.0
  2416. while abs(self.z_cut) < abs(doc):
  2417. self.z_cut -= self.z_depthpercut
  2418. if abs(doc) < abs(self.z_cut) < (abs(doc) + self.z_depthpercut):
  2419. self.z_cut = doc
  2420. gcode += self.doformat(p.down_code, x=locx, y=locy)
  2421. measured_down_distance += abs(self.z_cut) + abs(self.z_move)
  2422. if self.f_retract is False:
  2423. gcode += self.doformat(p.up_to_zero_code, x=locx, y=locy)
  2424. measured_up_to_zero_distance += abs(self.z_cut)
  2425. measured_lift_distance += abs(self.z_move)
  2426. else:
  2427. measured_lift_distance += abs(self.z_cut) + abs(self.z_move)
  2428. gcode += self.doformat(p.lift_code, x=locx, y=locy)
  2429. else:
  2430. gcode += self.doformat(p.down_code, x=locx, y=locy)
  2431. measured_down_distance += abs(self.z_cut) + abs(self.z_move)
  2432. if self.f_retract is False:
  2433. gcode += self.doformat(p.up_to_zero_code, x=locx, y=locy)
  2434. measured_up_to_zero_distance += abs(self.z_cut)
  2435. measured_lift_distance += abs(self.z_move)
  2436. else:
  2437. measured_lift_distance += abs(self.z_cut) + abs(self.z_move)
  2438. gcode += self.doformat(p.lift_code, x=locx, y=locy)
  2439. measured_distance += abs(distance_euclidian(locx, locy, self.oldx, self.oldy))
  2440. self.oldx = locx
  2441. self.oldy = locy
  2442. loc_nr += 1
  2443. disp_number = int(np.interp(loc_nr, [0, geo_len], [0, 100]))
  2444. if old_disp_number < disp_number <= 100:
  2445. self.app.proc_container.update_view_text(' %d%%' % disp_number)
  2446. old_disp_number = disp_number
  2447. else:
  2448. self.app.inform.emit('[ERROR_NOTCL] %s...' % _('G91 coordinates not implemented'))
  2449. return 'fail'
  2450. self.z_cut = deepcopy(old_zcut)
  2451. else:
  2452. log.debug("camlib.CNCJob.generate_from_excellon_by_tool() --> "
  2453. "The loaded Excellon file has no drills ...")
  2454. self.app.inform.emit('[ERROR_NOTCL] %s...' %
  2455. _('The loaded Excellon file has no drills'))
  2456. return 'fail'
  2457. log.debug("The total travel distance with OR-TOOLS Basic Algorithm is: %s" % str(measured_distance))
  2458. else:
  2459. used_excellon_optimization_type = 'T'
  2460. if used_excellon_optimization_type == 'T':
  2461. log.debug("Using Travelling Salesman drill path optimization.")
  2462. for tool in tools:
  2463. if self.app.abort_flag:
  2464. # graceful abort requested by the user
  2465. raise FlatCAMApp.GracefulException
  2466. if exobj.drills:
  2467. self.tool = tool
  2468. self.postdata['toolC'] = exobj.tools[tool]["C"]
  2469. self.tooldia = exobj.tools[tool]["C"]
  2470. # Only if tool has points.
  2471. if tool in points:
  2472. if self.app.abort_flag:
  2473. # graceful abort requested by the user
  2474. raise FlatCAMApp.GracefulException
  2475. # Tool change sequence (optional)
  2476. if toolchange:
  2477. gcode += self.doformat(p.toolchange_code, toolchangexy=(self.oldx, self.oldy))
  2478. gcode += self.doformat(p.spindle_code) # Spindle start)
  2479. if self.dwell is True:
  2480. gcode += self.doformat(p.dwell_code) # Dwell time
  2481. else:
  2482. gcode += self.doformat(p.spindle_code)
  2483. if self.dwell is True:
  2484. gcode += self.doformat(p.dwell_code) # Dwell time
  2485. current_tooldia = float('%.*f' % (self.decimals, float(exobj.tools[tool]["C"])))
  2486. self.app.inform.emit(
  2487. '%s: %s%s.' % (_("Starting G-Code for tool with diameter"),
  2488. str(current_tooldia),
  2489. str(self.units))
  2490. )
  2491. # TODO apply offset only when using the GUI, for TclCommand this will create an error
  2492. # because the values for Z offset are created in build_ui()
  2493. try:
  2494. z_offset = float(self.tool_offset[current_tooldia]) * (-1)
  2495. except KeyError:
  2496. z_offset = 0
  2497. self.z_cut = z_offset + old_zcut
  2498. self.coordinates_type = self.app.defaults["cncjob_coords_type"]
  2499. if self.coordinates_type == "G90":
  2500. # Drillling! for Absolute coordinates type G90
  2501. altPoints = []
  2502. for point in points[tool]:
  2503. altPoints.append((point.coords.xy[0][0], point.coords.xy[1][0]))
  2504. node_list = self.optimized_travelling_salesman(altPoints)
  2505. # variables to display the percentage of work done
  2506. geo_len = len(node_list)
  2507. disp_number = 0
  2508. old_disp_number = 0
  2509. log.warning("Number of drills for which to generate GCode: %s" % str(geo_len))
  2510. loc_nr = 0
  2511. for point in node_list:
  2512. if self.app.abort_flag:
  2513. # graceful abort requested by the user
  2514. raise FlatCAMApp.GracefulException
  2515. locx = point[0]
  2516. locy = point[1]
  2517. gcode += self.doformat(p.rapid_code, x=locx, y=locy)
  2518. if self.multidepth and abs(self.z_cut) > abs(self.z_depthpercut):
  2519. doc = deepcopy(self.z_cut)
  2520. self.z_cut = 0.0
  2521. while abs(self.z_cut) < abs(doc):
  2522. self.z_cut -= self.z_depthpercut
  2523. if abs(doc) < abs(self.z_cut) < (abs(doc) + self.z_depthpercut):
  2524. self.z_cut = doc
  2525. gcode += self.doformat(p.down_code, x=locx, y=locy)
  2526. measured_down_distance += abs(self.z_cut) + abs(self.z_move)
  2527. if self.f_retract is False:
  2528. gcode += self.doformat(p.up_to_zero_code, x=locx, y=locy)
  2529. measured_up_to_zero_distance += abs(self.z_cut)
  2530. measured_lift_distance += abs(self.z_move)
  2531. else:
  2532. measured_lift_distance += abs(self.z_cut) + abs(self.z_move)
  2533. gcode += self.doformat(p.lift_code, x=locx, y=locy)
  2534. else:
  2535. gcode += self.doformat(p.down_code, x=locx, y=locy)
  2536. measured_down_distance += abs(self.z_cut) + abs(self.z_move)
  2537. if self.f_retract is False:
  2538. gcode += self.doformat(p.up_to_zero_code, x=locx, y=locy)
  2539. measured_up_to_zero_distance += abs(self.z_cut)
  2540. measured_lift_distance += abs(self.z_move)
  2541. else:
  2542. measured_lift_distance += abs(self.z_cut) + abs(self.z_move)
  2543. gcode += self.doformat(p.lift_code, x=locx, y=locy)
  2544. measured_distance += abs(distance_euclidian(locx, locy, self.oldx, self.oldy))
  2545. self.oldx = locx
  2546. self.oldy = locy
  2547. loc_nr += 1
  2548. disp_number = int(np.interp(loc_nr, [0, geo_len], [0, 100]))
  2549. if old_disp_number < disp_number <= 100:
  2550. self.app.proc_container.update_view_text(' %d%%' % disp_number)
  2551. old_disp_number = disp_number
  2552. else:
  2553. self.app.inform.emit('[ERROR_NOTCL] %s...' % _('G91 coordinates not implemented'))
  2554. return 'fail'
  2555. else:
  2556. log.debug("camlib.CNCJob.generate_from_excellon_by_tool() --> "
  2557. "The loaded Excellon file has no drills ...")
  2558. self.app.inform.emit('[ERROR_NOTCL] %s...' %
  2559. _('The loaded Excellon file has no drills'))
  2560. return 'fail'
  2561. self.z_cut = deepcopy(old_zcut)
  2562. log.debug("The total travel distance with Travelling Salesman Algorithm is: %s" % str(measured_distance))
  2563. gcode += self.doformat(p.spindle_stop_code) # Spindle stop
  2564. gcode += self.doformat(p.end_code, x=0, y=0)
  2565. measured_distance += abs(distance_euclidian(self.oldx, self.oldy, 0, 0))
  2566. log.debug("The total travel distance including travel to end position is: %s" %
  2567. str(measured_distance) + '\n')
  2568. self.travel_distance = measured_distance
  2569. # I use the value of self.feedrate_rapid for the feadrate in case of the measure_lift_distance and for
  2570. # traveled_time because it is not always possible to determine the feedrate that the CNC machine uses
  2571. # for G0 move (the fastest speed available to the CNC router). Although self.feedrate_rapids is used only with
  2572. # Marlin preprocessor and derivatives.
  2573. self.routing_time = (measured_down_distance + measured_up_to_zero_distance) / self.feedrate
  2574. lift_time = measured_lift_distance / self.feedrate_rapid
  2575. traveled_time = measured_distance / self.feedrate_rapid
  2576. self.routing_time += lift_time + traveled_time
  2577. self.gcode = gcode
  2578. self.app.inform.emit(_("Finished G-Code generation..."))
  2579. return 'OK'
  2580. def generate_from_multitool_geometry(
  2581. self, geometry, append=True,
  2582. tooldia=None, offset=0.0, tolerance=0, z_cut=1.0, z_move=2.0,
  2583. feedrate=2.0, feedrate_z=2.0, feedrate_rapid=30,
  2584. spindlespeed=None, spindledir='CW', dwell=False, dwelltime=1.0,
  2585. multidepth=False, depthpercut=None,
  2586. toolchange=False, toolchangez=1.0, toolchangexy="0.0, 0.0", extracut=False, extracut_length=0.2,
  2587. startz=None, endz=2.0, pp_geometry_name=None, tool_no=1):
  2588. """
  2589. Algorithm to generate from multitool Geometry.
  2590. Algorithm description:
  2591. ----------------------
  2592. Uses RTree to find the nearest path to follow.
  2593. :param geometry:
  2594. :param append:
  2595. :param tooldia:
  2596. :param offset:
  2597. :param tolerance:
  2598. :param z_cut:
  2599. :param z_move:
  2600. :param feedrate:
  2601. :param feedrate_z:
  2602. :param feedrate_rapid:
  2603. :param spindlespeed:
  2604. :param spindledir: Direction of rotation for the spindle. If using GRBL laser mode will
  2605. adjust the laser mode
  2606. :param dwell:
  2607. :param dwelltime:
  2608. :param multidepth: If True, use multiple passes to reach the desired depth.
  2609. :param depthpercut: Maximum depth in each pass.
  2610. :param toolchange:
  2611. :param toolchangez:
  2612. :param toolchangexy:
  2613. :param extracut: Adds (or not) an extra cut at the end of each path overlapping the
  2614. first point in path to ensure complete copper removal
  2615. :param extracut_length: Extra cut legth at the end of the path
  2616. :param startz:
  2617. :param endz:
  2618. :param pp_geometry_name:
  2619. :param tool_no:
  2620. :return: GCode - string
  2621. """
  2622. log.debug("Generate_from_multitool_geometry()")
  2623. temp_solid_geometry = []
  2624. if offset != 0.0:
  2625. for it in geometry:
  2626. # if the geometry is a closed shape then create a Polygon out of it
  2627. if isinstance(it, LineString):
  2628. c = it.coords
  2629. if c[0] == c[-1]:
  2630. it = Polygon(it)
  2631. temp_solid_geometry.append(it.buffer(offset, join_style=2))
  2632. else:
  2633. temp_solid_geometry = geometry
  2634. # ## Flatten the geometry. Only linear elements (no polygons) remain.
  2635. flat_geometry = self.flatten(temp_solid_geometry, pathonly=True)
  2636. log.debug("%d paths" % len(flat_geometry))
  2637. self.tooldia = float(tooldia) if tooldia else None
  2638. self.z_cut = float(z_cut) if z_cut else None
  2639. self.z_move = float(z_move) if z_move is not None else None
  2640. self.feedrate = float(feedrate) if feedrate else None
  2641. self.z_feedrate = float(feedrate_z) if feedrate_z is not None else None
  2642. self.feedrate_rapid = float(feedrate_rapid) if feedrate_rapid else None
  2643. self.spindlespeed = int(spindlespeed) if spindlespeed != 0 else None
  2644. self.spindledir = spindledir
  2645. self.dwell = dwell
  2646. self.dwelltime = float(dwelltime) if dwelltime else None
  2647. self.startz = float(startz) if startz is not None else None
  2648. self.z_end = float(endz) if endz is not None else None
  2649. self.z_depthpercut = float(depthpercut) if depthpercut else None
  2650. self.multidepth = multidepth
  2651. self.z_toolchange = float(toolchangez) if toolchangez is not None else None
  2652. # it servers in the preprocessor file
  2653. self.tool = tool_no
  2654. try:
  2655. if toolchangexy == '':
  2656. self.xy_toolchange = None
  2657. else:
  2658. self.xy_toolchange = [float(eval(a)) for a in toolchangexy.split(",")]
  2659. if len(self.xy_toolchange) < 2:
  2660. self.app.inform.emit('[ERROR] %s' % _("The Toolchange X,Y field in Edit -> Preferences has to be "
  2661. "in the format (x, y) \n"
  2662. "but now there is only one value, not two."))
  2663. return 'fail'
  2664. except Exception as e:
  2665. log.debug("camlib.CNCJob.generate_from_multitool_geometry() --> %s" % str(e))
  2666. pass
  2667. self.pp_geometry_name = pp_geometry_name if pp_geometry_name else 'default'
  2668. self.f_plunge = self.app.defaults["geometry_f_plunge"]
  2669. if self.z_cut is None:
  2670. self.app.inform.emit('[ERROR_NOTCL] %s' %
  2671. _("Cut_Z parameter is None or zero. Most likely a bad combinations of "
  2672. "other parameters."))
  2673. return 'fail'
  2674. if self.machinist_setting == 0:
  2675. if self.z_cut > 0:
  2676. self.app.inform.emit('[WARNING] %s' %
  2677. _("The Cut Z parameter has positive value. "
  2678. "It is the depth value to cut into material.\n"
  2679. "The Cut Z parameter needs to have a negative value, assuming it is a typo "
  2680. "therefore the app will convert the value to negative."
  2681. "Check the resulting CNC code (Gcode etc)."))
  2682. self.z_cut = -self.z_cut
  2683. elif self.z_cut == 0:
  2684. self.app.inform.emit('[WARNING] %s: %s' %
  2685. (_("The Cut Z parameter is zero. There will be no cut, skipping file"),
  2686. self.options['name']))
  2687. return 'fail'
  2688. if self.z_move is None:
  2689. self.app.inform.emit('[ERROR_NOTCL] %s' % _("Travel Z parameter is None or zero."))
  2690. return 'fail'
  2691. if self.z_move < 0:
  2692. self.app.inform.emit('[WARNING] %s' %
  2693. _("The Travel Z parameter has negative value. "
  2694. "It is the height value to travel between cuts.\n"
  2695. "The Z Travel parameter needs to have a positive value, assuming it is a typo "
  2696. "therefore the app will convert the value to positive."
  2697. "Check the resulting CNC code (Gcode etc)."))
  2698. self.z_move = -self.z_move
  2699. elif self.z_move == 0:
  2700. self.app.inform.emit('[WARNING] %s: %s' %
  2701. (_("The Z Travel parameter is zero. This is dangerous, skipping file"),
  2702. self.options['name']))
  2703. return 'fail'
  2704. # made sure that depth_per_cut is no more then the z_cut
  2705. if abs(self.z_cut) < self.z_depthpercut:
  2706. self.z_depthpercut = abs(self.z_cut)
  2707. # ## Index first and last points in paths
  2708. # What points to index.
  2709. def get_pts(o):
  2710. return [o.coords[0], o.coords[-1]]
  2711. # Create the indexed storage.
  2712. storage = FlatCAMRTreeStorage()
  2713. storage.get_points = get_pts
  2714. # Store the geometry
  2715. log.debug("Indexing geometry before generating G-Code...")
  2716. self.app.inform.emit(_("Indexing geometry before generating G-Code..."))
  2717. for shape in flat_geometry:
  2718. if self.app.abort_flag:
  2719. # graceful abort requested by the user
  2720. raise FlatCAMApp.GracefulException
  2721. if shape is not None: # TODO: This shouldn't have happened.
  2722. storage.insert(shape)
  2723. # self.input_geometry_bounds = geometry.bounds()
  2724. if not append:
  2725. self.gcode = ""
  2726. # tell preprocessor the number of tool (for toolchange)
  2727. self.tool = tool_no
  2728. # this is the tool diameter, it is used as such to accommodate the preprocessor who need the tool diameter
  2729. # given under the name 'toolC'
  2730. self.postdata['toolC'] = self.tooldia
  2731. # Initial G-Code
  2732. self.pp_geometry = self.app.preprocessors[self.pp_geometry_name]
  2733. p = self.pp_geometry
  2734. self.gcode = self.doformat(p.start_code)
  2735. self.gcode += self.doformat(p.feedrate_code) # sets the feed rate
  2736. if toolchange is False:
  2737. self.gcode += self.doformat(p.lift_code, x=0, y=0) # Move (up) to travel height
  2738. self.gcode += self.doformat(p.startz_code, x=0, y=0)
  2739. if toolchange:
  2740. # if "line_xyz" in self.pp_geometry_name:
  2741. # self.gcode += self.doformat(p.toolchange_code, x=self.xy_toolchange[0], y=self.xy_toolchange[1])
  2742. # else:
  2743. # self.gcode += self.doformat(p.toolchange_code)
  2744. self.gcode += self.doformat(p.toolchange_code)
  2745. if 'laser' not in self.pp_geometry_name:
  2746. self.gcode += self.doformat(p.spindle_code) # Spindle start
  2747. else:
  2748. # for laser this will disable the laser
  2749. self.gcode += self.doformat(p.lift_code, x=self.oldx, y=self.oldy) # Move (up) to travel height
  2750. if self.dwell is True:
  2751. self.gcode += self.doformat(p.dwell_code) # Dwell time
  2752. else:
  2753. if 'laser' not in self.pp_geometry_name:
  2754. self.gcode += self.doformat(p.spindle_code) # Spindle start
  2755. if self.dwell is True:
  2756. self.gcode += self.doformat(p.dwell_code) # Dwell time
  2757. total_travel = 0.0
  2758. total_cut = 0.0
  2759. # ## Iterate over geometry paths getting the nearest each time.
  2760. log.debug("Starting G-Code...")
  2761. self.app.inform.emit('%s...' % _("Starting G-Code"))
  2762. path_count = 0
  2763. current_pt = (0, 0)
  2764. # variables to display the percentage of work done
  2765. geo_len = len(flat_geometry)
  2766. old_disp_number = 0
  2767. log.warning("Number of paths for which to generate GCode: %s" % str(geo_len))
  2768. current_tooldia = float('%.*f' % (self.decimals, float(self.tooldia)))
  2769. self.app.inform.emit( '%s: %s%s.' % (_("Starting G-Code for tool with diameter"),
  2770. str(current_tooldia),
  2771. str(self.units)))
  2772. pt, geo = storage.nearest(current_pt)
  2773. try:
  2774. while True:
  2775. if self.app.abort_flag:
  2776. # graceful abort requested by the user
  2777. raise FlatCAMApp.GracefulException
  2778. path_count += 1
  2779. # Remove before modifying, otherwise deletion will fail.
  2780. storage.remove(geo)
  2781. # If last point in geometry is the nearest but prefer the first one if last point == first point
  2782. # then reverse coordinates.
  2783. if pt != geo.coords[0] and pt == geo.coords[-1]:
  2784. geo.coords = list(geo.coords)[::-1]
  2785. # ---------- Single depth/pass --------
  2786. if not multidepth:
  2787. # calculate the cut distance
  2788. total_cut = total_cut + geo.length
  2789. self.gcode += self.create_gcode_single_pass(geo, extracut, extracut_length, tolerance,
  2790. old_point=current_pt)
  2791. # --------- Multi-pass ---------
  2792. else:
  2793. # calculate the cut distance
  2794. # due of the number of cuts (multi depth) it has to multiplied by the number of cuts
  2795. nr_cuts = 0
  2796. depth = abs(self.z_cut)
  2797. while depth > 0:
  2798. nr_cuts += 1
  2799. depth -= float(self.z_depthpercut)
  2800. total_cut += (geo.length * nr_cuts)
  2801. self.gcode += self.create_gcode_multi_pass(geo, extracut, extracut_length, tolerance,
  2802. postproc=p, old_point=current_pt)
  2803. # calculate the total distance
  2804. total_travel = total_travel + abs(distance(pt1=current_pt, pt2=pt))
  2805. current_pt = geo.coords[-1]
  2806. pt, geo = storage.nearest(current_pt) # Next
  2807. disp_number = int(np.interp(path_count, [0, geo_len], [0, 100]))
  2808. if old_disp_number < disp_number <= 100:
  2809. self.app.proc_container.update_view_text(' %d%%' % disp_number)
  2810. old_disp_number = disp_number
  2811. except StopIteration: # Nothing found in storage.
  2812. pass
  2813. log.debug("Finished G-Code... %s paths traced." % path_count)
  2814. # add move to end position
  2815. total_travel += abs(distance_euclidian(current_pt[0], current_pt[1], 0, 0))
  2816. self.travel_distance += total_travel + total_cut
  2817. self.routing_time += total_cut / self.feedrate
  2818. # Finish
  2819. self.gcode += self.doformat(p.spindle_stop_code)
  2820. self.gcode += self.doformat(p.lift_code, x=current_pt[0], y=current_pt[1])
  2821. self.gcode += self.doformat(p.end_code, x=0, y=0)
  2822. self.app.inform.emit(
  2823. '%s... %s %s.' % (_("Finished G-Code generation"), str(path_count), _("paths traced"))
  2824. )
  2825. return self.gcode
  2826. def generate_from_geometry_2(
  2827. self, geometry, append=True, tooldia=None, offset=0.0, tolerance=0, z_cut=None, z_move=None,
  2828. feedrate=None, feedrate_z=None, feedrate_rapid=None,
  2829. spindlespeed=None, spindledir='CW', dwell=False, dwelltime=None,
  2830. multidepth=False, depthpercut=None,
  2831. toolchange=False, toolchangez=None, toolchangexy="0.0, 0.0",
  2832. extracut=False, extracut_length=None, startz=None, endz=None,
  2833. pp_geometry_name=None, tool_no=1):
  2834. """
  2835. Second algorithm to generate from Geometry.
  2836. Algorithm description:
  2837. ----------------------
  2838. Uses RTree to find the nearest path to follow.
  2839. :param geometry:
  2840. :param append:
  2841. :param tooldia:
  2842. :param tolerance:
  2843. :param multidepth: If True, use multiple passes to reach
  2844. the desired depth.
  2845. :param depthpercut: Maximum depth in each pass.
  2846. :param extracut: Adds (or not) an extra cut at the end of each path
  2847. overlapping the first point in path to ensure complete copper removal
  2848. :param extracut_length: The extra cut length
  2849. :return: None
  2850. """
  2851. if not isinstance(geometry, Geometry):
  2852. self.app.inform.emit('[ERROR] %s: %s' % (_("Expected a Geometry, got"), type(geometry)))
  2853. return 'fail'
  2854. log.debug("Executing camlib.CNCJob.generate_from_geometry_2()")
  2855. # if solid_geometry is empty raise an exception
  2856. if not geometry.solid_geometry:
  2857. self.app.inform.emit(
  2858. '[ERROR_NOTCL] %s' % _("Trying to generate a CNC Job from a Geometry object without solid_geometry.")
  2859. )
  2860. temp_solid_geometry = list()
  2861. def bounds_rec(obj):
  2862. if type(obj) is list:
  2863. minx = np.Inf
  2864. miny = np.Inf
  2865. maxx = -np.Inf
  2866. maxy = -np.Inf
  2867. for k in obj:
  2868. if type(k) is dict:
  2869. for key in k:
  2870. minx_, miny_, maxx_, maxy_ = bounds_rec(k[key])
  2871. minx = min(minx, minx_)
  2872. miny = min(miny, miny_)
  2873. maxx = max(maxx, maxx_)
  2874. maxy = max(maxy, maxy_)
  2875. else:
  2876. minx_, miny_, maxx_, maxy_ = bounds_rec(k)
  2877. minx = min(minx, minx_)
  2878. miny = min(miny, miny_)
  2879. maxx = max(maxx, maxx_)
  2880. maxy = max(maxy, maxy_)
  2881. return minx, miny, maxx, maxy
  2882. else:
  2883. # it's a Shapely object, return it's bounds
  2884. return obj.bounds
  2885. if offset != 0.0:
  2886. offset_for_use = offset
  2887. if offset < 0:
  2888. a, b, c, d = bounds_rec(geometry.solid_geometry)
  2889. # if the offset is less than half of the total length or less than half of the total width of the
  2890. # solid geometry it's obvious we can't do the offset
  2891. if -offset > ((c - a) / 2) or -offset > ((d - b) / 2):
  2892. self.app.inform.emit(
  2893. '[ERROR_NOTCL] %s' %
  2894. _("The Tool Offset value is too negative to use for the current_geometry.\n"
  2895. "Raise the value (in module) and try again.")
  2896. )
  2897. return 'fail'
  2898. # hack: make offset smaller by 0.0000000001 which is insignificant difference but allow the job
  2899. # to continue
  2900. elif -offset == ((c - a) / 2) or -offset == ((d - b) / 2):
  2901. offset_for_use = offset - 0.0000000001
  2902. for it in geometry.solid_geometry:
  2903. # if the geometry is a closed shape then create a Polygon out of it
  2904. if isinstance(it, LineString):
  2905. c = it.coords
  2906. if c[0] == c[-1]:
  2907. it = Polygon(it)
  2908. temp_solid_geometry.append(it.buffer(offset_for_use, join_style=2))
  2909. else:
  2910. temp_solid_geometry = geometry.solid_geometry
  2911. # ## Flatten the geometry. Only linear elements (no polygons) remain.
  2912. flat_geometry = self.flatten(temp_solid_geometry, pathonly=True)
  2913. log.debug("%d paths" % len(flat_geometry))
  2914. default_dia = 0.01
  2915. if isinstance(self.app.defaults["geometry_cnctooldia"], float):
  2916. default_dia = self.app.defaults["geometry_cnctooldia"]
  2917. else:
  2918. try:
  2919. tools_string = self.app.defaults["geometry_cnctooldia"].split(",")
  2920. tools_diameters = [eval(a) for a in tools_string if a != '']
  2921. default_dia = tools_diameters[0] if tools_diameters else 0.0
  2922. except Exception as e:
  2923. self.app.log.debug("camlib.CNCJob.generate_from_geometry_2() --> %s" % str(e))
  2924. try:
  2925. self.tooldia = float(tooldia) if tooldia else default_dia
  2926. except ValueError:
  2927. self.tooldia = [float(el) for el in tooldia.split(',') if el != ''] if tooldia is not None else default_dia
  2928. self.z_cut = float(z_cut) if z_cut is not None else self.app.defaults["geometry_cutz"]
  2929. self.z_move = float(z_move) if z_move is not None else self.app.defaults["geometry_travelz"]
  2930. self.feedrate = float(feedrate) if feedrate is not None else self.app.defaults["geometry_feedrate"]
  2931. self.z_feedrate = float(feedrate_z) if feedrate_z is not None else self.app.defaults["geometry_feedrate_z"]
  2932. self.feedrate_rapid = float(feedrate_rapid) if feedrate_rapid is not None else \
  2933. self.app.defaults["geometry_feedrate_rapid"]
  2934. self.spindlespeed = int(spindlespeed) if spindlespeed != 0 else None
  2935. self.spindledir = spindledir
  2936. self.dwell = dwell
  2937. self.dwelltime = float(dwelltime) if dwelltime is not None else self.app.defaults["geometry_dwelltime"]
  2938. self.startz = float(startz) if startz is not None else self.app.defaults["geometry_startz"]
  2939. self.z_end = float(endz) if endz is not None else self.app.defaults["geometry_endz"]
  2940. self.z_depthpercut = float(depthpercut) if depthpercut is not None else 0.0
  2941. self.multidepth = multidepth
  2942. self.z_toolchange = float(toolchangez) if toolchangez is not None else self.app.defaults["geometry_toolchangez"]
  2943. self.extracut_length = float(extracut_length) if extracut_length is not None else \
  2944. self.app.defaults["geometry_extracut_length"]
  2945. try:
  2946. if toolchangexy == '':
  2947. self.xy_toolchange = None
  2948. else:
  2949. self.xy_toolchange = [float(eval(a)) for a in toolchangexy.split(",")]
  2950. if len(self.xy_toolchange) < 2:
  2951. self.app.inform.emit(
  2952. '[ERROR] %s' %
  2953. _("The Toolchange X,Y field in Edit -> Preferences has to be in the format (x, y) \n"
  2954. "but now there is only one value, not two. ")
  2955. )
  2956. return 'fail'
  2957. except Exception as e:
  2958. log.debug("camlib.CNCJob.generate_from_geometry_2() --> %s" % str(e))
  2959. pass
  2960. self.pp_geometry_name = pp_geometry_name if pp_geometry_name else 'default'
  2961. self.f_plunge = self.app.defaults["geometry_f_plunge"]
  2962. if self.machinist_setting == 0:
  2963. if self.z_cut is None:
  2964. self.app.inform.emit(
  2965. '[ERROR_NOTCL] %s' % _("Cut_Z parameter is None or zero. Most likely a bad combinations of "
  2966. "other parameters.")
  2967. )
  2968. return 'fail'
  2969. if self.z_cut > 0:
  2970. self.app.inform.emit('[WARNING] %s' %
  2971. _("The Cut Z parameter has positive value. "
  2972. "It is the depth value to cut into material.\n"
  2973. "The Cut Z parameter needs to have a negative value, assuming it is a typo "
  2974. "therefore the app will convert the value to negative."
  2975. "Check the resulting CNC code (Gcode etc)."))
  2976. self.z_cut = -self.z_cut
  2977. elif self.z_cut == 0:
  2978. self.app.inform.emit(
  2979. '[WARNING] %s: %s' % (_("The Cut Z parameter is zero. There will be no cut, skipping file"),
  2980. geometry.options['name'])
  2981. )
  2982. return 'fail'
  2983. if self.z_move is None:
  2984. self.app.inform.emit('[ERROR_NOTCL] %s' % _("Travel Z parameter is None or zero."))
  2985. return 'fail'
  2986. if self.z_move < 0:
  2987. self.app.inform.emit('[WARNING] %s' %
  2988. _("The Travel Z parameter has negative value. "
  2989. "It is the height value to travel between cuts.\n"
  2990. "The Z Travel parameter needs to have a positive value, assuming it is a typo "
  2991. "therefore the app will convert the value to positive."
  2992. "Check the resulting CNC code (Gcode etc)."))
  2993. self.z_move = -self.z_move
  2994. elif self.z_move == 0:
  2995. self.app.inform.emit(
  2996. '[WARNING] %s: %s' % (_("The Z Travel parameter is zero. This is dangerous, skipping file"),
  2997. self.options['name'])
  2998. )
  2999. return 'fail'
  3000. # made sure that depth_per_cut is no more then the z_cut
  3001. try:
  3002. if abs(self.z_cut) < self.z_depthpercut:
  3003. self.z_depthpercut = abs(self.z_cut)
  3004. except TypeError:
  3005. self.z_depthpercut = abs(self.z_cut)
  3006. # ## Index first and last points in paths
  3007. # What points to index.
  3008. def get_pts(o):
  3009. return [o.coords[0], o.coords[-1]]
  3010. # Create the indexed storage.
  3011. storage = FlatCAMRTreeStorage()
  3012. storage.get_points = get_pts
  3013. # Store the geometry
  3014. log.debug("Indexing geometry before generating G-Code...")
  3015. self.app.inform.emit(_("Indexing geometry before generating G-Code..."))
  3016. for shape in flat_geometry:
  3017. if self.app.abort_flag:
  3018. # graceful abort requested by the user
  3019. raise FlatCAMApp.GracefulException
  3020. if shape is not None: # TODO: This shouldn't have happened.
  3021. storage.insert(shape)
  3022. if not append:
  3023. self.gcode = ""
  3024. # tell preprocessor the number of tool (for toolchange)
  3025. self.tool = tool_no
  3026. # this is the tool diameter, it is used as such to accommodate the preprocessor who need the tool diameter
  3027. # given under the name 'toolC'
  3028. self.postdata['toolC'] = self.tooldia
  3029. # Initial G-Code
  3030. self.pp_geometry = self.app.preprocessors[self.pp_geometry_name]
  3031. p = self.pp_geometry
  3032. self.oldx = 0.0
  3033. self.oldy = 0.0
  3034. self.gcode = self.doformat(p.start_code)
  3035. self.gcode += self.doformat(p.feedrate_code) # sets the feed rate
  3036. if toolchange is False:
  3037. self.gcode += self.doformat(p.lift_code, x=self.oldx , y=self.oldy ) # Move (up) to travel height
  3038. self.gcode += self.doformat(p.startz_code, x=self.oldx , y=self.oldy )
  3039. if toolchange:
  3040. # if "line_xyz" in self.pp_geometry_name:
  3041. # self.gcode += self.doformat(p.toolchange_code, x=self.xy_toolchange[0], y=self.xy_toolchange[1])
  3042. # else:
  3043. # self.gcode += self.doformat(p.toolchange_code)
  3044. self.gcode += self.doformat(p.toolchange_code)
  3045. if 'laser' not in self.pp_geometry_name:
  3046. self.gcode += self.doformat(p.spindle_code) # Spindle start
  3047. else:
  3048. # for laser this will disable the laser
  3049. self.gcode += self.doformat(p.lift_code, x=self.oldx, y=self.oldy) # Move (up) to travel height
  3050. if self.dwell is True:
  3051. self.gcode += self.doformat(p.dwell_code) # Dwell time
  3052. else:
  3053. if 'laser' not in self.pp_geometry_name:
  3054. self.gcode += self.doformat(p.spindle_code) # Spindle start
  3055. if self.dwell is True:
  3056. self.gcode += self.doformat(p.dwell_code) # Dwell time
  3057. total_travel = 0.0
  3058. total_cut = 0.0
  3059. # Iterate over geometry paths getting the nearest each time.
  3060. log.debug("Starting G-Code...")
  3061. self.app.inform.emit('%s...' % _("Starting G-Code"))
  3062. # variables to display the percentage of work done
  3063. geo_len = len(flat_geometry)
  3064. old_disp_number = 0
  3065. log.warning("Number of paths for which to generate GCode: %s" % str(geo_len))
  3066. current_tooldia = float('%.*f' % (self.decimals, float(self.tooldia)))
  3067. self.app.inform.emit(
  3068. '%s: %s%s.' % (_("Starting G-Code for tool with diameter"), str(current_tooldia), str(self.units))
  3069. )
  3070. path_count = 0
  3071. current_pt = (0, 0)
  3072. pt, geo = storage.nearest(current_pt)
  3073. try:
  3074. while True:
  3075. if self.app.abort_flag:
  3076. # graceful abort requested by the user
  3077. raise FlatCAMApp.GracefulException
  3078. path_count += 1
  3079. # Remove before modifying, otherwise deletion will fail.
  3080. storage.remove(geo)
  3081. # If last point in geometry is the nearest but prefer the first one if last point == first point
  3082. # then reverse coordinates.
  3083. if pt != geo.coords[0] and pt == geo.coords[-1]:
  3084. geo.coords = list(geo.coords)[::-1]
  3085. # ---------- Single depth/pass --------
  3086. if not multidepth:
  3087. # calculate the cut distance
  3088. total_cut += geo.length
  3089. self.gcode += self.create_gcode_single_pass(geo, extracut, self.extracut_length, tolerance,
  3090. old_point=current_pt)
  3091. # --------- Multi-pass ---------
  3092. else:
  3093. # calculate the cut distance
  3094. # due of the number of cuts (multi depth) it has to multiplied by the number of cuts
  3095. nr_cuts = 0
  3096. depth = abs(self.z_cut)
  3097. while depth > 0:
  3098. nr_cuts += 1
  3099. depth -= float(self.z_depthpercut)
  3100. total_cut += (geo.length * nr_cuts)
  3101. self.gcode += self.create_gcode_multi_pass(geo, extracut, self.extracut_length, tolerance,
  3102. postproc=p, old_point=current_pt)
  3103. # calculate the travel distance
  3104. total_travel += abs(distance(pt1=current_pt, pt2=pt))
  3105. current_pt = geo.coords[-1]
  3106. pt, geo = storage.nearest(current_pt) # Next
  3107. disp_number = int(np.interp(path_count, [0, geo_len], [0, 100]))
  3108. if old_disp_number < disp_number <= 100:
  3109. self.app.proc_container.update_view_text(' %d%%' % disp_number)
  3110. old_disp_number = disp_number
  3111. except StopIteration: # Nothing found in storage.
  3112. pass
  3113. log.debug("Finishing G-Code... %s paths traced." % path_count)
  3114. # add move to end position
  3115. total_travel += abs(distance_euclidian(current_pt[0], current_pt[1], 0, 0))
  3116. self.travel_distance += total_travel + total_cut
  3117. self.routing_time += total_cut / self.feedrate
  3118. # Finish
  3119. self.gcode += self.doformat(p.spindle_stop_code)
  3120. self.gcode += self.doformat(p.lift_code, x=current_pt[0], y=current_pt[1])
  3121. self.gcode += self.doformat(p.end_code, x=0, y=0)
  3122. self.app.inform.emit(
  3123. '%s... %s %s' % (_("Finished G-Code generation"), str(path_count), _(" paths traced."))
  3124. )
  3125. return self.gcode
  3126. def generate_gcode_from_solderpaste_geo(self, **kwargs):
  3127. """
  3128. Algorithm to generate from multitool Geometry.
  3129. Algorithm description:
  3130. ----------------------
  3131. Uses RTree to find the nearest path to follow.
  3132. :return: Gcode string
  3133. """
  3134. log.debug("Generate_from_solderpaste_geometry()")
  3135. # ## Index first and last points in paths
  3136. # What points to index.
  3137. def get_pts(o):
  3138. return [o.coords[0], o.coords[-1]]
  3139. self.gcode = ""
  3140. if not kwargs:
  3141. log.debug("camlib.generate_from_solderpaste_geo() --> No tool in the solderpaste geometry.")
  3142. self.app.inform.emit('[ERROR_NOTCL] %s' %
  3143. _("There is no tool data in the SolderPaste geometry."))
  3144. # this is the tool diameter, it is used as such to accommodate the preprocessor who need the tool diameter
  3145. # given under the name 'toolC'
  3146. self.postdata['z_start'] = kwargs['data']['tools_solderpaste_z_start']
  3147. self.postdata['z_dispense'] = kwargs['data']['tools_solderpaste_z_dispense']
  3148. self.postdata['z_stop'] = kwargs['data']['tools_solderpaste_z_stop']
  3149. self.postdata['z_travel'] = kwargs['data']['tools_solderpaste_z_travel']
  3150. self.postdata['z_toolchange'] = kwargs['data']['tools_solderpaste_z_toolchange']
  3151. self.postdata['xy_toolchange'] = kwargs['data']['tools_solderpaste_xy_toolchange']
  3152. self.postdata['frxy'] = kwargs['data']['tools_solderpaste_frxy']
  3153. self.postdata['frz'] = kwargs['data']['tools_solderpaste_frz']
  3154. self.postdata['frz_dispense'] = kwargs['data']['tools_solderpaste_frz_dispense']
  3155. self.postdata['speedfwd'] = kwargs['data']['tools_solderpaste_speedfwd']
  3156. self.postdata['dwellfwd'] = kwargs['data']['tools_solderpaste_dwellfwd']
  3157. self.postdata['speedrev'] = kwargs['data']['tools_solderpaste_speedrev']
  3158. self.postdata['dwellrev'] = kwargs['data']['tools_solderpaste_dwellrev']
  3159. self.postdata['pp_solderpaste_name'] = kwargs['data']['tools_solderpaste_pp']
  3160. self.postdata['toolC'] = kwargs['tooldia']
  3161. self.pp_solderpaste_name = kwargs['data']['tools_solderpaste_pp'] if kwargs['data']['tools_solderpaste_pp'] \
  3162. else self.app.defaults['tools_solderpaste_pp']
  3163. p = self.app.preprocessors[self.pp_solderpaste_name]
  3164. # ## Flatten the geometry. Only linear elements (no polygons) remain.
  3165. flat_geometry = self.flatten(kwargs['solid_geometry'], pathonly=True)
  3166. log.debug("%d paths" % len(flat_geometry))
  3167. # Create the indexed storage.
  3168. storage = FlatCAMRTreeStorage()
  3169. storage.get_points = get_pts
  3170. # Store the geometry
  3171. log.debug("Indexing geometry before generating G-Code...")
  3172. for shape in flat_geometry:
  3173. if shape is not None:
  3174. storage.insert(shape)
  3175. # Initial G-Code
  3176. self.gcode = self.doformat(p.start_code)
  3177. self.gcode += self.doformat(p.spindle_off_code)
  3178. self.gcode += self.doformat(p.toolchange_code)
  3179. # ## Iterate over geometry paths getting the nearest each time.
  3180. log.debug("Starting SolderPaste G-Code...")
  3181. path_count = 0
  3182. current_pt = (0, 0)
  3183. # variables to display the percentage of work done
  3184. geo_len = len(flat_geometry)
  3185. disp_number = 0
  3186. old_disp_number = 0
  3187. pt, geo = storage.nearest(current_pt)
  3188. try:
  3189. while True:
  3190. if self.app.abort_flag:
  3191. # graceful abort requested by the user
  3192. raise FlatCAMApp.GracefulException
  3193. path_count += 1
  3194. # Remove before modifying, otherwise deletion will fail.
  3195. storage.remove(geo)
  3196. # If last point in geometry is the nearest but prefer the first one if last point == first point
  3197. # then reverse coordinates.
  3198. if pt != geo.coords[0] and pt == geo.coords[-1]:
  3199. geo.coords = list(geo.coords)[::-1]
  3200. self.gcode += self.create_soldepaste_gcode(geo, p=p, old_point=current_pt)
  3201. current_pt = geo.coords[-1]
  3202. pt, geo = storage.nearest(current_pt) # Next
  3203. disp_number = int(np.interp(path_count, [0, geo_len], [0, 100]))
  3204. if old_disp_number < disp_number <= 100:
  3205. self.app.proc_container.update_view_text(' %d%%' % disp_number)
  3206. old_disp_number = disp_number
  3207. except StopIteration: # Nothing found in storage.
  3208. pass
  3209. log.debug("Finishing SolderPste G-Code... %s paths traced." % path_count)
  3210. self.app.inform.emit(
  3211. '%s... %s %s' % (_("Finished SolderPste G-Code generation"), str(path_count), _("paths traced."))
  3212. )
  3213. # Finish
  3214. self.gcode += self.doformat(p.lift_code)
  3215. self.gcode += self.doformat(p.end_code)
  3216. return self.gcode
  3217. def create_soldepaste_gcode(self, geometry, p, old_point=(0, 0)):
  3218. gcode = ''
  3219. path = geometry.coords
  3220. self.coordinates_type = self.app.defaults["cncjob_coords_type"]
  3221. if self.coordinates_type == "G90":
  3222. # For Absolute coordinates type G90
  3223. first_x = path[0][0]
  3224. first_y = path[0][1]
  3225. else:
  3226. # For Incremental coordinates type G91
  3227. first_x = path[0][0] - old_point[0]
  3228. first_y = path[0][1] - old_point[1]
  3229. if type(geometry) == LineString or type(geometry) == LinearRing:
  3230. # Move fast to 1st point
  3231. gcode += self.doformat(p.rapid_code, x=first_x, y=first_y) # Move to first point
  3232. # Move down to cutting depth
  3233. gcode += self.doformat(p.z_feedrate_code)
  3234. gcode += self.doformat(p.down_z_start_code)
  3235. gcode += self.doformat(p.spindle_fwd_code) # Start dispensing
  3236. gcode += self.doformat(p.dwell_fwd_code)
  3237. gcode += self.doformat(p.feedrate_z_dispense_code)
  3238. gcode += self.doformat(p.lift_z_dispense_code)
  3239. gcode += self.doformat(p.feedrate_xy_code)
  3240. # Cutting...
  3241. prev_x = first_x
  3242. prev_y = first_y
  3243. for pt in path[1:]:
  3244. if self.coordinates_type == "G90":
  3245. # For Absolute coordinates type G90
  3246. next_x = pt[0]
  3247. next_y = pt[1]
  3248. else:
  3249. # For Incremental coordinates type G91
  3250. next_x = pt[0] - prev_x
  3251. next_y = pt[1] - prev_y
  3252. gcode += self.doformat(p.linear_code, x=next_x, y=next_y) # Linear motion to point
  3253. prev_x = next_x
  3254. prev_y = next_y
  3255. # Up to travelling height.
  3256. gcode += self.doformat(p.spindle_off_code) # Stop dispensing
  3257. gcode += self.doformat(p.spindle_rev_code)
  3258. gcode += self.doformat(p.down_z_stop_code)
  3259. gcode += self.doformat(p.spindle_off_code)
  3260. gcode += self.doformat(p.dwell_rev_code)
  3261. gcode += self.doformat(p.z_feedrate_code)
  3262. gcode += self.doformat(p.lift_code)
  3263. elif type(geometry) == Point:
  3264. gcode += self.doformat(p.linear_code, x=first_x, y=first_y) # Move to first point
  3265. gcode += self.doformat(p.feedrate_z_dispense_code)
  3266. gcode += self.doformat(p.down_z_start_code)
  3267. gcode += self.doformat(p.spindle_fwd_code) # Start dispensing
  3268. gcode += self.doformat(p.dwell_fwd_code)
  3269. gcode += self.doformat(p.lift_z_dispense_code)
  3270. gcode += self.doformat(p.spindle_off_code) # Stop dispensing
  3271. gcode += self.doformat(p.spindle_rev_code)
  3272. gcode += self.doformat(p.spindle_off_code)
  3273. gcode += self.doformat(p.down_z_stop_code)
  3274. gcode += self.doformat(p.dwell_rev_code)
  3275. gcode += self.doformat(p.z_feedrate_code)
  3276. gcode += self.doformat(p.lift_code)
  3277. return gcode
  3278. def create_gcode_single_pass(self, geometry, extracut, extracut_length, tolerance, old_point=(0, 0)):
  3279. # G-code. Note: self.linear2gcode() and self.point2gcode() will lower and raise the tool every time.
  3280. gcode_single_pass = ''
  3281. if type(geometry) == LineString or type(geometry) == LinearRing:
  3282. if extracut is False:
  3283. gcode_single_pass = self.linear2gcode(geometry, tolerance=tolerance, old_point=old_point)
  3284. else:
  3285. if geometry.is_ring:
  3286. gcode_single_pass = self.linear2gcode_extra(geometry, extracut_length, tolerance=tolerance,
  3287. old_point=old_point)
  3288. else:
  3289. gcode_single_pass = self.linear2gcode(geometry, tolerance=tolerance, old_point=old_point)
  3290. elif type(geometry) == Point:
  3291. gcode_single_pass = self.point2gcode(geometry)
  3292. else:
  3293. log.warning("G-code generation not implemented for %s" % (str(type(geometry))))
  3294. return
  3295. return gcode_single_pass
  3296. def create_gcode_multi_pass(self, geometry, extracut, extracut_length, tolerance, postproc, old_point=(0, 0)):
  3297. gcode_multi_pass = ''
  3298. if isinstance(self.z_cut, Decimal):
  3299. z_cut = self.z_cut
  3300. else:
  3301. z_cut = Decimal(self.z_cut).quantize(Decimal('0.000000001'))
  3302. if self.z_depthpercut is None:
  3303. self.z_depthpercut = z_cut
  3304. elif not isinstance(self.z_depthpercut, Decimal):
  3305. self.z_depthpercut = Decimal(self.z_depthpercut).quantize(Decimal('0.000000001'))
  3306. depth = 0
  3307. reverse = False
  3308. while depth > z_cut:
  3309. # Increase depth. Limit to z_cut.
  3310. depth -= self.z_depthpercut
  3311. if depth < z_cut:
  3312. depth = z_cut
  3313. # Cut at specific depth and do not lift the tool.
  3314. # Note: linear2gcode() will use G00 to move to the first point in the path, but it should be already
  3315. # at the first point if the tool is down (in the material). So, an extra G00 should show up but
  3316. # is inconsequential.
  3317. if type(geometry) == LineString or type(geometry) == LinearRing:
  3318. if extracut is False:
  3319. gcode_multi_pass += self.linear2gcode(geometry, tolerance=tolerance, z_cut=depth, up=False,
  3320. old_point=old_point)
  3321. else:
  3322. if geometry.is_ring:
  3323. gcode_multi_pass += self.linear2gcode_extra(geometry, extracut_length, tolerance=tolerance,
  3324. z_cut=depth, up=False, old_point=old_point)
  3325. else:
  3326. gcode_multi_pass += self.linear2gcode(geometry, tolerance=tolerance, z_cut=depth, up=False,
  3327. old_point=old_point)
  3328. # Ignore multi-pass for points.
  3329. elif type(geometry) == Point:
  3330. gcode_multi_pass += self.point2gcode(geometry, old_point=old_point)
  3331. break # Ignoring ...
  3332. else:
  3333. log.warning("G-code generation not implemented for %s" % (str(type(geometry))))
  3334. # Reverse coordinates if not a loop so we can continue cutting without returning to the beginning.
  3335. if type(geometry) == LineString:
  3336. geometry.coords = list(geometry.coords)[::-1]
  3337. reverse = True
  3338. # If geometry is reversed, revert.
  3339. if reverse:
  3340. if type(geometry) == LineString:
  3341. geometry.coords = list(geometry.coords)[::-1]
  3342. # Lift the tool
  3343. gcode_multi_pass += self.doformat(postproc.lift_code, x=old_point[0], y=old_point[1])
  3344. return gcode_multi_pass
  3345. def codes_split(self, gline):
  3346. """
  3347. Parses a line of G-Code such as "G01 X1234 Y987" into
  3348. a dictionary: {'G': 1.0, 'X': 1234.0, 'Y': 987.0}
  3349. :param gline: G-Code line string
  3350. :return: Dictionary with parsed line.
  3351. """
  3352. command = {}
  3353. if 'Roland' in self.pp_excellon_name or 'Roland' in self.pp_geometry_name:
  3354. match_z = re.search(r"^Z(\s*-?\d+\.\d+?),(\s*\s*-?\d+\.\d+?),(\s*\s*-?\d+\.\d+?)*;$", gline)
  3355. if match_z:
  3356. command['G'] = 0
  3357. command['X'] = float(match_z.group(1).replace(" ", "")) * 0.025
  3358. command['Y'] = float(match_z.group(2).replace(" ", "")) * 0.025
  3359. command['Z'] = float(match_z.group(3).replace(" ", "")) * 0.025
  3360. elif 'hpgl' in self.pp_excellon_name or 'hpgl' in self.pp_geometry_name:
  3361. match_pa = re.search(r"^PA(\s*-?\d+\.\d+?),(\s*\s*-?\d+\.\d+?)*;$", gline)
  3362. if match_pa:
  3363. command['G'] = 0
  3364. command['X'] = float(match_pa.group(1).replace(" ", "")) / 40
  3365. command['Y'] = float(match_pa.group(2).replace(" ", "")) / 40
  3366. match_pen = re.search(r"^(P[U|D])", gline)
  3367. if match_pen:
  3368. if match_pen.group(1) == 'PU':
  3369. # the value does not matter, only that it is positive so the gcode_parse() know it is > 0,
  3370. # therefore the move is of kind T (travel)
  3371. command['Z'] = 1
  3372. else:
  3373. command['Z'] = 0
  3374. elif 'laser' in self.pp_excellon_name.lower() or 'laser' in self.pp_geometry_name.lower() or \
  3375. (self.pp_solderpaste_name is not None and 'paste' in self.pp_solderpaste_name.lower()):
  3376. match_lsr = re.search(r"X([\+-]?\d+.[\+-]?\d+)\s*Y([\+-]?\d+.[\+-]?\d+)", gline)
  3377. if match_lsr:
  3378. command['X'] = float(match_lsr.group(1).replace(" ", ""))
  3379. command['Y'] = float(match_lsr.group(2).replace(" ", ""))
  3380. match_lsr_pos = re.search(r"^(M0?[3-5])", gline)
  3381. if match_lsr_pos:
  3382. if 'M05' in match_lsr_pos.group(1) or 'M5' in match_lsr_pos.group(1):
  3383. # the value does not matter, only that it is positive so the gcode_parse() know it is > 0,
  3384. # therefore the move is of kind T (travel)
  3385. command['Z'] = 1
  3386. else:
  3387. command['Z'] = 0
  3388. match_lsr_pos_2 = re.search(r"^(M10[6|7])", gline)
  3389. if match_lsr_pos_2:
  3390. if 'M107' in match_lsr_pos_2.group(1):
  3391. command['Z'] = 1
  3392. else:
  3393. command['Z'] = 0
  3394. elif self.pp_solderpaste_name is not None:
  3395. if 'Paste' in self.pp_solderpaste_name:
  3396. match_paste = re.search(r"X([\+-]?\d+.[\+-]?\d+)\s*Y([\+-]?\d+.[\+-]?\d+)", gline)
  3397. if match_paste:
  3398. command['X'] = float(match_paste.group(1).replace(" ", ""))
  3399. command['Y'] = float(match_paste.group(2).replace(" ", ""))
  3400. else:
  3401. match = re.search(r'^\s*([A-Z])\s*([\+\-\.\d\s]+)', gline)
  3402. while match:
  3403. command[match.group(1)] = float(match.group(2).replace(" ", ""))
  3404. gline = gline[match.end():]
  3405. match = re.search(r'^\s*([A-Z])\s*([\+\-\.\d\s]+)', gline)
  3406. return command
  3407. def gcode_parse(self, force_parsing=None):
  3408. """
  3409. G-Code parser (from self.gcode). Generates dictionary with
  3410. single-segment LineString's and "kind" indicating cut or travel,
  3411. fast or feedrate speed.
  3412. """
  3413. kind = ["C", "F"] # T=travel, C=cut, F=fast, S=slow
  3414. # Results go here
  3415. geometry = []
  3416. # Last known instruction
  3417. current = {'X': 0.0, 'Y': 0.0, 'Z': 0.0, 'G': 0}
  3418. # Current path: temporary storage until tool is
  3419. # lifted or lowered.
  3420. if self.toolchange_xy_type == "excellon":
  3421. if self.app.defaults["excellon_toolchangexy"] == '':
  3422. pos_xy = (0, 0)
  3423. else:
  3424. pos_xy = [float(eval(a)) for a in self.app.defaults["excellon_toolchangexy"].split(",")]
  3425. else:
  3426. if self.app.defaults["geometry_toolchangexy"] == '':
  3427. pos_xy = (0, 0)
  3428. else:
  3429. pos_xy = [float(eval(a)) for a in self.app.defaults["geometry_toolchangexy"].split(",")]
  3430. path = [pos_xy]
  3431. # path = [(0, 0)]
  3432. gcode_lines_list = self.gcode.splitlines()
  3433. self.app.inform.emit('%s: %d' % (_("Parsing GCode file. Number of lines"), len(gcode_lines_list)))
  3434. # Process every instruction
  3435. for line in gcode_lines_list:
  3436. if force_parsing is False or force_parsing is None:
  3437. if '%MO' in line or '%' in line or 'MOIN' in line or 'MOMM' in line:
  3438. return "fail"
  3439. gobj = self.codes_split(line)
  3440. # ## Units
  3441. if 'G' in gobj and (gobj['G'] == 20.0 or gobj['G'] == 21.0):
  3442. self.units = {20.0: "IN", 21.0: "MM"}[gobj['G']]
  3443. continue
  3444. # TODO take into consideration the tools and update the travel line thickness
  3445. if 'T' in gobj:
  3446. pass
  3447. # ## Changing height
  3448. if 'Z' in gobj:
  3449. if 'Roland' in self.pp_excellon_name or 'Roland' in self.pp_geometry_name:
  3450. pass
  3451. elif 'hpgl' in self.pp_excellon_name or 'hpgl' in self.pp_geometry_name:
  3452. pass
  3453. elif 'laser' in self.pp_excellon_name or 'laser' in self.pp_geometry_name:
  3454. pass
  3455. elif ('X' in gobj or 'Y' in gobj) and gobj['Z'] != current['Z']:
  3456. if self.pp_geometry_name == 'line_xyz' or self.pp_excellon_name == 'line_xyz':
  3457. pass
  3458. else:
  3459. log.warning("Non-orthogonal motion: From %s" % str(current))
  3460. log.warning(" To: %s" % str(gobj))
  3461. current['Z'] = gobj['Z']
  3462. # Store the path into geometry and reset path
  3463. if len(path) > 1:
  3464. geometry.append({"geom": LineString(path),
  3465. "kind": kind})
  3466. path = [path[-1]] # Start with the last point of last path.
  3467. # create the geometry for the holes created when drilling Excellon drills
  3468. if self.origin_kind == 'excellon':
  3469. if current['Z'] < 0:
  3470. current_drill_point_coords = (
  3471. float('%.*f' % (self.decimals, current['X'])),
  3472. float('%.*f' % (self.decimals, current['Y']))
  3473. )
  3474. # find the drill diameter knowing the drill coordinates
  3475. for pt_dict in self.exc_drills:
  3476. point_in_dict_coords = (
  3477. float('%.*f' % (self.decimals, pt_dict['point'].x)),
  3478. float('%.*f' % (self.decimals, pt_dict['point'].y))
  3479. )
  3480. if point_in_dict_coords == current_drill_point_coords:
  3481. tool = pt_dict['tool']
  3482. dia = self.exc_tools[tool]['C']
  3483. kind = ['C', 'F']
  3484. geometry.append(
  3485. {
  3486. "geom": Point(current_drill_point_coords).buffer(dia/2.0).exterior,
  3487. "kind": kind
  3488. }
  3489. )
  3490. break
  3491. if 'G' in gobj:
  3492. current['G'] = int(gobj['G'])
  3493. if 'X' in gobj or 'Y' in gobj:
  3494. if 'X' in gobj:
  3495. x = gobj['X']
  3496. # current['X'] = x
  3497. else:
  3498. x = current['X']
  3499. if 'Y' in gobj:
  3500. y = gobj['Y']
  3501. else:
  3502. y = current['Y']
  3503. kind = ["C", "F"] # T=travel, C=cut, F=fast, S=slow
  3504. if current['Z'] > 0:
  3505. kind[0] = 'T'
  3506. if current['G'] > 0:
  3507. kind[1] = 'S'
  3508. if current['G'] in [0, 1]: # line
  3509. path.append((x, y))
  3510. arcdir = [None, None, "cw", "ccw"]
  3511. if current['G'] in [2, 3]: # arc
  3512. center = [gobj['I'] + current['X'], gobj['J'] + current['Y']]
  3513. radius = np.sqrt(gobj['I']**2 + gobj['J']**2)
  3514. start = np.arctan2(-gobj['J'], -gobj['I'])
  3515. stop = np.arctan2(-center[1] + y, -center[0] + x)
  3516. path += arc(center, radius, start, stop, arcdir[current['G']], int(self.steps_per_circle))
  3517. current['X'] = x
  3518. current['Y'] = y
  3519. # Update current instruction
  3520. for code in gobj:
  3521. current[code] = gobj[code]
  3522. self.app.inform.emit('%s...' % _("Creating Geometry from the parsed GCode file. "))
  3523. # There might not be a change in height at the
  3524. # end, therefore, see here too if there is
  3525. # a final path.
  3526. if len(path) > 1:
  3527. geometry.append(
  3528. {
  3529. "geom": LineString(path),
  3530. "kind": kind
  3531. }
  3532. )
  3533. self.gcode_parsed = geometry
  3534. return geometry
  3535. # def plot(self, tooldia=None, dpi=75, margin=0.1,
  3536. # color={"T": ["#F0E24D", "#B5AB3A"], "C": ["#5E6CFF", "#4650BD"]},
  3537. # alpha={"T": 0.3, "C": 1.0}):
  3538. # """
  3539. # Creates a Matplotlib figure with a plot of the
  3540. # G-code job.
  3541. # """
  3542. # if tooldia is None:
  3543. # tooldia = self.tooldia
  3544. #
  3545. # fig = Figure(dpi=dpi)
  3546. # ax = fig.add_subplot(111)
  3547. # ax.set_aspect(1)
  3548. # xmin, ymin, xmax, ymax = self.input_geometry_bounds
  3549. # ax.set_xlim(xmin-margin, xmax+margin)
  3550. # ax.set_ylim(ymin-margin, ymax+margin)
  3551. #
  3552. # if tooldia == 0:
  3553. # for geo in self.gcode_parsed:
  3554. # linespec = '--'
  3555. # linecolor = color[geo['kind'][0]][1]
  3556. # if geo['kind'][0] == 'C':
  3557. # linespec = 'k-'
  3558. # x, y = geo['geom'].coords.xy
  3559. # ax.plot(x, y, linespec, color=linecolor)
  3560. # else:
  3561. # for geo in self.gcode_parsed:
  3562. # poly = geo['geom'].buffer(tooldia/2.0)
  3563. # patch = PolygonPatch(poly, facecolor=color[geo['kind'][0]][0],
  3564. # edgecolor=color[geo['kind'][0]][1],
  3565. # alpha=alpha[geo['kind'][0]], zorder=2)
  3566. # ax.add_patch(patch)
  3567. #
  3568. # return fig
  3569. def plot2(self, tooldia=None, dpi=75, margin=0.1, gcode_parsed=None,
  3570. color=None, alpha={"T": 0.3, "C": 1.0}, tool_tolerance=0.0005, obj=None, visible=False, kind='all'):
  3571. """
  3572. Plots the G-code job onto the given axes.
  3573. :param tooldia: Tool diameter.
  3574. :param dpi: Not used!
  3575. :param margin: Not used!
  3576. :param color: Color specification.
  3577. :param alpha: Transparency specification.
  3578. :param tool_tolerance: Tolerance when drawing the toolshape.
  3579. :param obj
  3580. :param visible
  3581. :param kind
  3582. :return: None
  3583. """
  3584. # units = self.app.ui.general_defaults_form.general_app_group.units_radio.get_value().upper()
  3585. if color is None:
  3586. color = {
  3587. "T": [self.app.defaults["cncjob_travel_fill"], self.app.defaults["cncjob_travel_line"]],
  3588. "C": [self.app.defaults["cncjob_plot_fill"], self.app.defaults["cncjob_plot_line"]]
  3589. }
  3590. gcode_parsed = gcode_parsed if gcode_parsed else self.gcode_parsed
  3591. path_num = 0
  3592. if tooldia is None:
  3593. tooldia = self.tooldia
  3594. # this should be unlikely unless when upstream the tooldia is a tuple made by one dia and a comma like (2.4,)
  3595. if isinstance(tooldia, list):
  3596. tooldia = tooldia[0] if tooldia[0] is not None else self.tooldia
  3597. if tooldia == 0:
  3598. for geo in gcode_parsed:
  3599. if kind == 'all':
  3600. obj.add_shape(shape=geo['geom'], color=color[geo['kind'][0]][1], visible=visible)
  3601. elif kind == 'travel':
  3602. if geo['kind'][0] == 'T':
  3603. obj.add_shape(shape=geo['geom'], color=color['T'][1], visible=visible)
  3604. elif kind == 'cut':
  3605. if geo['kind'][0] == 'C':
  3606. obj.add_shape(shape=geo['geom'], color=color['C'][1], visible=visible)
  3607. else:
  3608. text = []
  3609. pos = []
  3610. self.coordinates_type = self.app.defaults["cncjob_coords_type"]
  3611. if self.coordinates_type == "G90":
  3612. # For Absolute coordinates type G90
  3613. for geo in gcode_parsed:
  3614. if geo['kind'][0] == 'T':
  3615. current_position = geo['geom'].coords[0]
  3616. if current_position not in pos:
  3617. pos.append(current_position)
  3618. path_num += 1
  3619. text.append(str(path_num))
  3620. current_position = geo['geom'].coords[-1]
  3621. if current_position not in pos:
  3622. pos.append(current_position)
  3623. path_num += 1
  3624. text.append(str(path_num))
  3625. # plot the geometry of Excellon objects
  3626. if self.origin_kind == 'excellon':
  3627. try:
  3628. poly = Polygon(geo['geom'])
  3629. except ValueError:
  3630. # if the geos are travel lines it will enter into Exception
  3631. poly = geo['geom'].buffer(distance=(tooldia / 1.99999999), resolution=self.steps_per_circle)
  3632. poly = poly.simplify(tool_tolerance)
  3633. else:
  3634. # plot the geometry of any objects other than Excellon
  3635. poly = geo['geom'].buffer(distance=(tooldia / 1.99999999), resolution=self.steps_per_circle)
  3636. poly = poly.simplify(tool_tolerance)
  3637. if kind == 'all':
  3638. obj.add_shape(shape=poly, color=color[geo['kind'][0]][1], face_color=color[geo['kind'][0]][0],
  3639. visible=visible, layer=1 if geo['kind'][0] == 'C' else 2)
  3640. elif kind == 'travel':
  3641. if geo['kind'][0] == 'T':
  3642. obj.add_shape(shape=poly, color=color['T'][1], face_color=color['T'][0],
  3643. visible=visible, layer=2)
  3644. elif kind == 'cut':
  3645. if geo['kind'][0] == 'C':
  3646. obj.add_shape(shape=poly, color=color['C'][1], face_color=color['C'][0],
  3647. visible=visible, layer=1)
  3648. else:
  3649. # For Incremental coordinates type G91
  3650. self.app.inform.emit('[ERROR_NOTCL] %s' % _('G91 coordinates not implemented ...'))
  3651. for geo in gcode_parsed:
  3652. if geo['kind'][0] == 'T':
  3653. current_position = geo['geom'].coords[0]
  3654. if current_position not in pos:
  3655. pos.append(current_position)
  3656. path_num += 1
  3657. text.append(str(path_num))
  3658. current_position = geo['geom'].coords[-1]
  3659. if current_position not in pos:
  3660. pos.append(current_position)
  3661. path_num += 1
  3662. text.append(str(path_num))
  3663. # plot the geometry of Excellon objects
  3664. if self.origin_kind == 'excellon':
  3665. try:
  3666. poly = Polygon(geo['geom'])
  3667. except ValueError:
  3668. # if the geos are travel lines it will enter into Exception
  3669. poly = geo['geom'].buffer(distance=(tooldia / 1.99999999), resolution=self.steps_per_circle)
  3670. poly = poly.simplify(tool_tolerance)
  3671. else:
  3672. # plot the geometry of any objects other than Excellon
  3673. poly = geo['geom'].buffer(distance=(tooldia / 1.99999999), resolution=self.steps_per_circle)
  3674. poly = poly.simplify(tool_tolerance)
  3675. if kind == 'all':
  3676. obj.add_shape(shape=poly, color=color[geo['kind'][0]][1], face_color=color[geo['kind'][0]][0],
  3677. visible=visible, layer=1 if geo['kind'][0] == 'C' else 2)
  3678. elif kind == 'travel':
  3679. if geo['kind'][0] == 'T':
  3680. obj.add_shape(shape=poly, color=color['T'][1], face_color=color['T'][0],
  3681. visible=visible, layer=2)
  3682. elif kind == 'cut':
  3683. if geo['kind'][0] == 'C':
  3684. obj.add_shape(shape=poly, color=color['C'][1], face_color=color['C'][0],
  3685. visible=visible, layer=1)
  3686. # current_x = gcode_parsed[0]['geom'].coords[0][0]
  3687. # current_y = gcode_parsed[0]['geom'].coords[0][1]
  3688. # old_pos = (
  3689. # current_x,
  3690. # current_y
  3691. # )
  3692. #
  3693. # for geo in gcode_parsed:
  3694. # if geo['kind'][0] == 'T':
  3695. # current_position = (
  3696. # geo['geom'].coords[0][0] + old_pos[0],
  3697. # geo['geom'].coords[0][1] + old_pos[1]
  3698. # )
  3699. # if current_position not in pos:
  3700. # pos.append(current_position)
  3701. # path_num += 1
  3702. # text.append(str(path_num))
  3703. #
  3704. # delta = (
  3705. # geo['geom'].coords[-1][0] - geo['geom'].coords[0][0],
  3706. # geo['geom'].coords[-1][1] - geo['geom'].coords[0][1]
  3707. # )
  3708. # current_position = (
  3709. # current_position[0] + geo['geom'].coords[-1][0],
  3710. # current_position[1] + geo['geom'].coords[-1][1]
  3711. # )
  3712. # if current_position not in pos:
  3713. # pos.append(current_position)
  3714. # path_num += 1
  3715. # text.append(str(path_num))
  3716. #
  3717. # # plot the geometry of Excellon objects
  3718. # if self.origin_kind == 'excellon':
  3719. # if isinstance(geo['geom'], Point):
  3720. # # if geo is Point
  3721. # current_position = (
  3722. # current_position[0] + geo['geom'].x,
  3723. # current_position[1] + geo['geom'].y
  3724. # )
  3725. # poly = Polygon(Point(current_position))
  3726. # elif isinstance(geo['geom'], LineString):
  3727. # # if the geos are travel lines (LineStrings)
  3728. # new_line_pts = []
  3729. # old_line_pos = deepcopy(current_position)
  3730. # for p in list(geo['geom'].coords):
  3731. # current_position = (
  3732. # current_position[0] + p[0],
  3733. # current_position[1] + p[1]
  3734. # )
  3735. # new_line_pts.append(current_position)
  3736. # old_line_pos = p
  3737. # new_line = LineString(new_line_pts)
  3738. #
  3739. # poly = new_line.buffer(distance=(tooldia / 1.99999999), resolution=self.steps_per_circle)
  3740. # poly = poly.simplify(tool_tolerance)
  3741. # else:
  3742. # # plot the geometry of any objects other than Excellon
  3743. # new_line_pts = []
  3744. # old_line_pos = deepcopy(current_position)
  3745. # for p in list(geo['geom'].coords):
  3746. # current_position = (
  3747. # current_position[0] + p[0],
  3748. # current_position[1] + p[1]
  3749. # )
  3750. # new_line_pts.append(current_position)
  3751. # old_line_pos = p
  3752. # new_line = LineString(new_line_pts)
  3753. #
  3754. # poly = new_line.buffer(distance=(tooldia / 1.99999999), resolution=self.steps_per_circle)
  3755. # poly = poly.simplify(tool_tolerance)
  3756. #
  3757. # old_pos = deepcopy(current_position)
  3758. #
  3759. # if kind == 'all':
  3760. # obj.add_shape(shape=poly, color=color[geo['kind'][0]][1], face_color=color[geo['kind'][0]][0],
  3761. # visible=visible, layer=1 if geo['kind'][0] == 'C' else 2)
  3762. # elif kind == 'travel':
  3763. # if geo['kind'][0] == 'T':
  3764. # obj.add_shape(shape=poly, color=color['T'][1], face_color=color['T'][0],
  3765. # visible=visible, layer=2)
  3766. # elif kind == 'cut':
  3767. # if geo['kind'][0] == 'C':
  3768. # obj.add_shape(shape=poly, color=color['C'][1], face_color=color['C'][0],
  3769. # visible=visible, layer=1)
  3770. try:
  3771. obj.annotation.set(text=text, pos=pos, visible=obj.options['plot'],
  3772. font_size=self.app.defaults["cncjob_annotation_fontsize"],
  3773. color=self.app.defaults["cncjob_annotation_fontcolor"])
  3774. except Exception:
  3775. pass
  3776. def create_geometry(self):
  3777. self.app.inform.emit('%s: %s' % (_("Unifying Geometry from parsed Geometry segments"),
  3778. str(len(self.gcode_parsed))))
  3779. # TODO: This takes forever. Too much data?
  3780. # self.solid_geometry = cascaded_union([geo['geom'] for geo in self.gcode_parsed])
  3781. # This is much faster but not so nice to look at as you can see different segments of the geometry
  3782. self.solid_geometry = [geo['geom'] for geo in self.gcode_parsed]
  3783. return self.solid_geometry
  3784. # code snippet added by Lei Zheng in a rejected pull request on FlatCAM https://bitbucket.org/realthunder/
  3785. def segment(self, coords):
  3786. """
  3787. break long linear lines to make it more auto level friendly
  3788. """
  3789. if len(coords) < 2 or self.segx <= 0 and self.segy <= 0:
  3790. return list(coords)
  3791. path = [coords[0]]
  3792. # break the line in either x or y dimension only
  3793. def linebreak_single(line, dim, dmax):
  3794. if dmax <= 0:
  3795. return None
  3796. if line[1][dim] > line[0][dim]:
  3797. sign = 1.0
  3798. d = line[1][dim] - line[0][dim]
  3799. else:
  3800. sign = -1.0
  3801. d = line[0][dim] - line[1][dim]
  3802. if d > dmax:
  3803. # make sure we don't make any new lines too short
  3804. if d > dmax * 2:
  3805. dd = dmax
  3806. else:
  3807. dd = d / 2
  3808. other = dim ^ 1
  3809. return (line[0][dim] + dd * sign, line[0][other] + \
  3810. dd * (line[1][other] - line[0][other]) / d)
  3811. return None
  3812. # recursively breaks down a given line until it is within the
  3813. # required step size
  3814. def linebreak(line):
  3815. pt_new = linebreak_single(line, 0, self.segx)
  3816. if pt_new is None:
  3817. pt_new2 = linebreak_single(line, 1, self.segy)
  3818. else:
  3819. pt_new2 = linebreak_single((line[0], pt_new), 1, self.segy)
  3820. if pt_new2 is not None:
  3821. pt_new = pt_new2[::-1]
  3822. if pt_new is None:
  3823. path.append(line[1])
  3824. else:
  3825. path.append(pt_new)
  3826. linebreak((pt_new, line[1]))
  3827. for pt in coords[1:]:
  3828. linebreak((path[-1], pt))
  3829. return path
  3830. def linear2gcode(self, linear, tolerance=0, down=True, up=True,
  3831. z_cut=None, z_move=None, zdownrate=None,
  3832. feedrate=None, feedrate_z=None, feedrate_rapid=None, cont=False, old_point=(0, 0)):
  3833. """
  3834. Generates G-code to cut along the linear feature.
  3835. :param linear: The path to cut along.
  3836. :type: Shapely.LinearRing or Shapely.Linear String
  3837. :param tolerance: All points in the simplified object will be within the
  3838. tolerance distance of the original geometry.
  3839. :type tolerance: float
  3840. :param feedrate: speed for cut on X - Y plane
  3841. :param feedrate_z: speed for cut on Z plane
  3842. :param feedrate_rapid: speed to move between cuts; usually is G0 but some CNC require to specify it
  3843. :return: G-code to cut along the linear feature.
  3844. :rtype: str
  3845. """
  3846. if z_cut is None:
  3847. z_cut = self.z_cut
  3848. if z_move is None:
  3849. z_move = self.z_move
  3850. #
  3851. # if zdownrate is None:
  3852. # zdownrate = self.zdownrate
  3853. if feedrate is None:
  3854. feedrate = self.feedrate
  3855. if feedrate_z is None:
  3856. feedrate_z = self.z_feedrate
  3857. if feedrate_rapid is None:
  3858. feedrate_rapid = self.feedrate_rapid
  3859. # Simplify paths?
  3860. if tolerance > 0:
  3861. target_linear = linear.simplify(tolerance)
  3862. else:
  3863. target_linear = linear
  3864. gcode = ""
  3865. # path = list(target_linear.coords)
  3866. path = self.segment(target_linear.coords)
  3867. p = self.pp_geometry
  3868. self.coordinates_type = self.app.defaults["cncjob_coords_type"]
  3869. if self.coordinates_type == "G90":
  3870. # For Absolute coordinates type G90
  3871. first_x = path[0][0]
  3872. first_y = path[0][1]
  3873. else:
  3874. # For Incremental coordinates type G91
  3875. first_x = path[0][0] - old_point[0]
  3876. first_y = path[0][1] - old_point[1]
  3877. # Move fast to 1st point
  3878. if not cont:
  3879. gcode += self.doformat(p.rapid_code, x=first_x, y=first_y) # Move to first point
  3880. # Move down to cutting depth
  3881. if down:
  3882. # Different feedrate for vertical cut?
  3883. gcode += self.doformat(p.z_feedrate_code)
  3884. # gcode += self.doformat(p.feedrate_code)
  3885. gcode += self.doformat(p.down_code, x=first_x, y=first_y, z_cut=z_cut)
  3886. gcode += self.doformat(p.feedrate_code, feedrate=feedrate)
  3887. # Cutting...
  3888. prev_x = first_x
  3889. prev_y = first_y
  3890. for pt in path[1:]:
  3891. if self.app.abort_flag:
  3892. # graceful abort requested by the user
  3893. raise FlatCAMApp.GracefulException
  3894. if self.coordinates_type == "G90":
  3895. # For Absolute coordinates type G90
  3896. next_x = pt[0]
  3897. next_y = pt[1]
  3898. else:
  3899. # For Incremental coordinates type G91
  3900. # next_x = pt[0] - prev_x
  3901. # next_y = pt[1] - prev_y
  3902. self.app.inform.emit('[ERROR_NOTCL] %s' %
  3903. _('G91 coordinates not implemented ...'))
  3904. next_x = pt[0]
  3905. next_y = pt[1]
  3906. gcode += self.doformat(p.linear_code, x=next_x, y=next_y, z=z_cut) # Linear motion to point
  3907. prev_x = pt[0]
  3908. prev_y = pt[1]
  3909. # Up to travelling height.
  3910. if up:
  3911. gcode += self.doformat(p.lift_code, x=prev_x, y=prev_y, z_move=z_move) # Stop cutting
  3912. return gcode
  3913. def linear2gcode_extra(self, linear, extracut_length, tolerance=0, down=True, up=True,
  3914. z_cut=None, z_move=None, zdownrate=None,
  3915. feedrate=None, feedrate_z=None, feedrate_rapid=None, cont=False, old_point=(0, 0)):
  3916. """
  3917. Generates G-code to cut along the linear feature.
  3918. :param linear: The path to cut along.
  3919. :param extracut_length: how much to cut extra over the first point at the end of the path
  3920. :type: Shapely.LinearRing or Shapely.Linear String
  3921. :param tolerance: All points in the simplified object will be within the
  3922. tolerance distance of the original geometry.
  3923. :type tolerance: float
  3924. :param feedrate: speed for cut on X - Y plane
  3925. :param feedrate_z: speed for cut on Z plane
  3926. :param feedrate_rapid: speed to move between cuts; usually is G0 but some CNC require to specify it
  3927. :return: G-code to cut along the linear feature.
  3928. :rtype: str
  3929. """
  3930. if z_cut is None:
  3931. z_cut = self.z_cut
  3932. if z_move is None:
  3933. z_move = self.z_move
  3934. #
  3935. # if zdownrate is None:
  3936. # zdownrate = self.zdownrate
  3937. if feedrate is None:
  3938. feedrate = self.feedrate
  3939. if feedrate_z is None:
  3940. feedrate_z = self.z_feedrate
  3941. if feedrate_rapid is None:
  3942. feedrate_rapid = self.feedrate_rapid
  3943. # Simplify paths?
  3944. if tolerance > 0:
  3945. target_linear = linear.simplify(tolerance)
  3946. else:
  3947. target_linear = linear
  3948. gcode = ""
  3949. path = list(target_linear.coords)
  3950. p = self.pp_geometry
  3951. self.coordinates_type = self.app.defaults["cncjob_coords_type"]
  3952. if self.coordinates_type == "G90":
  3953. # For Absolute coordinates type G90
  3954. first_x = path[0][0]
  3955. first_y = path[0][1]
  3956. else:
  3957. # For Incremental coordinates type G91
  3958. first_x = path[0][0] - old_point[0]
  3959. first_y = path[0][1] - old_point[1]
  3960. # Move fast to 1st point
  3961. if not cont:
  3962. gcode += self.doformat(p.rapid_code, x=first_x, y=first_y) # Move to first point
  3963. # Move down to cutting depth
  3964. if down:
  3965. # Different feedrate for vertical cut?
  3966. if self.z_feedrate is not None:
  3967. gcode += self.doformat(p.z_feedrate_code)
  3968. # gcode += self.doformat(p.feedrate_code)
  3969. gcode += self.doformat(p.down_code, x=first_x, y=first_y, z_cut=z_cut)
  3970. gcode += self.doformat(p.feedrate_code, feedrate=feedrate)
  3971. else:
  3972. gcode += self.doformat(p.down_code, x=first_x, y=first_y, z_cut=z_cut) # Start cutting
  3973. # Cutting...
  3974. prev_x = first_x
  3975. prev_y = first_y
  3976. for pt in path[1:]:
  3977. if self.app.abort_flag:
  3978. # graceful abort requested by the user
  3979. raise FlatCAMApp.GracefulException
  3980. if self.coordinates_type == "G90":
  3981. # For Absolute coordinates type G90
  3982. next_x = pt[0]
  3983. next_y = pt[1]
  3984. else:
  3985. # For Incremental coordinates type G91
  3986. # For Incremental coordinates type G91
  3987. # next_x = pt[0] - prev_x
  3988. # next_y = pt[1] - prev_y
  3989. self.app.inform.emit('[ERROR_NOTCL] %s' % _('G91 coordinates not implemented ...'))
  3990. next_x = pt[0]
  3991. next_y = pt[1]
  3992. gcode += self.doformat(p.linear_code, x=next_x, y=next_y, z=z_cut) # Linear motion to point
  3993. prev_x = pt[0]
  3994. prev_y = pt[1]
  3995. # this line is added to create an extra cut over the first point in patch
  3996. # to make sure that we remove the copper leftovers
  3997. # Linear motion to the 1st point in the cut path
  3998. # if self.coordinates_type == "G90":
  3999. # # For Absolute coordinates type G90
  4000. # last_x = path[1][0]
  4001. # last_y = path[1][1]
  4002. # else:
  4003. # # For Incremental coordinates type G91
  4004. # last_x = path[1][0] - first_x
  4005. # last_y = path[1][1] - first_y
  4006. # gcode += self.doformat(p.linear_code, x=last_x, y=last_y)
  4007. # the first point for extracut is always mandatory if the extracut is enabled. But if the length of distance
  4008. # between point 0 and point 1 is more than the distance we set for the extra cut then make an interpolation
  4009. # along the path and find the point at the distance extracut_length
  4010. if extracut_length == 0.0:
  4011. gcode += self.doformat(p.linear_code, x=path[1][0], y=path[1][1])
  4012. last_pt = path[1]
  4013. else:
  4014. if abs(distance(path[1], path[0])) > extracut_length:
  4015. i_point = LineString([path[0], path[1]]).interpolate(extracut_length)
  4016. gcode += self.doformat(p.linear_code, x=i_point.x, y=i_point.y)
  4017. last_pt = (i_point.x, i_point.y)
  4018. else:
  4019. last_pt = path[0]
  4020. for pt in path[1:]:
  4021. extracut_distance = abs(distance(pt, last_pt))
  4022. if extracut_distance <= extracut_length:
  4023. gcode += self.doformat(p.linear_code, x=pt[0], y=pt[1])
  4024. last_pt = pt
  4025. else:
  4026. break
  4027. # Up to travelling height.
  4028. if up:
  4029. gcode += self.doformat(p.lift_code, x=last_pt[0], y=last_pt[1], z_move=z_move) # Stop cutting
  4030. return gcode
  4031. def point2gcode(self, point, old_point=(0, 0)):
  4032. gcode = ""
  4033. if self.app.abort_flag:
  4034. # graceful abort requested by the user
  4035. raise FlatCAMApp.GracefulException
  4036. path = list(point.coords)
  4037. p = self.pp_geometry
  4038. self.coordinates_type = self.app.defaults["cncjob_coords_type"]
  4039. if self.coordinates_type == "G90":
  4040. # For Absolute coordinates type G90
  4041. first_x = path[0][0]
  4042. first_y = path[0][1]
  4043. else:
  4044. # For Incremental coordinates type G91
  4045. # first_x = path[0][0] - old_point[0]
  4046. # first_y = path[0][1] - old_point[1]
  4047. self.app.inform.emit('[ERROR_NOTCL] %s' %
  4048. _('G91 coordinates not implemented ...'))
  4049. first_x = path[0][0]
  4050. first_y = path[0][1]
  4051. gcode += self.doformat(p.linear_code, x=first_x, y=first_y) # Move to first point
  4052. if self.z_feedrate is not None:
  4053. gcode += self.doformat(p.z_feedrate_code)
  4054. gcode += self.doformat(p.down_code, x=first_x, y=first_y, z_cut = self.z_cut)
  4055. gcode += self.doformat(p.feedrate_code)
  4056. else:
  4057. gcode += self.doformat(p.down_code, x=first_x, y=first_y, z_cut = self.z_cut) # Start cutting
  4058. gcode += self.doformat(p.lift_code, x=first_x, y=first_y) # Stop cutting
  4059. return gcode
  4060. def export_svg(self, scale_stroke_factor=0.00):
  4061. """
  4062. Exports the CNC Job as a SVG Element
  4063. :scale_factor: float
  4064. :return: SVG Element string
  4065. """
  4066. # scale_factor is a multiplication factor for the SVG stroke-width used within shapely's svg export
  4067. # If not specified then try and use the tool diameter
  4068. # This way what is on screen will match what is outputed for the svg
  4069. # This is quite a useful feature for svg's used with visicut
  4070. if scale_stroke_factor <= 0:
  4071. scale_stroke_factor = self.options['tooldia'] / 2
  4072. # If still 0 then default to 0.05
  4073. # This value appears to work for zooming, and getting the output svg line width
  4074. # to match that viewed on screen with FlatCam
  4075. if scale_stroke_factor == 0:
  4076. scale_stroke_factor = 0.01
  4077. # Separate the list of cuts and travels into 2 distinct lists
  4078. # This way we can add different formatting / colors to both
  4079. cuts = []
  4080. travels = []
  4081. for g in self.gcode_parsed:
  4082. if self.app.abort_flag:
  4083. # graceful abort requested by the user
  4084. raise FlatCAMApp.GracefulException
  4085. if g['kind'][0] == 'C': cuts.append(g)
  4086. if g['kind'][0] == 'T': travels.append(g)
  4087. # Used to determine the overall board size
  4088. self.solid_geometry = cascaded_union([geo['geom'] for geo in self.gcode_parsed])
  4089. # Convert the cuts and travels into single geometry objects we can render as svg xml
  4090. if travels:
  4091. travelsgeom = cascaded_union([geo['geom'] for geo in travels])
  4092. if self.app.abort_flag:
  4093. # graceful abort requested by the user
  4094. raise FlatCAMApp.GracefulException
  4095. if cuts:
  4096. cutsgeom = cascaded_union([geo['geom'] for geo in cuts])
  4097. # Render the SVG Xml
  4098. # The scale factor affects the size of the lines, and the stroke color adds different formatting for each set
  4099. # It's better to have the travels sitting underneath the cuts for visicut
  4100. svg_elem = ""
  4101. if travels:
  4102. svg_elem = travelsgeom.svg(scale_factor=scale_stroke_factor, stroke_color="#F0E24D")
  4103. if cuts:
  4104. svg_elem += cutsgeom.svg(scale_factor=scale_stroke_factor, stroke_color="#5E6CFF")
  4105. return svg_elem
  4106. def bounds(self):
  4107. """
  4108. Returns coordinates of rectangular bounds
  4109. of geometry: (xmin, ymin, xmax, ymax).
  4110. """
  4111. # fixed issue of getting bounds only for one level lists of objects
  4112. # now it can get bounds for nested lists of objects
  4113. log.debug("camlib.CNCJob.bounds()")
  4114. def bounds_rec(obj):
  4115. if type(obj) is list:
  4116. minx = np.Inf
  4117. miny = np.Inf
  4118. maxx = -np.Inf
  4119. maxy = -np.Inf
  4120. for k in obj:
  4121. if type(k) is dict:
  4122. for key in k:
  4123. minx_, miny_, maxx_, maxy_ = bounds_rec(k[key])
  4124. minx = min(minx, minx_)
  4125. miny = min(miny, miny_)
  4126. maxx = max(maxx, maxx_)
  4127. maxy = max(maxy, maxy_)
  4128. else:
  4129. minx_, miny_, maxx_, maxy_ = bounds_rec(k)
  4130. minx = min(minx, minx_)
  4131. miny = min(miny, miny_)
  4132. maxx = max(maxx, maxx_)
  4133. maxy = max(maxy, maxy_)
  4134. return minx, miny, maxx, maxy
  4135. else:
  4136. # it's a Shapely object, return it's bounds
  4137. return obj.bounds
  4138. if self.multitool is False:
  4139. log.debug("CNCJob->bounds()")
  4140. if self.solid_geometry is None:
  4141. log.debug("solid_geometry is None")
  4142. return 0, 0, 0, 0
  4143. bounds_coords = bounds_rec(self.solid_geometry)
  4144. else:
  4145. minx = np.Inf
  4146. miny = np.Inf
  4147. maxx = -np.Inf
  4148. maxy = -np.Inf
  4149. for k, v in self.cnc_tools.items():
  4150. minx = np.Inf
  4151. miny = np.Inf
  4152. maxx = -np.Inf
  4153. maxy = -np.Inf
  4154. try:
  4155. for k in v['solid_geometry']:
  4156. minx_, miny_, maxx_, maxy_ = bounds_rec(k)
  4157. minx = min(minx, minx_)
  4158. miny = min(miny, miny_)
  4159. maxx = max(maxx, maxx_)
  4160. maxy = max(maxy, maxy_)
  4161. except TypeError:
  4162. minx_, miny_, maxx_, maxy_ = bounds_rec(v['solid_geometry'])
  4163. minx = min(minx, minx_)
  4164. miny = min(miny, miny_)
  4165. maxx = max(maxx, maxx_)
  4166. maxy = max(maxy, maxy_)
  4167. bounds_coords = minx, miny, maxx, maxy
  4168. return bounds_coords
  4169. # TODO This function should be replaced at some point with a "real" function. Until then it's an ugly hack ...
  4170. def scale(self, xfactor, yfactor=None, point=None):
  4171. """
  4172. Scales all the geometry on the XY plane in the object by the
  4173. given factor. Tool sizes, feedrates, or Z-axis dimensions are
  4174. not altered.
  4175. :param factor: Number by which to scale the object.
  4176. :type factor: float
  4177. :param point: the (x,y) coords for the point of origin of scale
  4178. :type tuple of floats
  4179. :return: None
  4180. :rtype: None
  4181. """
  4182. log.debug("camlib.CNCJob.scale()")
  4183. if yfactor is None:
  4184. yfactor = xfactor
  4185. if point is None:
  4186. px = 0
  4187. py = 0
  4188. else:
  4189. px, py = point
  4190. def scale_g(g):
  4191. """
  4192. :param g: 'g' parameter it's a gcode string
  4193. :return: scaled gcode string
  4194. """
  4195. temp_gcode = ''
  4196. header_start = False
  4197. header_stop = False
  4198. units = self.app.defaults['units'].upper()
  4199. lines = StringIO(g)
  4200. for line in lines:
  4201. # this changes the GCODE header ---- UGLY HACK
  4202. if "TOOL DIAMETER" in line or "Feedrate:" in line:
  4203. header_start = True
  4204. if "G20" in line or "G21" in line:
  4205. header_start = False
  4206. header_stop = True
  4207. if header_start is True:
  4208. header_stop = False
  4209. if "in" in line:
  4210. if units == 'MM':
  4211. line = line.replace("in", "mm")
  4212. if "mm" in line:
  4213. if units == 'IN':
  4214. line = line.replace("mm", "in")
  4215. # find any float number in header (even multiple on the same line) and convert it
  4216. numbers_in_header = re.findall(self.g_nr_re, line)
  4217. if numbers_in_header:
  4218. for nr in numbers_in_header:
  4219. new_nr = float(nr) * xfactor
  4220. # replace the updated string
  4221. line = line.replace(nr, ('%.*f' % (self.app.defaults["cncjob_coords_decimals"], new_nr))
  4222. )
  4223. # this scales all the X and Y and Z and F values and also the Tool Dia in the toolchange message
  4224. if header_stop is True:
  4225. if "G20" in line:
  4226. if units == 'MM':
  4227. line = line.replace("G20", "G21")
  4228. if "G21" in line:
  4229. if units == 'IN':
  4230. line = line.replace("G21", "G20")
  4231. # find the X group
  4232. match_x = self.g_x_re.search(line)
  4233. if match_x:
  4234. if match_x.group(1) is not None:
  4235. new_x = float(match_x.group(1)[1:]) * xfactor
  4236. # replace the updated string
  4237. line = line.replace(
  4238. match_x.group(1),
  4239. 'X%.*f' % (self.app.defaults["cncjob_coords_decimals"], new_x)
  4240. )
  4241. # find the Y group
  4242. match_y = self.g_y_re.search(line)
  4243. if match_y:
  4244. if match_y.group(1) is not None:
  4245. new_y = float(match_y.group(1)[1:]) * yfactor
  4246. line = line.replace(
  4247. match_y.group(1),
  4248. 'Y%.*f' % (self.app.defaults["cncjob_coords_decimals"], new_y)
  4249. )
  4250. # find the Z group
  4251. match_z = self.g_z_re.search(line)
  4252. if match_z:
  4253. if match_z.group(1) is not None:
  4254. new_z = float(match_z.group(1)[1:]) * xfactor
  4255. line = line.replace(
  4256. match_z.group(1),
  4257. 'Z%.*f' % (self.app.defaults["cncjob_coords_decimals"], new_z)
  4258. )
  4259. # find the F group
  4260. match_f = self.g_f_re.search(line)
  4261. if match_f:
  4262. if match_f.group(1) is not None:
  4263. new_f = float(match_f.group(1)[1:]) * xfactor
  4264. line = line.replace(
  4265. match_f.group(1),
  4266. 'F%.*f' % (self.app.defaults["cncjob_fr_decimals"], new_f)
  4267. )
  4268. # find the T group (tool dia on toolchange)
  4269. match_t = self.g_t_re.search(line)
  4270. if match_t:
  4271. if match_t.group(1) is not None:
  4272. new_t = float(match_t.group(1)[1:]) * xfactor
  4273. line = line.replace(
  4274. match_t.group(1),
  4275. '= %.*f' % (self.app.defaults["cncjob_coords_decimals"], new_t)
  4276. )
  4277. temp_gcode += line
  4278. lines.close()
  4279. header_stop = False
  4280. return temp_gcode
  4281. if self.multitool is False:
  4282. # offset Gcode
  4283. self.gcode = scale_g(self.gcode)
  4284. # variables to display the percentage of work done
  4285. self.geo_len = 0
  4286. try:
  4287. for g in self.gcode_parsed:
  4288. self.geo_len += 1
  4289. except TypeError:
  4290. self.geo_len = 1
  4291. self.old_disp_number = 0
  4292. self.el_count = 0
  4293. # scale geometry
  4294. for g in self.gcode_parsed:
  4295. try:
  4296. g['geom'] = affinity.scale(g['geom'], xfactor, yfactor, origin=(px, py))
  4297. except AttributeError:
  4298. return g['geom']
  4299. self.el_count += 1
  4300. disp_number = int(np.interp(self.el_count, [0, self.geo_len], [0, 100]))
  4301. if self.old_disp_number < disp_number <= 100:
  4302. self.app.proc_container.update_view_text(' %d%%' % disp_number)
  4303. self.old_disp_number = disp_number
  4304. self.create_geometry()
  4305. else:
  4306. for k, v in self.cnc_tools.items():
  4307. # scale Gcode
  4308. v['gcode'] = scale_g(v['gcode'])
  4309. # variables to display the percentage of work done
  4310. self.geo_len = 0
  4311. try:
  4312. for g in v['gcode_parsed']:
  4313. self.geo_len += 1
  4314. except TypeError:
  4315. self.geo_len = 1
  4316. self.old_disp_number = 0
  4317. self.el_count = 0
  4318. # scale gcode_parsed
  4319. for g in v['gcode_parsed']:
  4320. try:
  4321. g['geom'] = affinity.scale(g['geom'], xfactor, yfactor, origin=(px, py))
  4322. except AttributeError:
  4323. return g['geom']
  4324. self.el_count += 1
  4325. disp_number = int(np.interp(self.el_count, [0, self.geo_len], [0, 100]))
  4326. if self.old_disp_number < disp_number <= 100:
  4327. self.app.proc_container.update_view_text(' %d%%' % disp_number)
  4328. self.old_disp_number = disp_number
  4329. v['solid_geometry'] = cascaded_union([geo['geom'] for geo in v['gcode_parsed']])
  4330. self.create_geometry()
  4331. self.app.proc_container.new_text = ''
  4332. def offset(self, vect):
  4333. """
  4334. Offsets all the geometry on the XY plane in the object by the
  4335. given vector.
  4336. Offsets all the GCODE on the XY plane in the object by the
  4337. given vector.
  4338. g_offsetx_re, g_offsety_re, multitool, cnnc_tools are attributes of FlatCAMCNCJob class in camlib
  4339. :param vect: (x, y) offset vector.
  4340. :type vect: tuple
  4341. :return: None
  4342. """
  4343. log.debug("camlib.CNCJob.offset()")
  4344. dx, dy = vect
  4345. def offset_g(g):
  4346. """
  4347. :param g: 'g' parameter it's a gcode string
  4348. :return: offseted gcode string
  4349. """
  4350. temp_gcode = ''
  4351. lines = StringIO(g)
  4352. for line in lines:
  4353. # find the X group
  4354. match_x = self.g_x_re.search(line)
  4355. if match_x:
  4356. if match_x.group(1) is not None:
  4357. # get the coordinate and add X offset
  4358. new_x = float(match_x.group(1)[1:]) + dx
  4359. # replace the updated string
  4360. line = line.replace(
  4361. match_x.group(1),
  4362. 'X%.*f' % (self.app.defaults["cncjob_coords_decimals"], new_x)
  4363. )
  4364. match_y = self.g_y_re.search(line)
  4365. if match_y:
  4366. if match_y.group(1) is not None:
  4367. new_y = float(match_y.group(1)[1:]) + dy
  4368. line = line.replace(
  4369. match_y.group(1),
  4370. 'Y%.*f' % (self.app.defaults["cncjob_coords_decimals"], new_y)
  4371. )
  4372. temp_gcode += line
  4373. lines.close()
  4374. return temp_gcode
  4375. if self.multitool is False:
  4376. # offset Gcode
  4377. self.gcode = offset_g(self.gcode)
  4378. # variables to display the percentage of work done
  4379. self.geo_len = 0
  4380. try:
  4381. for g in self.gcode_parsed:
  4382. self.geo_len += 1
  4383. except TypeError:
  4384. self.geo_len = 1
  4385. self.old_disp_number = 0
  4386. self.el_count = 0
  4387. # offset geometry
  4388. for g in self.gcode_parsed:
  4389. try:
  4390. g['geom'] = affinity.translate(g['geom'], xoff=dx, yoff=dy)
  4391. except AttributeError:
  4392. return g['geom']
  4393. self.el_count += 1
  4394. disp_number = int(np.interp(self.el_count, [0, self.geo_len], [0, 100]))
  4395. if self.old_disp_number < disp_number <= 100:
  4396. self.app.proc_container.update_view_text(' %d%%' % disp_number)
  4397. self.old_disp_number = disp_number
  4398. self.create_geometry()
  4399. else:
  4400. for k, v in self.cnc_tools.items():
  4401. # offset Gcode
  4402. v['gcode'] = offset_g(v['gcode'])
  4403. # variables to display the percentage of work done
  4404. self.geo_len = 0
  4405. try:
  4406. for g in v['gcode_parsed']:
  4407. self.geo_len += 1
  4408. except TypeError:
  4409. self.geo_len = 1
  4410. self.old_disp_number = 0
  4411. self.el_count = 0
  4412. # offset gcode_parsed
  4413. for g in v['gcode_parsed']:
  4414. try:
  4415. g['geom'] = affinity.translate(g['geom'], xoff=dx, yoff=dy)
  4416. except AttributeError:
  4417. return g['geom']
  4418. self.el_count += 1
  4419. disp_number = int(np.interp(self.el_count, [0, self.geo_len], [0, 100]))
  4420. if self.old_disp_number < disp_number <= 100:
  4421. self.app.proc_container.update_view_text(' %d%%' % disp_number)
  4422. self.old_disp_number = disp_number
  4423. # for the bounding box
  4424. v['solid_geometry'] = cascaded_union([geo['geom'] for geo in v['gcode_parsed']])
  4425. self.app.proc_container.new_text = ''
  4426. def mirror(self, axis, point):
  4427. """
  4428. Mirror the geometrys of an object by an given axis around the coordinates of the 'point'
  4429. :param angle:
  4430. :param point: tupple of coordinates (x,y)
  4431. :return:
  4432. """
  4433. log.debug("camlib.CNCJob.mirror()")
  4434. px, py = point
  4435. xscale, yscale = {"X": (1.0, -1.0), "Y": (-1.0, 1.0)}[axis]
  4436. # variables to display the percentage of work done
  4437. self.geo_len = 0
  4438. try:
  4439. for g in self.gcode_parsed:
  4440. self.geo_len += 1
  4441. except TypeError:
  4442. self.geo_len = 1
  4443. self.old_disp_number = 0
  4444. self.el_count = 0
  4445. for g in self.gcode_parsed:
  4446. try:
  4447. g['geom'] = affinity.scale(g['geom'], xscale, yscale, origin=(px, py))
  4448. except AttributeError:
  4449. return g['geom']
  4450. self.el_count += 1
  4451. disp_number = int(np.interp(self.el_count, [0, self.geo_len], [0, 100]))
  4452. if self.old_disp_number < disp_number <= 100:
  4453. self.app.proc_container.update_view_text(' %d%%' % disp_number)
  4454. self.old_disp_number = disp_number
  4455. self.create_geometry()
  4456. self.app.proc_container.new_text = ''
  4457. def skew(self, angle_x, angle_y, point):
  4458. """
  4459. Shear/Skew the geometries of an object by angles along x and y dimensions.
  4460. Parameters
  4461. ----------
  4462. angle_x, angle_y : float, float
  4463. The shear angle(s) for the x and y axes respectively. These can be
  4464. specified in either degrees (default) or radians by setting
  4465. use_radians=True.
  4466. point: tupple of coordinates (x,y)
  4467. See shapely manual for more information:
  4468. http://toblerity.org/shapely/manual.html#affine-transformations
  4469. """
  4470. log.debug("camlib.CNCJob.skew()")
  4471. px, py = point
  4472. # variables to display the percentage of work done
  4473. self.geo_len = 0
  4474. try:
  4475. for g in self.gcode_parsed:
  4476. self.geo_len += 1
  4477. except TypeError:
  4478. self.geo_len = 1
  4479. self.old_disp_number = 0
  4480. self.el_count = 0
  4481. for g in self.gcode_parsed:
  4482. try:
  4483. g['geom'] = affinity.skew(g['geom'], angle_x, angle_y, origin=(px, py))
  4484. except AttributeError:
  4485. return g['geom']
  4486. self.el_count += 1
  4487. disp_number = int(np.interp(self.el_count, [0, self.geo_len], [0, 100]))
  4488. if self.old_disp_number < disp_number <= 100:
  4489. self.app.proc_container.update_view_text(' %d%%' % disp_number)
  4490. self.old_disp_number = disp_number
  4491. self.create_geometry()
  4492. self.app.proc_container.new_text = ''
  4493. def rotate(self, angle, point):
  4494. """
  4495. Rotate the geometrys of an object by an given angle around the coordinates of the 'point'
  4496. :param angle:
  4497. :param point: tupple of coordinates (x,y)
  4498. :return:
  4499. """
  4500. log.debug("camlib.CNCJob.rotate()")
  4501. px, py = point
  4502. # variables to display the percentage of work done
  4503. self.geo_len = 0
  4504. try:
  4505. for g in self.gcode_parsed:
  4506. self.geo_len += 1
  4507. except TypeError:
  4508. self.geo_len = 1
  4509. self.old_disp_number = 0
  4510. self.el_count = 0
  4511. for g in self.gcode_parsed:
  4512. try:
  4513. g['geom'] = affinity.rotate(g['geom'], angle, origin=(px, py))
  4514. except AttributeError:
  4515. return g['geom']
  4516. self.el_count += 1
  4517. disp_number = int(np.interp(self.el_count, [0, self.geo_len], [0, 100]))
  4518. if self.old_disp_number < disp_number <= 100:
  4519. self.app.proc_container.update_view_text(' %d%%' % disp_number)
  4520. self.old_disp_number = disp_number
  4521. self.create_geometry()
  4522. self.app.proc_container.new_text = ''
  4523. def get_bounds(geometry_list):
  4524. xmin = np.Inf
  4525. ymin = np.Inf
  4526. xmax = -np.Inf
  4527. ymax = -np.Inf
  4528. for gs in geometry_list:
  4529. try:
  4530. gxmin, gymin, gxmax, gymax = gs.bounds()
  4531. xmin = min([xmin, gxmin])
  4532. ymin = min([ymin, gymin])
  4533. xmax = max([xmax, gxmax])
  4534. ymax = max([ymax, gymax])
  4535. except Exception:
  4536. log.warning("DEVELOPMENT: Tried to get bounds of empty geometry.")
  4537. return [xmin, ymin, xmax, ymax]
  4538. def arc(center, radius, start, stop, direction, steps_per_circ):
  4539. """
  4540. Creates a list of point along the specified arc.
  4541. :param center: Coordinates of the center [x, y]
  4542. :type center: list
  4543. :param radius: Radius of the arc.
  4544. :type radius: float
  4545. :param start: Starting angle in radians
  4546. :type start: float
  4547. :param stop: End angle in radians
  4548. :type stop: float
  4549. :param direction: Orientation of the arc, "CW" or "CCW"
  4550. :type direction: string
  4551. :param steps_per_circ: Number of straight line segments to
  4552. represent a circle.
  4553. :type steps_per_circ: int
  4554. :return: The desired arc, as list of tuples
  4555. :rtype: list
  4556. """
  4557. # TODO: Resolution should be established by maximum error from the exact arc.
  4558. da_sign = {"cw": -1.0, "ccw": 1.0}
  4559. points = []
  4560. if direction == "ccw" and stop <= start:
  4561. stop += 2 * np.pi
  4562. if direction == "cw" and stop >= start:
  4563. stop -= 2 * np.pi
  4564. angle = abs(stop - start)
  4565. # angle = stop-start
  4566. steps = max([int(np.ceil(angle / (2 * np.pi) * steps_per_circ)), 2])
  4567. delta_angle = da_sign[direction] * angle * 1.0 / steps
  4568. for i in range(steps + 1):
  4569. theta = start + delta_angle * i
  4570. points.append((center[0] + radius * np.cos(theta), center[1] + radius * np.sin(theta)))
  4571. return points
  4572. def arc2(p1, p2, center, direction, steps_per_circ):
  4573. r = np.sqrt((center[0] - p1[0]) ** 2 + (center[1] - p1[1]) ** 2)
  4574. start = np.arctan2(p1[1] - center[1], p1[0] - center[0])
  4575. stop = np.arctan2(p2[1] - center[1], p2[0] - center[0])
  4576. return arc(center, r, start, stop, direction, steps_per_circ)
  4577. def arc_angle(start, stop, direction):
  4578. if direction == "ccw" and stop <= start:
  4579. stop += 2 * np.pi
  4580. if direction == "cw" and stop >= start:
  4581. stop -= 2 * np.pi
  4582. angle = abs(stop - start)
  4583. return angle
  4584. # def find_polygon(poly, point):
  4585. # """
  4586. # Find an object that object.contains(Point(point)) in
  4587. # poly, which can can be iterable, contain iterable of, or
  4588. # be itself an implementer of .contains().
  4589. #
  4590. # :param poly: See description
  4591. # :return: Polygon containing point or None.
  4592. # """
  4593. #
  4594. # if poly is None:
  4595. # return None
  4596. #
  4597. # try:
  4598. # for sub_poly in poly:
  4599. # p = find_polygon(sub_poly, point)
  4600. # if p is not None:
  4601. # return p
  4602. # except TypeError:
  4603. # try:
  4604. # if poly.contains(Point(point)):
  4605. # return poly
  4606. # except AttributeError:
  4607. # return None
  4608. #
  4609. # return None
  4610. def to_dict(obj):
  4611. """
  4612. Makes the following types into serializable form:
  4613. * ApertureMacro
  4614. * BaseGeometry
  4615. :param obj: Shapely geometry.
  4616. :type obj: BaseGeometry
  4617. :return: Dictionary with serializable form if ``obj`` was
  4618. BaseGeometry or ApertureMacro, otherwise returns ``obj``.
  4619. """
  4620. if isinstance(obj, ApertureMacro):
  4621. return {
  4622. "__class__": "ApertureMacro",
  4623. "__inst__": obj.to_dict()
  4624. }
  4625. if isinstance(obj, BaseGeometry):
  4626. return {
  4627. "__class__": "Shply",
  4628. "__inst__": sdumps(obj)
  4629. }
  4630. return obj
  4631. def dict2obj(d):
  4632. """
  4633. Default deserializer.
  4634. :param d: Serializable dictionary representation of an object
  4635. to be reconstructed.
  4636. :return: Reconstructed object.
  4637. """
  4638. if '__class__' in d and '__inst__' in d:
  4639. if d['__class__'] == "Shply":
  4640. return sloads(d['__inst__'])
  4641. if d['__class__'] == "ApertureMacro":
  4642. am = ApertureMacro()
  4643. am.from_dict(d['__inst__'])
  4644. return am
  4645. return d
  4646. else:
  4647. return d
  4648. # def plotg(geo, solid_poly=False, color="black"):
  4649. # try:
  4650. # __ = iter(geo)
  4651. # except:
  4652. # geo = [geo]
  4653. #
  4654. # for g in geo:
  4655. # if type(g) == Polygon:
  4656. # if solid_poly:
  4657. # patch = PolygonPatch(g,
  4658. # facecolor="#BBF268",
  4659. # edgecolor="#006E20",
  4660. # alpha=0.75,
  4661. # zorder=2)
  4662. # ax = subplot(111)
  4663. # ax.add_patch(patch)
  4664. # else:
  4665. # x, y = g.exterior.coords.xy
  4666. # plot(x, y, color=color)
  4667. # for ints in g.interiors:
  4668. # x, y = ints.coords.xy
  4669. # plot(x, y, color=color)
  4670. # continue
  4671. #
  4672. # if type(g) == LineString or type(g) == LinearRing:
  4673. # x, y = g.coords.xy
  4674. # plot(x, y, color=color)
  4675. # continue
  4676. #
  4677. # if type(g) == Point:
  4678. # x, y = g.coords.xy
  4679. # plot(x, y, 'o')
  4680. # continue
  4681. #
  4682. # try:
  4683. # __ = iter(g)
  4684. # plotg(g, color=color)
  4685. # except:
  4686. # log.error("Cannot plot: " + str(type(g)))
  4687. # continue
  4688. # def alpha_shape(points, alpha):
  4689. # """
  4690. # Compute the alpha shape (concave hull) of a set of points.
  4691. #
  4692. # @param points: Iterable container of points.
  4693. # @param alpha: alpha value to influence the gooeyness of the border. Smaller
  4694. # numbers don't fall inward as much as larger numbers. Too large,
  4695. # and you lose everything!
  4696. # """
  4697. # if len(points) < 4:
  4698. # # When you have a triangle, there is no sense in computing an alpha
  4699. # # shape.
  4700. # return MultiPoint(list(points)).convex_hull
  4701. #
  4702. # def add_edge(edges, edge_points, coords, i, j):
  4703. # """Add a line between the i-th and j-th points, if not in the list already"""
  4704. # if (i, j) in edges or (j, i) in edges:
  4705. # # already added
  4706. # return
  4707. # edges.add( (i, j) )
  4708. # edge_points.append(coords[ [i, j] ])
  4709. #
  4710. # coords = np.array([point.coords[0] for point in points])
  4711. #
  4712. # tri = Delaunay(coords)
  4713. # edges = set()
  4714. # edge_points = []
  4715. # # loop over triangles:
  4716. # # ia, ib, ic = indices of corner points of the triangle
  4717. # for ia, ib, ic in tri.vertices:
  4718. # pa = coords[ia]
  4719. # pb = coords[ib]
  4720. # pc = coords[ic]
  4721. #
  4722. # # Lengths of sides of triangle
  4723. # a = math.sqrt((pa[0]-pb[0])**2 + (pa[1]-pb[1])**2)
  4724. # b = math.sqrt((pb[0]-pc[0])**2 + (pb[1]-pc[1])**2)
  4725. # c = math.sqrt((pc[0]-pa[0])**2 + (pc[1]-pa[1])**2)
  4726. #
  4727. # # Semiperimeter of triangle
  4728. # s = (a + b + c)/2.0
  4729. #
  4730. # # Area of triangle by Heron's formula
  4731. # area = math.sqrt(s*(s-a)*(s-b)*(s-c))
  4732. # circum_r = a*b*c/(4.0*area)
  4733. #
  4734. # # Here's the radius filter.
  4735. # #print circum_r
  4736. # if circum_r < 1.0/alpha:
  4737. # add_edge(edges, edge_points, coords, ia, ib)
  4738. # add_edge(edges, edge_points, coords, ib, ic)
  4739. # add_edge(edges, edge_points, coords, ic, ia)
  4740. #
  4741. # m = MultiLineString(edge_points)
  4742. # triangles = list(polygonize(m))
  4743. # return cascaded_union(triangles), edge_points
  4744. # def voronoi(P):
  4745. # """
  4746. # Returns a list of all edges of the voronoi diagram for the given input points.
  4747. # """
  4748. # delauny = Delaunay(P)
  4749. # triangles = delauny.points[delauny.vertices]
  4750. #
  4751. # circum_centers = np.array([triangle_csc(tri) for tri in triangles])
  4752. # long_lines_endpoints = []
  4753. #
  4754. # lineIndices = []
  4755. # for i, triangle in enumerate(triangles):
  4756. # circum_center = circum_centers[i]
  4757. # for j, neighbor in enumerate(delauny.neighbors[i]):
  4758. # if neighbor != -1:
  4759. # lineIndices.append((i, neighbor))
  4760. # else:
  4761. # ps = triangle[(j+1)%3] - triangle[(j-1)%3]
  4762. # ps = np.array((ps[1], -ps[0]))
  4763. #
  4764. # middle = (triangle[(j+1)%3] + triangle[(j-1)%3]) * 0.5
  4765. # di = middle - triangle[j]
  4766. #
  4767. # ps /= np.linalg.norm(ps)
  4768. # di /= np.linalg.norm(di)
  4769. #
  4770. # if np.dot(di, ps) < 0.0:
  4771. # ps *= -1000.0
  4772. # else:
  4773. # ps *= 1000.0
  4774. #
  4775. # long_lines_endpoints.append(circum_center + ps)
  4776. # lineIndices.append((i, len(circum_centers) + len(long_lines_endpoints)-1))
  4777. #
  4778. # vertices = np.vstack((circum_centers, long_lines_endpoints))
  4779. #
  4780. # # filter out any duplicate lines
  4781. # lineIndicesSorted = np.sort(lineIndices) # make (1,2) and (2,1) both (1,2)
  4782. # lineIndicesTupled = [tuple(row) for row in lineIndicesSorted]
  4783. # lineIndicesUnique = np.unique(lineIndicesTupled)
  4784. #
  4785. # return vertices, lineIndicesUnique
  4786. #
  4787. #
  4788. # def triangle_csc(pts):
  4789. # rows, cols = pts.shape
  4790. #
  4791. # A = np.bmat([[2 * np.dot(pts, pts.T), np.ones((rows, 1))],
  4792. # [np.ones((1, rows)), np.zeros((1, 1))]])
  4793. #
  4794. # b = np.hstack((np.sum(pts * pts, axis=1), np.ones((1))))
  4795. # x = np.linalg.solve(A,b)
  4796. # bary_coords = x[:-1]
  4797. # return np.sum(pts * np.tile(bary_coords.reshape((pts.shape[0], 1)), (1, pts.shape[1])), axis=0)
  4798. #
  4799. #
  4800. # def voronoi_cell_lines(points, vertices, lineIndices):
  4801. # """
  4802. # Returns a mapping from a voronoi cell to its edges.
  4803. #
  4804. # :param points: shape (m,2)
  4805. # :param vertices: shape (n,2)
  4806. # :param lineIndices: shape (o,2)
  4807. # :rtype: dict point index -> list of shape (n,2) with vertex indices
  4808. # """
  4809. # kd = KDTree(points)
  4810. #
  4811. # cells = collections.defaultdict(list)
  4812. # for i1, i2 in lineIndices:
  4813. # v1, v2 = vertices[i1], vertices[i2]
  4814. # mid = (v1+v2)/2
  4815. # _, (p1Idx, p2Idx) = kd.query(mid, 2)
  4816. # cells[p1Idx].append((i1, i2))
  4817. # cells[p2Idx].append((i1, i2))
  4818. #
  4819. # return cells
  4820. #
  4821. #
  4822. # def voronoi_edges2polygons(cells):
  4823. # """
  4824. # Transforms cell edges into polygons.
  4825. #
  4826. # :param cells: as returned from voronoi_cell_lines
  4827. # :rtype: dict point index -> list of vertex indices which form a polygon
  4828. # """
  4829. #
  4830. # # first, close the outer cells
  4831. # for pIdx, lineIndices_ in cells.items():
  4832. # dangling_lines = []
  4833. # for i1, i2 in lineIndices_:
  4834. # p = (i1, i2)
  4835. # connections = filter(lambda k: p != k and
  4836. # (p[0] == k[0] or p[0] == k[1] or p[1] == k[0] or p[1] == k[1]), lineIndices_)
  4837. # # connections = filter(lambda (i1_, i2_): (i1, i2) != (i1_, i2_) and
  4838. # (i1 == i1_ or i1 == i2_ or i2 == i1_ or i2 == i2_), lineIndices_)
  4839. # assert 1 <= len(connections) <= 2
  4840. # if len(connections) == 1:
  4841. # dangling_lines.append((i1, i2))
  4842. # assert len(dangling_lines) in [0, 2]
  4843. # if len(dangling_lines) == 2:
  4844. # (i11, i12), (i21, i22) = dangling_lines
  4845. # s = (i11, i12)
  4846. # t = (i21, i22)
  4847. #
  4848. # # determine which line ends are unconnected
  4849. # connected = filter(lambda k: k != s and (k[0] == s[0] or k[1] == s[0]), lineIndices_)
  4850. # # connected = filter(lambda (i1,i2): (i1,i2) != (i11,i12) and (i1 == i11 or i2 == i11), lineIndices_)
  4851. # i11Unconnected = len(connected) == 0
  4852. #
  4853. # connected = filter(lambda k: k != t and (k[0] == t[0] or k[1] == t[0]), lineIndices_)
  4854. # # connected = filter(lambda (i1,i2): (i1,i2) != (i21,i22) and (i1 == i21 or i2 == i21), lineIndices_)
  4855. # i21Unconnected = len(connected) == 0
  4856. #
  4857. # startIdx = i11 if i11Unconnected else i12
  4858. # endIdx = i21 if i21Unconnected else i22
  4859. #
  4860. # cells[pIdx].append((startIdx, endIdx))
  4861. #
  4862. # # then, form polygons by storing vertex indices in (counter-)clockwise order
  4863. # polys = dict()
  4864. # for pIdx, lineIndices_ in cells.items():
  4865. # # get a directed graph which contains both directions and arbitrarily follow one of both
  4866. # directedGraph = lineIndices_ + [(i2, i1) for (i1, i2) in lineIndices_]
  4867. # directedGraphMap = collections.defaultdict(list)
  4868. # for (i1, i2) in directedGraph:
  4869. # directedGraphMap[i1].append(i2)
  4870. # orderedEdges = []
  4871. # currentEdge = directedGraph[0]
  4872. # while len(orderedEdges) < len(lineIndices_):
  4873. # i1 = currentEdge[1]
  4874. # i2 = directedGraphMap[i1][0] if directedGraphMap[i1][0] != currentEdge[0] else directedGraphMap[i1][1]
  4875. # nextEdge = (i1, i2)
  4876. # orderedEdges.append(nextEdge)
  4877. # currentEdge = nextEdge
  4878. #
  4879. # polys[pIdx] = [i1 for (i1, i2) in orderedEdges]
  4880. #
  4881. # return polys
  4882. #
  4883. #
  4884. # def voronoi_polygons(points):
  4885. # """
  4886. # Returns the voronoi polygon for each input point.
  4887. #
  4888. # :param points: shape (n,2)
  4889. # :rtype: list of n polygons where each polygon is an array of vertices
  4890. # """
  4891. # vertices, lineIndices = voronoi(points)
  4892. # cells = voronoi_cell_lines(points, vertices, lineIndices)
  4893. # polys = voronoi_edges2polygons(cells)
  4894. # polylist = []
  4895. # for i in range(len(points)):
  4896. # poly = vertices[np.asarray(polys[i])]
  4897. # polylist.append(poly)
  4898. # return polylist
  4899. #
  4900. #
  4901. # class Zprofile:
  4902. # def __init__(self):
  4903. #
  4904. # # data contains lists of [x, y, z]
  4905. # self.data = []
  4906. #
  4907. # # Computed voronoi polygons (shapely)
  4908. # self.polygons = []
  4909. # pass
  4910. #
  4911. # # def plot_polygons(self):
  4912. # # axes = plt.subplot(1, 1, 1)
  4913. # #
  4914. # # plt.axis([-0.05, 1.05, -0.05, 1.05])
  4915. # #
  4916. # # for poly in self.polygons:
  4917. # # p = PolygonPatch(poly, facecolor=np.random.rand(3, 1), alpha=0.3)
  4918. # # axes.add_patch(p)
  4919. #
  4920. # def init_from_csv(self, filename):
  4921. # pass
  4922. #
  4923. # def init_from_string(self, zpstring):
  4924. # pass
  4925. #
  4926. # def init_from_list(self, zplist):
  4927. # self.data = zplist
  4928. #
  4929. # def generate_polygons(self):
  4930. # self.polygons = [Polygon(p) for p in voronoi_polygons(array([[x[0], x[1]] for x in self.data]))]
  4931. #
  4932. # def normalize(self, origin):
  4933. # pass
  4934. #
  4935. # def paste(self, path):
  4936. # """
  4937. # Return a list of dictionaries containing the parts of the original
  4938. # path and their z-axis offset.
  4939. # """
  4940. #
  4941. # # At most one region/polygon will contain the path
  4942. # containing = [i for i in range(len(self.polygons)) if self.polygons[i].contains(path)]
  4943. #
  4944. # if len(containing) > 0:
  4945. # return [{"path": path, "z": self.data[containing[0]][2]}]
  4946. #
  4947. # # All region indexes that intersect with the path
  4948. # crossing = [i for i in range(len(self.polygons)) if self.polygons[i].intersects(path)]
  4949. #
  4950. # return [{"path": path.intersection(self.polygons[i]),
  4951. # "z": self.data[i][2]} for i in crossing]
  4952. def autolist(obj):
  4953. try:
  4954. __ = iter(obj)
  4955. return obj
  4956. except TypeError:
  4957. return [obj]
  4958. def three_point_circle(p1, p2, p3):
  4959. """
  4960. Computes the center and radius of a circle from
  4961. 3 points on its circumference.
  4962. :param p1: Point 1
  4963. :param p2: Point 2
  4964. :param p3: Point 3
  4965. :return: center, radius
  4966. """
  4967. # Midpoints
  4968. a1 = (p1 + p2) / 2.0
  4969. a2 = (p2 + p3) / 2.0
  4970. # Normals
  4971. b1 = np.dot((p2 - p1), np.array([[0, -1], [1, 0]], dtype=np.float32))
  4972. b2 = np.dot((p3 - p2), np.array([[0, 1], [-1, 0]], dtype=np.float32))
  4973. # Params
  4974. try:
  4975. T = solve(np.transpose(np.array([-b1, b2])), a1 - a2)
  4976. except Exception as e:
  4977. log.debug("camlib.three_point_circle() --> %s" % str(e))
  4978. return
  4979. # Center
  4980. center = a1 + b1 * T[0]
  4981. # Radius
  4982. radius = np.linalg.norm(center - p1)
  4983. return center, radius, T[0]
  4984. def distance(pt1, pt2):
  4985. return np.sqrt((pt1[0] - pt2[0]) ** 2 + (pt1[1] - pt2[1]) ** 2)
  4986. def distance_euclidian(x1, y1, x2, y2):
  4987. return np.sqrt((x1 - x2) ** 2 + (y1 - y2) ** 2)
  4988. class FlatCAMRTree(object):
  4989. """
  4990. Indexes geometry (Any object with "cooords" property containing
  4991. a list of tuples with x, y values). Objects are indexed by
  4992. all their points by default. To index by arbitrary points,
  4993. override self.points2obj.
  4994. """
  4995. def __init__(self):
  4996. # Python RTree Index
  4997. self.rti = rtindex.Index()
  4998. # ## Track object-point relationship
  4999. # Each is list of points in object.
  5000. self.obj2points = []
  5001. # Index is index in rtree, value is index of
  5002. # object in obj2points.
  5003. self.points2obj = []
  5004. self.get_points = lambda go: go.coords
  5005. def grow_obj2points(self, idx):
  5006. """
  5007. Increases the size of self.obj2points to fit
  5008. idx + 1 items.
  5009. :param idx: Index to fit into list.
  5010. :return: None
  5011. """
  5012. if len(self.obj2points) > idx:
  5013. # len == 2, idx == 1, ok.
  5014. return
  5015. else:
  5016. # len == 2, idx == 2, need 1 more.
  5017. # range(2, 3)
  5018. for i in range(len(self.obj2points), idx + 1):
  5019. self.obj2points.append([])
  5020. def insert(self, objid, obj):
  5021. self.grow_obj2points(objid)
  5022. self.obj2points[objid] = []
  5023. for pt in self.get_points(obj):
  5024. self.rti.insert(len(self.points2obj), (pt[0], pt[1], pt[0], pt[1]), obj=objid)
  5025. self.obj2points[objid].append(len(self.points2obj))
  5026. self.points2obj.append(objid)
  5027. def remove_obj(self, objid, obj):
  5028. # Use all ptids to delete from index
  5029. for i, pt in enumerate(self.get_points(obj)):
  5030. try:
  5031. self.rti.delete(self.obj2points[objid][i], (pt[0], pt[1], pt[0], pt[1]))
  5032. except IndexError:
  5033. pass
  5034. def nearest(self, pt):
  5035. """
  5036. Will raise StopIteration if no items are found.
  5037. :param pt:
  5038. :return:
  5039. """
  5040. return next(self.rti.nearest(pt, objects=True))
  5041. class FlatCAMRTreeStorage(FlatCAMRTree):
  5042. """
  5043. Just like FlatCAMRTree it indexes geometry, but also serves
  5044. as storage for the geometry.
  5045. """
  5046. def __init__(self):
  5047. # super(FlatCAMRTreeStorage, self).__init__()
  5048. super().__init__()
  5049. self.objects = []
  5050. # Optimization attempt!
  5051. self.indexes = {}
  5052. def insert(self, obj):
  5053. self.objects.append(obj)
  5054. idx = len(self.objects) - 1
  5055. # Note: Shapely objects are not hashable any more, although
  5056. # there seem to be plans to re-introduce the feature in
  5057. # version 2.0. For now, we will index using the object's id,
  5058. # but it's important to remember that shapely geometry is
  5059. # mutable, ie. it can be modified to a totally different shape
  5060. # and continue to have the same id.
  5061. # self.indexes[obj] = idx
  5062. self.indexes[id(obj)] = idx
  5063. # super(FlatCAMRTreeStorage, self).insert(idx, obj)
  5064. super().insert(idx, obj)
  5065. # @profile
  5066. def remove(self, obj):
  5067. # See note about self.indexes in insert().
  5068. # objidx = self.indexes[obj]
  5069. objidx = self.indexes[id(obj)]
  5070. # Remove from list
  5071. self.objects[objidx] = None
  5072. # Remove from index
  5073. self.remove_obj(objidx, obj)
  5074. def get_objects(self):
  5075. return (o for o in self.objects if o is not None)
  5076. def nearest(self, pt):
  5077. """
  5078. Returns the nearest matching points and the object
  5079. it belongs to.
  5080. :param pt: Query point.
  5081. :return: (match_x, match_y), Object owner of
  5082. matching point.
  5083. :rtype: tuple
  5084. """
  5085. tidx = super(FlatCAMRTreeStorage, self).nearest(pt)
  5086. return (tidx.bbox[0], tidx.bbox[1]), self.objects[tidx.object]
  5087. # class myO:
  5088. # def __init__(self, coords):
  5089. # self.coords = coords
  5090. #
  5091. #
  5092. # def test_rti():
  5093. #
  5094. # o1 = myO([(0, 0), (0, 1), (1, 1)])
  5095. # o2 = myO([(2, 0), (2, 1), (2, 1)])
  5096. # o3 = myO([(2, 0), (2, 1), (3, 1)])
  5097. #
  5098. # os = [o1, o2]
  5099. #
  5100. # idx = FlatCAMRTree()
  5101. #
  5102. # for o in range(len(os)):
  5103. # idx.insert(o, os[o])
  5104. #
  5105. # print [x.bbox for x in idx.rti.nearest((0, 0), num_results=20, objects=True)]
  5106. #
  5107. # idx.remove_obj(0, o1)
  5108. #
  5109. # print [x.bbox for x in idx.rti.nearest((0, 0), num_results=20, objects=True)]
  5110. #
  5111. # idx.remove_obj(1, o2)
  5112. #
  5113. # print [x.bbox for x in idx.rti.nearest((0, 0), num_results=20, objects=True)]
  5114. #
  5115. #
  5116. # def test_rtis():
  5117. #
  5118. # o1 = myO([(0, 0), (0, 1), (1, 1)])
  5119. # o2 = myO([(2, 0), (2, 1), (2, 1)])
  5120. # o3 = myO([(2, 0), (2, 1), (3, 1)])
  5121. #
  5122. # os = [o1, o2]
  5123. #
  5124. # idx = FlatCAMRTreeStorage()
  5125. #
  5126. # for o in range(len(os)):
  5127. # idx.insert(os[o])
  5128. #
  5129. # #os = None
  5130. # #o1 = None
  5131. # #o2 = None
  5132. #
  5133. # print [x.bbox for x in idx.rti.nearest((0, 0), num_results=20, objects=True)]
  5134. #
  5135. # idx.remove(idx.nearest((2,0))[1])
  5136. #
  5137. # print [x.bbox for x in idx.rti.nearest((0, 0), num_results=20, objects=True)]
  5138. #
  5139. # idx.remove(idx.nearest((0,0))[1])
  5140. #
  5141. # print [x.bbox for x in idx.rti.nearest((0, 0), num_results=20, objects=True)]