camlib.py 228 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872
  1. # ########################################################## ##
  2. # FlatCAM: 2D Post-processing for Manufacturing #
  3. # http://flatcam.org #
  4. # Author: Juan Pablo Caram (c) #
  5. # Date: 2/5/2014 #
  6. # MIT Licence #
  7. # ########################################################## ##
  8. from PyQt5 import QtWidgets
  9. from io import StringIO
  10. import numpy as np
  11. from numpy.linalg import solve, norm
  12. import platform
  13. from copy import deepcopy
  14. import traceback
  15. from decimal import Decimal
  16. from rtree import index as rtindex
  17. from lxml import etree as ET
  18. # See: http://toblerity.org/shapely/manual.html
  19. from shapely.geometry import Polygon, LineString, Point, LinearRing, MultiLineString, MultiPoint, MultiPolygon
  20. from shapely.geometry import box as shply_box
  21. from shapely.ops import cascaded_union, unary_union, polygonize
  22. import shapely.affinity as affinity
  23. from shapely.wkt import loads as sloads
  24. from shapely.wkt import dumps as sdumps
  25. from shapely.geometry.base import BaseGeometry
  26. from shapely.geometry import shape
  27. # needed for legacy mode
  28. # Used for solid polygons in Matplotlib
  29. from descartes.patch import PolygonPatch
  30. import collections
  31. from collections import Iterable
  32. import rasterio
  33. from rasterio.features import shapes
  34. import ezdxf
  35. # TODO: Commented for FlatCAM packaging with cx_freeze
  36. # from scipy.spatial import KDTree, Delaunay
  37. # from scipy.spatial import Delaunay
  38. from flatcamParsers.ParseSVG import *
  39. from flatcamParsers.ParseDXF import *
  40. if platform.architecture()[0] == '64bit':
  41. from ortools.constraint_solver import pywrapcp
  42. from ortools.constraint_solver import routing_enums_pb2
  43. import logging
  44. import FlatCAMApp
  45. import gettext
  46. import FlatCAMTranslation as fcTranslate
  47. import builtins
  48. fcTranslate.apply_language('strings')
  49. log = logging.getLogger('base2')
  50. log.setLevel(logging.DEBUG)
  51. formatter = logging.Formatter('[%(levelname)s] %(message)s')
  52. handler = logging.StreamHandler()
  53. handler.setFormatter(formatter)
  54. log.addHandler(handler)
  55. if '_' not in builtins.__dict__:
  56. _ = gettext.gettext
  57. class ParseError(Exception):
  58. pass
  59. class ApertureMacro:
  60. """
  61. Syntax of aperture macros.
  62. <AM command>: AM<Aperture macro name>*<Macro content>
  63. <Macro content>: {{<Variable definition>*}{<Primitive>*}}
  64. <Variable definition>: $K=<Arithmetic expression>
  65. <Primitive>: <Primitive code>,<Modifier>{,<Modifier>}|<Comment>
  66. <Modifier>: $M|< Arithmetic expression>
  67. <Comment>: 0 <Text>
  68. """
  69. # ## Regular expressions
  70. am1_re = re.compile(r'^%AM([^\*]+)\*(.+)?(%)?$')
  71. am2_re = re.compile(r'(.*)%$')
  72. amcomm_re = re.compile(r'^0(.*)')
  73. amprim_re = re.compile(r'^[1-9].*')
  74. amvar_re = re.compile(r'^\$([0-9a-zA-z]+)=(.*)')
  75. def __init__(self, name=None):
  76. self.name = name
  77. self.raw = ""
  78. # ## These below are recomputed for every aperture
  79. # ## definition, in other words, are temporary variables.
  80. self.primitives = []
  81. self.locvars = {}
  82. self.geometry = None
  83. def to_dict(self):
  84. """
  85. Returns the object in a serializable form. Only the name and
  86. raw are required.
  87. :return: Dictionary representing the object. JSON ready.
  88. :rtype: dict
  89. """
  90. return {
  91. 'name': self.name,
  92. 'raw': self.raw
  93. }
  94. def from_dict(self, d):
  95. """
  96. Populates the object from a serial representation created
  97. with ``self.to_dict()``.
  98. :param d: Serial representation of an ApertureMacro object.
  99. :return: None
  100. """
  101. for attr in ['name', 'raw']:
  102. setattr(self, attr, d[attr])
  103. def parse_content(self):
  104. """
  105. Creates numerical lists for all primitives in the aperture
  106. macro (in ``self.raw``) by replacing all variables by their
  107. values iteratively and evaluating expressions. Results
  108. are stored in ``self.primitives``.
  109. :return: None
  110. """
  111. # Cleanup
  112. self.raw = self.raw.replace('\n', '').replace('\r', '').strip(" *")
  113. self.primitives = []
  114. # Separate parts
  115. parts = self.raw.split('*')
  116. # ### Every part in the macro ####
  117. for part in parts:
  118. # ## Comments. Ignored.
  119. match = ApertureMacro.amcomm_re.search(part)
  120. if match:
  121. continue
  122. # ## Variables
  123. # These are variables defined locally inside the macro. They can be
  124. # numerical constant or defined in terms of previously define
  125. # variables, which can be defined locally or in an aperture
  126. # definition. All replacements occur here.
  127. match = ApertureMacro.amvar_re.search(part)
  128. if match:
  129. var = match.group(1)
  130. val = match.group(2)
  131. # Replace variables in value
  132. for v in self.locvars:
  133. # replaced the following line with the next to fix Mentor custom apertures not parsed OK
  134. # val = re.sub((r'\$'+str(v)+r'(?![0-9a-zA-Z])'), str(self.locvars[v]), val)
  135. val = val.replace('$' + str(v), str(self.locvars[v]))
  136. # Make all others 0
  137. val = re.sub(r'\$[0-9a-zA-Z](?![0-9a-zA-Z])', "0", val)
  138. # Change x with *
  139. val = re.sub(r'[xX]', "*", val)
  140. # Eval() and store.
  141. self.locvars[var] = eval(val)
  142. continue
  143. # ## Primitives
  144. # Each is an array. The first identifies the primitive, while the
  145. # rest depend on the primitive. All are strings representing a
  146. # number and may contain variable definition. The values of these
  147. # variables are defined in an aperture definition.
  148. match = ApertureMacro.amprim_re.search(part)
  149. if match:
  150. # ## Replace all variables
  151. for v in self.locvars:
  152. # replaced the following line with the next to fix Mentor custom apertures not parsed OK
  153. # part = re.sub(r'\$' + str(v) + r'(?![0-9a-zA-Z])', str(self.locvars[v]), part)
  154. part = part.replace('$' + str(v), str(self.locvars[v]))
  155. # Make all others 0
  156. part = re.sub(r'\$[0-9a-zA-Z](?![0-9a-zA-Z])', "0", part)
  157. # Change x with *
  158. part = re.sub(r'[xX]', "*", part)
  159. # ## Store
  160. elements = part.split(",")
  161. self.primitives.append([eval(x) for x in elements])
  162. continue
  163. log.warning("Unknown syntax of aperture macro part: %s" % str(part))
  164. def append(self, data):
  165. """
  166. Appends a string to the raw macro.
  167. :param data: Part of the macro.
  168. :type data: str
  169. :return: None
  170. """
  171. self.raw += data
  172. @staticmethod
  173. def default2zero(n, mods):
  174. """
  175. Pads the ``mods`` list with zeros resulting in an
  176. list of length n.
  177. :param n: Length of the resulting list.
  178. :type n: int
  179. :param mods: List to be padded.
  180. :type mods: list
  181. :return: Zero-padded list.
  182. :rtype: list
  183. """
  184. x = [0.0] * n
  185. na = len(mods)
  186. x[0:na] = mods
  187. return x
  188. @staticmethod
  189. def make_circle(mods):
  190. """
  191. :param mods: (Exposure 0/1, Diameter >=0, X-coord, Y-coord)
  192. :return:
  193. """
  194. pol, dia, x, y = ApertureMacro.default2zero(4, mods)
  195. return {"pol": int(pol), "geometry": Point(x, y).buffer(dia/2)}
  196. @staticmethod
  197. def make_vectorline(mods):
  198. """
  199. :param mods: (Exposure 0/1, Line width >= 0, X-start, Y-start, X-end, Y-end,
  200. rotation angle around origin in degrees)
  201. :return:
  202. """
  203. pol, width, xs, ys, xe, ye, angle = ApertureMacro.default2zero(7, mods)
  204. line = LineString([(xs, ys), (xe, ye)])
  205. box = line.buffer(width/2, cap_style=2)
  206. box_rotated = affinity.rotate(box, angle, origin=(0, 0))
  207. return {"pol": int(pol), "geometry": box_rotated}
  208. @staticmethod
  209. def make_centerline(mods):
  210. """
  211. :param mods: (Exposure 0/1, width >=0, height >=0, x-center, y-center,
  212. rotation angle around origin in degrees)
  213. :return:
  214. """
  215. pol, width, height, x, y, angle = ApertureMacro.default2zero(6, mods)
  216. box = shply_box(x-width/2, y-height/2, x+width/2, y+height/2)
  217. box_rotated = affinity.rotate(box, angle, origin=(0, 0))
  218. return {"pol": int(pol), "geometry": box_rotated}
  219. @staticmethod
  220. def make_lowerleftline(mods):
  221. """
  222. :param mods: (exposure 0/1, width >=0, height >=0, x-lowerleft, y-lowerleft,
  223. rotation angle around origin in degrees)
  224. :return:
  225. """
  226. pol, width, height, x, y, angle = ApertureMacro.default2zero(6, mods)
  227. box = shply_box(x, y, x+width, y+height)
  228. box_rotated = affinity.rotate(box, angle, origin=(0, 0))
  229. return {"pol": int(pol), "geometry": box_rotated}
  230. @staticmethod
  231. def make_outline(mods):
  232. """
  233. :param mods:
  234. :return:
  235. """
  236. pol = mods[0]
  237. n = mods[1]
  238. points = [(0, 0)]*(n+1)
  239. for i in range(n+1):
  240. points[i] = mods[2*i + 2:2*i + 4]
  241. angle = mods[2*n + 4]
  242. poly = Polygon(points)
  243. poly_rotated = affinity.rotate(poly, angle, origin=(0, 0))
  244. return {"pol": int(pol), "geometry": poly_rotated}
  245. @staticmethod
  246. def make_polygon(mods):
  247. """
  248. Note: Specs indicate that rotation is only allowed if the center
  249. (x, y) == (0, 0). I will tolerate breaking this rule.
  250. :param mods: (exposure 0/1, n_verts 3<=n<=12, x-center, y-center,
  251. diameter of circumscribed circle >=0, rotation angle around origin)
  252. :return:
  253. """
  254. pol, nverts, x, y, dia, angle = ApertureMacro.default2zero(6, mods)
  255. points = [(0, 0)]*nverts
  256. for i in range(nverts):
  257. points[i] = (x + 0.5 * dia * np.cos(2*np.pi * i/nverts),
  258. y + 0.5 * dia * np.sin(2*np.pi * i/nverts))
  259. poly = Polygon(points)
  260. poly_rotated = affinity.rotate(poly, angle, origin=(0, 0))
  261. return {"pol": int(pol), "geometry": poly_rotated}
  262. @staticmethod
  263. def make_moire(mods):
  264. """
  265. Note: Specs indicate that rotation is only allowed if the center
  266. (x, y) == (0, 0). I will tolerate breaking this rule.
  267. :param mods: (x-center, y-center, outer_dia_outer_ring, ring thickness,
  268. gap, max_rings, crosshair_thickness, crosshair_len, rotation
  269. angle around origin in degrees)
  270. :return:
  271. """
  272. x, y, dia, thickness, gap, nrings, cross_th, cross_len, angle = ApertureMacro.default2zero(9, mods)
  273. r = dia/2 - thickness/2
  274. result = Point((x, y)).buffer(r).exterior.buffer(thickness/2.0)
  275. ring = Point((x, y)).buffer(r).exterior.buffer(thickness/2.0) # Need a copy!
  276. i = 1 # Number of rings created so far
  277. # ## If the ring does not have an interior it means that it is
  278. # ## a disk. Then stop.
  279. while len(ring.interiors) > 0 and i < nrings:
  280. r -= thickness + gap
  281. if r <= 0:
  282. break
  283. ring = Point((x, y)).buffer(r).exterior.buffer(thickness/2.0)
  284. result = cascaded_union([result, ring])
  285. i += 1
  286. # ## Crosshair
  287. hor = LineString([(x - cross_len, y), (x + cross_len, y)]).buffer(cross_th/2.0, cap_style=2)
  288. ver = LineString([(x, y-cross_len), (x, y + cross_len)]).buffer(cross_th/2.0, cap_style=2)
  289. result = cascaded_union([result, hor, ver])
  290. return {"pol": 1, "geometry": result}
  291. @staticmethod
  292. def make_thermal(mods):
  293. """
  294. Note: Specs indicate that rotation is only allowed if the center
  295. (x, y) == (0, 0). I will tolerate breaking this rule.
  296. :param mods: [x-center, y-center, diameter-outside, diameter-inside,
  297. gap-thickness, rotation angle around origin]
  298. :return:
  299. """
  300. x, y, dout, din, t, angle = ApertureMacro.default2zero(6, mods)
  301. ring = Point((x, y)).buffer(dout/2.0).difference(Point((x, y)).buffer(din/2.0))
  302. hline = LineString([(x - dout/2.0, y), (x + dout/2.0, y)]).buffer(t/2.0, cap_style=3)
  303. vline = LineString([(x, y - dout/2.0), (x, y + dout/2.0)]).buffer(t/2.0, cap_style=3)
  304. thermal = ring.difference(hline.union(vline))
  305. return {"pol": 1, "geometry": thermal}
  306. def make_geometry(self, modifiers):
  307. """
  308. Runs the macro for the given modifiers and generates
  309. the corresponding geometry.
  310. :param modifiers: Modifiers (parameters) for this macro
  311. :type modifiers: list
  312. :return: Shapely geometry
  313. :rtype: shapely.geometry.polygon
  314. """
  315. # ## Primitive makers
  316. makers = {
  317. "1": ApertureMacro.make_circle,
  318. "2": ApertureMacro.make_vectorline,
  319. "20": ApertureMacro.make_vectorline,
  320. "21": ApertureMacro.make_centerline,
  321. "22": ApertureMacro.make_lowerleftline,
  322. "4": ApertureMacro.make_outline,
  323. "5": ApertureMacro.make_polygon,
  324. "6": ApertureMacro.make_moire,
  325. "7": ApertureMacro.make_thermal
  326. }
  327. # ## Store modifiers as local variables
  328. modifiers = modifiers or []
  329. modifiers = [float(m) for m in modifiers]
  330. self.locvars = {}
  331. for i in range(0, len(modifiers)):
  332. self.locvars[str(i + 1)] = modifiers[i]
  333. # ## Parse
  334. self.primitives = [] # Cleanup
  335. self.geometry = Polygon()
  336. self.parse_content()
  337. # ## Make the geometry
  338. for primitive in self.primitives:
  339. # Make the primitive
  340. prim_geo = makers[str(int(primitive[0]))](primitive[1:])
  341. # Add it (according to polarity)
  342. # if self.geometry is None and prim_geo['pol'] == 1:
  343. # self.geometry = prim_geo['geometry']
  344. # continue
  345. if prim_geo['pol'] == 1:
  346. self.geometry = self.geometry.union(prim_geo['geometry'])
  347. continue
  348. if prim_geo['pol'] == 0:
  349. self.geometry = self.geometry.difference(prim_geo['geometry'])
  350. continue
  351. return self.geometry
  352. class Geometry(object):
  353. """
  354. Base geometry class.
  355. """
  356. defaults = {
  357. "units": 'in',
  358. "geo_steps_per_circle": 128
  359. }
  360. def __init__(self, geo_steps_per_circle=None):
  361. # Units (in or mm)
  362. self.units = self.app.defaults["units"]
  363. # Final geometry: MultiPolygon or list (of geometry constructs)
  364. self.solid_geometry = None
  365. # Final geometry: MultiLineString or list (of LineString or Points)
  366. self.follow_geometry = None
  367. # Attributes to be included in serialization
  368. self.ser_attrs = ["units", 'solid_geometry', 'follow_geometry']
  369. # Flattened geometry (list of paths only)
  370. self.flat_geometry = []
  371. # this is the calculated conversion factor when the file units are different than the ones in the app
  372. self.file_units_factor = 1
  373. # Index
  374. self.index = None
  375. self.geo_steps_per_circle = geo_steps_per_circle
  376. # variables to display the percentage of work done
  377. self.geo_len = 0
  378. self.old_disp_number = 0
  379. self.el_count = 0
  380. if self.app.is_legacy is False:
  381. self.temp_shapes = self.app.plotcanvas.new_shape_group()
  382. else:
  383. from flatcamGUI.PlotCanvasLegacy import ShapeCollectionLegacy
  384. self.temp_shapes = ShapeCollectionLegacy(obj=self, app=self.app, name='camlib.geometry')
  385. # if geo_steps_per_circle is None:
  386. # geo_steps_per_circle = int(Geometry.defaults["geo_steps_per_circle"])
  387. # self.geo_steps_per_circle = geo_steps_per_circle
  388. def plot_temp_shapes(self, element, color='red'):
  389. try:
  390. for sub_el in element:
  391. self.plot_temp_shapes(sub_el)
  392. except TypeError: # Element is not iterable...
  393. # self.add_shape(shape=element, color=color, visible=visible, layer=0)
  394. self.temp_shapes.add(tolerance=float(self.app.defaults["global_tolerance"]),
  395. shape=element, color=color, visible=True, layer=0)
  396. def make_index(self):
  397. self.flatten()
  398. self.index = FlatCAMRTree()
  399. for i, g in enumerate(self.flat_geometry):
  400. self.index.insert(i, g)
  401. def add_circle(self, origin, radius):
  402. """
  403. Adds a circle to the object.
  404. :param origin: Center of the circle.
  405. :param radius: Radius of the circle.
  406. :return: None
  407. """
  408. if self.solid_geometry is None:
  409. self.solid_geometry = []
  410. if type(self.solid_geometry) is list:
  411. self.solid_geometry.append(Point(origin).buffer(
  412. radius, int(int(self.geo_steps_per_circle) / 4)))
  413. return
  414. try:
  415. self.solid_geometry = self.solid_geometry.union(Point(origin).buffer(
  416. radius, int(int(self.geo_steps_per_circle) / 4)))
  417. except Exception as e:
  418. log.error("Failed to run union on polygons. %s" % str(e))
  419. return
  420. def add_polygon(self, points):
  421. """
  422. Adds a polygon to the object (by union)
  423. :param points: The vertices of the polygon.
  424. :return: None
  425. """
  426. if self.solid_geometry is None:
  427. self.solid_geometry = []
  428. if type(self.solid_geometry) is list:
  429. self.solid_geometry.append(Polygon(points))
  430. return
  431. try:
  432. self.solid_geometry = self.solid_geometry.union(Polygon(points))
  433. except Exception as e:
  434. log.error("Failed to run union on polygons. %s" % str(e))
  435. return
  436. def add_polyline(self, points):
  437. """
  438. Adds a polyline to the object (by union)
  439. :param points: The vertices of the polyline.
  440. :return: None
  441. """
  442. if self.solid_geometry is None:
  443. self.solid_geometry = []
  444. if type(self.solid_geometry) is list:
  445. self.solid_geometry.append(LineString(points))
  446. return
  447. try:
  448. self.solid_geometry = self.solid_geometry.union(LineString(points))
  449. except Exception as e:
  450. log.error("Failed to run union on polylines. %s" % str(e))
  451. return
  452. def is_empty(self):
  453. if isinstance(self.solid_geometry, BaseGeometry):
  454. return self.solid_geometry.is_empty
  455. if isinstance(self.solid_geometry, list):
  456. return len(self.solid_geometry) == 0
  457. self.app.inform.emit('[ERROR_NOTCL] %s' %
  458. _("self.solid_geometry is neither BaseGeometry or list."))
  459. return
  460. def subtract_polygon(self, points):
  461. """
  462. Subtract polygon from the given object. This only operates on the paths in the original geometry,
  463. i.e. it converts polygons into paths.
  464. :param points: The vertices of the polygon.
  465. :return: none
  466. """
  467. if self.solid_geometry is None:
  468. self.solid_geometry = []
  469. # pathonly should be allways True, otherwise polygons are not subtracted
  470. flat_geometry = self.flatten(pathonly=True)
  471. log.debug("%d paths" % len(flat_geometry))
  472. polygon = Polygon(points)
  473. toolgeo = cascaded_union(polygon)
  474. diffs = []
  475. for target in flat_geometry:
  476. if type(target) == LineString or type(target) == LinearRing:
  477. diffs.append(target.difference(toolgeo))
  478. else:
  479. log.warning("Not implemented.")
  480. self.solid_geometry = cascaded_union(diffs)
  481. def bounds(self):
  482. """
  483. Returns coordinates of rectangular bounds
  484. of geometry: (xmin, ymin, xmax, ymax).
  485. """
  486. # fixed issue of getting bounds only for one level lists of objects
  487. # now it can get bounds for nested lists of objects
  488. log.debug("camlib.Geometry.bounds()")
  489. if self.solid_geometry is None:
  490. log.debug("solid_geometry is None")
  491. return 0, 0, 0, 0
  492. def bounds_rec(obj):
  493. if type(obj) is list:
  494. minx = np.Inf
  495. miny = np.Inf
  496. maxx = -np.Inf
  497. maxy = -np.Inf
  498. for k in obj:
  499. if type(k) is dict:
  500. for key in k:
  501. minx_, miny_, maxx_, maxy_ = bounds_rec(k[key])
  502. minx = min(minx, minx_)
  503. miny = min(miny, miny_)
  504. maxx = max(maxx, maxx_)
  505. maxy = max(maxy, maxy_)
  506. else:
  507. minx_, miny_, maxx_, maxy_ = bounds_rec(k)
  508. minx = min(minx, minx_)
  509. miny = min(miny, miny_)
  510. maxx = max(maxx, maxx_)
  511. maxy = max(maxy, maxy_)
  512. return minx, miny, maxx, maxy
  513. else:
  514. # it's a Shapely object, return it's bounds
  515. return obj.bounds
  516. if self.multigeo is True:
  517. minx_list = []
  518. miny_list = []
  519. maxx_list = []
  520. maxy_list = []
  521. for tool in self.tools:
  522. minx, miny, maxx, maxy = bounds_rec(self.tools[tool]['solid_geometry'])
  523. minx_list.append(minx)
  524. miny_list.append(miny)
  525. maxx_list.append(maxx)
  526. maxy_list.append(maxy)
  527. return(min(minx_list), min(miny_list), max(maxx_list), max(maxy_list))
  528. else:
  529. bounds_coords = bounds_rec(self.solid_geometry)
  530. return bounds_coords
  531. # try:
  532. # # from here: http://rightfootin.blogspot.com/2006/09/more-on-python-flatten.html
  533. # def flatten(l, ltypes=(list, tuple)):
  534. # ltype = type(l)
  535. # l = list(l)
  536. # i = 0
  537. # while i < len(l):
  538. # while isinstance(l[i], ltypes):
  539. # if not l[i]:
  540. # l.pop(i)
  541. # i -= 1
  542. # break
  543. # else:
  544. # l[i:i + 1] = l[i]
  545. # i += 1
  546. # return ltype(l)
  547. #
  548. # log.debug("Geometry->bounds()")
  549. # if self.solid_geometry is None:
  550. # log.debug("solid_geometry is None")
  551. # return 0, 0, 0, 0
  552. #
  553. # if type(self.solid_geometry) is list:
  554. # # TODO: This can be done faster. See comment from Shapely mailing lists.
  555. # if len(self.solid_geometry) == 0:
  556. # log.debug('solid_geometry is empty []')
  557. # return 0, 0, 0, 0
  558. # return cascaded_union(flatten(self.solid_geometry)).bounds
  559. # else:
  560. # return self.solid_geometry.bounds
  561. # except Exception as e:
  562. # self.app.inform.emit("[ERROR_NOTCL] Error cause: %s" % str(e))
  563. # log.debug("Geometry->bounds()")
  564. # if self.solid_geometry is None:
  565. # log.debug("solid_geometry is None")
  566. # return 0, 0, 0, 0
  567. #
  568. # if type(self.solid_geometry) is list:
  569. # # TODO: This can be done faster. See comment from Shapely mailing lists.
  570. # if len(self.solid_geometry) == 0:
  571. # log.debug('solid_geometry is empty []')
  572. # return 0, 0, 0, 0
  573. # return cascaded_union(self.solid_geometry).bounds
  574. # else:
  575. # return self.solid_geometry.bounds
  576. def find_polygon(self, point, geoset=None):
  577. """
  578. Find an object that object.contains(Point(point)) in
  579. poly, which can can be iterable, contain iterable of, or
  580. be itself an implementer of .contains().
  581. :param point: See description
  582. :param geoset: a polygon or list of polygons where to find if the param point is contained
  583. :return: Polygon containing point or None.
  584. """
  585. if geoset is None:
  586. geoset = self.solid_geometry
  587. try: # Iterable
  588. for sub_geo in geoset:
  589. p = self.find_polygon(point, geoset=sub_geo)
  590. if p is not None:
  591. return p
  592. except TypeError: # Non-iterable
  593. try: # Implements .contains()
  594. if isinstance(geoset, LinearRing):
  595. geoset = Polygon(geoset)
  596. if geoset.contains(Point(point)):
  597. return geoset
  598. except AttributeError: # Does not implement .contains()
  599. return None
  600. return None
  601. def get_interiors(self, geometry=None):
  602. interiors = []
  603. if geometry is None:
  604. geometry = self.solid_geometry
  605. # ## If iterable, expand recursively.
  606. try:
  607. for geo in geometry:
  608. interiors.extend(self.get_interiors(geometry=geo))
  609. # ## Not iterable, get the interiors if polygon.
  610. except TypeError:
  611. if type(geometry) == Polygon:
  612. interiors.extend(geometry.interiors)
  613. return interiors
  614. def get_exteriors(self, geometry=None):
  615. """
  616. Returns all exteriors of polygons in geometry. Uses
  617. ``self.solid_geometry`` if geometry is not provided.
  618. :param geometry: Shapely type or list or list of list of such.
  619. :return: List of paths constituting the exteriors
  620. of polygons in geometry.
  621. """
  622. exteriors = []
  623. if geometry is None:
  624. geometry = self.solid_geometry
  625. # ## If iterable, expand recursively.
  626. try:
  627. for geo in geometry:
  628. exteriors.extend(self.get_exteriors(geometry=geo))
  629. # ## Not iterable, get the exterior if polygon.
  630. except TypeError:
  631. if type(geometry) == Polygon:
  632. exteriors.append(geometry.exterior)
  633. return exteriors
  634. def flatten(self, geometry=None, reset=True, pathonly=False):
  635. """
  636. Creates a list of non-iterable linear geometry objects.
  637. Polygons are expanded into its exterior and interiors if specified.
  638. Results are placed in self.flat_geometry
  639. :param geometry: Shapely type or list or list of list of such.
  640. :param reset: Clears the contents of self.flat_geometry.
  641. :param pathonly: Expands polygons into linear elements.
  642. """
  643. if geometry is None:
  644. geometry = self.solid_geometry
  645. if reset:
  646. self.flat_geometry = []
  647. # ## If iterable, expand recursively.
  648. try:
  649. for geo in geometry:
  650. if geo is not None:
  651. self.flatten(geometry=geo,
  652. reset=False,
  653. pathonly=pathonly)
  654. # ## Not iterable, do the actual indexing and add.
  655. except TypeError:
  656. if pathonly and type(geometry) == Polygon:
  657. self.flat_geometry.append(geometry.exterior)
  658. self.flatten(geometry=geometry.interiors,
  659. reset=False,
  660. pathonly=True)
  661. else:
  662. self.flat_geometry.append(geometry)
  663. return self.flat_geometry
  664. # def make2Dstorage(self):
  665. #
  666. # self.flatten()
  667. #
  668. # def get_pts(o):
  669. # pts = []
  670. # if type(o) == Polygon:
  671. # g = o.exterior
  672. # pts += list(g.coords)
  673. # for i in o.interiors:
  674. # pts += list(i.coords)
  675. # else:
  676. # pts += list(o.coords)
  677. # return pts
  678. #
  679. # storage = FlatCAMRTreeStorage()
  680. # storage.get_points = get_pts
  681. # for shape in self.flat_geometry:
  682. # storage.insert(shape)
  683. # return storage
  684. # def flatten_to_paths(self, geometry=None, reset=True):
  685. # """
  686. # Creates a list of non-iterable linear geometry elements and
  687. # indexes them in rtree.
  688. #
  689. # :param geometry: Iterable geometry
  690. # :param reset: Wether to clear (True) or append (False) to self.flat_geometry
  691. # :return: self.flat_geometry, self.flat_geometry_rtree
  692. # """
  693. #
  694. # if geometry is None:
  695. # geometry = self.solid_geometry
  696. #
  697. # if reset:
  698. # self.flat_geometry = []
  699. #
  700. # # ## If iterable, expand recursively.
  701. # try:
  702. # for geo in geometry:
  703. # self.flatten_to_paths(geometry=geo, reset=False)
  704. #
  705. # # ## Not iterable, do the actual indexing and add.
  706. # except TypeError:
  707. # if type(geometry) == Polygon:
  708. # g = geometry.exterior
  709. # self.flat_geometry.append(g)
  710. #
  711. # # ## Add first and last points of the path to the index.
  712. # self.flat_geometry_rtree.insert(len(self.flat_geometry) - 1, g.coords[0])
  713. # self.flat_geometry_rtree.insert(len(self.flat_geometry) - 1, g.coords[-1])
  714. #
  715. # for interior in geometry.interiors:
  716. # g = interior
  717. # self.flat_geometry.append(g)
  718. # self.flat_geometry_rtree.insert(len(self.flat_geometry) - 1, g.coords[0])
  719. # self.flat_geometry_rtree.insert(len(self.flat_geometry) - 1, g.coords[-1])
  720. # else:
  721. # g = geometry
  722. # self.flat_geometry.append(g)
  723. # self.flat_geometry_rtree.insert(len(self.flat_geometry) - 1, g.coords[0])
  724. # self.flat_geometry_rtree.insert(len(self.flat_geometry) - 1, g.coords[-1])
  725. #
  726. # return self.flat_geometry, self.flat_geometry_rtree
  727. def isolation_geometry(self, offset, iso_type=2, corner=None, follow=None, passes=0):
  728. """
  729. Creates contours around geometry at a given
  730. offset distance.
  731. :param offset: Offset distance.
  732. :type offset: float
  733. :param iso_type: type of isolation, can be 0 = exteriors or 1 = interiors or 2 = both (complete)
  734. :param corner: type of corner for the isolation: 0 = round; 1 = square; 2= beveled (line that connects the ends)
  735. :param follow: whether the geometry to be isolated is a follow_geometry
  736. :param passes: current pass out of possible multiple passes for which the isolation is done
  737. :return: The buffered geometry.
  738. :rtype: Shapely.MultiPolygon or Shapely.Polygon
  739. """
  740. if self.app.abort_flag:
  741. # graceful abort requested by the user
  742. raise FlatCAMApp.GracefulException
  743. geo_iso = []
  744. if offset == 0:
  745. if follow:
  746. geo_iso = self.follow_geometry
  747. else:
  748. geo_iso = self.solid_geometry
  749. else:
  750. if follow:
  751. geo_iso = self.follow_geometry
  752. else:
  753. # if isinstance(self.solid_geometry, list):
  754. # temp_geo = cascaded_union(self.solid_geometry)
  755. # else:
  756. # temp_geo = self.solid_geometry
  757. # Remember: do not make a buffer for each element in the solid_geometry because it will cut into
  758. # other copper features
  759. # if corner is None:
  760. # geo_iso = temp_geo.buffer(offset, int(int(self.geo_steps_per_circle) / 4))
  761. # else:
  762. # geo_iso = temp_geo.buffer(offset, int(int(self.geo_steps_per_circle) / 4),
  763. # join_style=corner)
  764. # variables to display the percentage of work done
  765. geo_len = 0
  766. try:
  767. for pol in self.solid_geometry:
  768. geo_len += 1
  769. except TypeError:
  770. geo_len = 1
  771. disp_number = 0
  772. old_disp_number = 0
  773. pol_nr = 0
  774. # yet, it can be done by issuing an unary_union in the end, thus getting rid of the overlapping geo
  775. try:
  776. for pol in self.solid_geometry:
  777. if self.app.abort_flag:
  778. # graceful abort requested by the user
  779. raise FlatCAMApp.GracefulException
  780. if corner is None:
  781. geo_iso.append(pol.buffer(offset, int(int(self.geo_steps_per_circle) / 4)))
  782. else:
  783. geo_iso.append(pol.buffer(offset, int(int(self.geo_steps_per_circle) / 4)),
  784. join_style=corner)
  785. pol_nr += 1
  786. disp_number = int(np.interp(pol_nr, [0, geo_len], [0, 100]))
  787. if old_disp_number < disp_number <= 100:
  788. self.app.proc_container.update_view_text(' %s %d: %d%%' %
  789. (_("Pass"), int(passes + 1), int(disp_number)))
  790. old_disp_number = disp_number
  791. except TypeError:
  792. # taking care of the case when the self.solid_geometry is just a single Polygon, not a list or a
  793. # MultiPolygon (not an iterable)
  794. if corner is None:
  795. geo_iso.append(self.solid_geometry.buffer(offset, int(int(self.geo_steps_per_circle) / 4)))
  796. else:
  797. geo_iso.append(self.solid_geometry.buffer(offset, int(int(self.geo_steps_per_circle) / 4)),
  798. join_style=corner)
  799. self.app.proc_container.update_view_text(' %s' % _("Buffering"))
  800. geo_iso = unary_union(geo_iso)
  801. self.app.proc_container.update_view_text('')
  802. # end of replaced block
  803. if follow:
  804. return geo_iso
  805. elif iso_type == 2:
  806. return geo_iso
  807. elif iso_type == 0:
  808. self.app.proc_container.update_view_text(' %s' % _("Get Exteriors"))
  809. return self.get_exteriors(geo_iso)
  810. elif iso_type == 1:
  811. self.app.proc_container.update_view_text(' %s' % _("Get Interiors"))
  812. return self.get_interiors(geo_iso)
  813. else:
  814. log.debug("Geometry.isolation_geometry() --> Type of isolation not supported")
  815. return "fail"
  816. def flatten_list(self, list):
  817. for item in list:
  818. if isinstance(item, Iterable) and not isinstance(item, (str, bytes)):
  819. yield from self.flatten_list(item)
  820. else:
  821. yield item
  822. def import_svg(self, filename, object_type=None, flip=True, units='MM'):
  823. """
  824. Imports shapes from an SVG file into the object's geometry.
  825. :param filename: Path to the SVG file.
  826. :type filename: str
  827. :param object_type: parameter passed further along
  828. :param flip: Flip the vertically.
  829. :type flip: bool
  830. :param units: FlatCAM units
  831. :return: None
  832. """
  833. # Parse into list of shapely objects
  834. svg_tree = ET.parse(filename)
  835. svg_root = svg_tree.getroot()
  836. # Change origin to bottom left
  837. # h = float(svg_root.get('height'))
  838. # w = float(svg_root.get('width'))
  839. h = svgparselength(svg_root.get('height'))[0] # TODO: No units support yet
  840. geos = getsvggeo(svg_root, object_type)
  841. if flip:
  842. geos = [translate(scale(g, 1.0, -1.0, origin=(0, 0)), yoff=h) for g in geos]
  843. # Add to object
  844. if self.solid_geometry is None:
  845. self.solid_geometry = []
  846. if type(self.solid_geometry) is list:
  847. # self.solid_geometry.append(cascaded_union(geos))
  848. if type(geos) is list:
  849. self.solid_geometry += geos
  850. else:
  851. self.solid_geometry.append(geos)
  852. else: # It's shapely geometry
  853. # self.solid_geometry = cascaded_union([self.solid_geometry,
  854. # cascaded_union(geos)])
  855. self.solid_geometry = [self.solid_geometry, geos]
  856. # flatten the self.solid_geometry list for import_svg() to import SVG as Gerber
  857. self.solid_geometry = list(self.flatten_list(self.solid_geometry))
  858. geos_text = getsvgtext(svg_root, object_type, units=units)
  859. if geos_text is not None:
  860. geos_text_f = []
  861. if flip:
  862. # Change origin to bottom left
  863. for i in geos_text:
  864. _, minimy, _, maximy = i.bounds
  865. h2 = (maximy - minimy) * 0.5
  866. geos_text_f.append(translate(scale(i, 1.0, -1.0, origin=(0, 0)), yoff=(h + h2)))
  867. if geos_text_f:
  868. self.solid_geometry = self.solid_geometry + geos_text_f
  869. def import_dxf(self, filename, object_type=None, units='MM'):
  870. """
  871. Imports shapes from an DXF file into the object's geometry.
  872. :param filename: Path to the DXF file.
  873. :type filename: str
  874. :param units: Application units
  875. :type flip: str
  876. :return: None
  877. """
  878. # Parse into list of shapely objects
  879. dxf = ezdxf.readfile(filename)
  880. geos = getdxfgeo(dxf)
  881. # Add to object
  882. if self.solid_geometry is None:
  883. self.solid_geometry = []
  884. if type(self.solid_geometry) is list:
  885. if type(geos) is list:
  886. self.solid_geometry += geos
  887. else:
  888. self.solid_geometry.append(geos)
  889. else: # It's shapely geometry
  890. self.solid_geometry = [self.solid_geometry, geos]
  891. # flatten the self.solid_geometry list for import_dxf() to import DXF as Gerber
  892. self.solid_geometry = list(self.flatten_list(self.solid_geometry))
  893. if self.solid_geometry is not None:
  894. self.solid_geometry = cascaded_union(self.solid_geometry)
  895. else:
  896. return
  897. # commented until this function is ready
  898. # geos_text = getdxftext(dxf, object_type, units=units)
  899. # if geos_text is not None:
  900. # geos_text_f = []
  901. # self.solid_geometry = [self.solid_geometry, geos_text_f]
  902. def import_image(self, filename, flip=True, units='MM', dpi=96, mode='black', mask=[128, 128, 128, 128]):
  903. """
  904. Imports shapes from an IMAGE file into the object's geometry.
  905. :param filename: Path to the IMAGE file.
  906. :type filename: str
  907. :param flip: Flip the object vertically.
  908. :type flip: bool
  909. :param units: FlatCAM units
  910. :param dpi: dots per inch on the imported image
  911. :param mode: how to import the image: as 'black' or 'color'
  912. :param mask: level of detail for the import
  913. :return: None
  914. """
  915. scale_factor = 0.264583333
  916. if units.lower() == 'mm':
  917. scale_factor = 25.4 / dpi
  918. else:
  919. scale_factor = 1 / dpi
  920. geos = []
  921. unscaled_geos = []
  922. with rasterio.open(filename) as src:
  923. # if filename.lower().rpartition('.')[-1] == 'bmp':
  924. # red = green = blue = src.read(1)
  925. # print("BMP")
  926. # elif filename.lower().rpartition('.')[-1] == 'png':
  927. # red, green, blue, alpha = src.read()
  928. # elif filename.lower().rpartition('.')[-1] == 'jpg':
  929. # red, green, blue = src.read()
  930. red = green = blue = src.read(1)
  931. try:
  932. green = src.read(2)
  933. except Exception as e:
  934. pass
  935. try:
  936. blue = src.read(3)
  937. except Exception as e:
  938. pass
  939. if mode == 'black':
  940. mask_setting = red <= mask[0]
  941. total = red
  942. log.debug("Image import as monochrome.")
  943. else:
  944. mask_setting = (red <= mask[1]) + (green <= mask[2]) + (blue <= mask[3])
  945. total = np.zeros(red.shape, dtype=np.float32)
  946. for band in red, green, blue:
  947. total += band
  948. total /= 3
  949. log.debug("Image import as colored. Thresholds are: R = %s , G = %s, B = %s" %
  950. (str(mask[1]), str(mask[2]), str(mask[3])))
  951. for geom, val in shapes(total, mask=mask_setting):
  952. unscaled_geos.append(shape(geom))
  953. for g in unscaled_geos:
  954. geos.append(scale(g, scale_factor, scale_factor, origin=(0, 0)))
  955. if flip:
  956. geos = [translate(scale(g, 1.0, -1.0, origin=(0, 0))) for g in geos]
  957. # Add to object
  958. if self.solid_geometry is None:
  959. self.solid_geometry = []
  960. if type(self.solid_geometry) is list:
  961. # self.solid_geometry.append(cascaded_union(geos))
  962. if type(geos) is list:
  963. self.solid_geometry += geos
  964. else:
  965. self.solid_geometry.append(geos)
  966. else: # It's shapely geometry
  967. self.solid_geometry = [self.solid_geometry, geos]
  968. # flatten the self.solid_geometry list for import_svg() to import SVG as Gerber
  969. self.solid_geometry = list(self.flatten_list(self.solid_geometry))
  970. self.solid_geometry = cascaded_union(self.solid_geometry)
  971. # self.solid_geometry = MultiPolygon(self.solid_geometry)
  972. # self.solid_geometry = self.solid_geometry.buffer(0.00000001)
  973. # self.solid_geometry = self.solid_geometry.buffer(-0.00000001)
  974. def size(self):
  975. """
  976. Returns (width, height) of rectangular
  977. bounds of geometry.
  978. """
  979. if self.solid_geometry is None:
  980. log.warning("Solid_geometry not computed yet.")
  981. return 0
  982. bounds = self.bounds()
  983. return bounds[2] - bounds[0], bounds[3] - bounds[1]
  984. def get_empty_area(self, boundary=None):
  985. """
  986. Returns the complement of self.solid_geometry within
  987. the given boundary polygon. If not specified, it defaults to
  988. the rectangular bounding box of self.solid_geometry.
  989. """
  990. if boundary is None:
  991. boundary = self.solid_geometry.envelope
  992. return boundary.difference(self.solid_geometry)
  993. def clear_polygon(self, polygon, tooldia, steps_per_circle, overlap=0.15, connect=True, contour=True,
  994. prog_plot=False):
  995. """
  996. Creates geometry inside a polygon for a tool to cover
  997. the whole area.
  998. This algorithm shrinks the edges of the polygon and takes
  999. the resulting edges as toolpaths.
  1000. :param polygon: Polygon to clear.
  1001. :param tooldia: Diameter of the tool.
  1002. :param steps_per_circle: number of linear segments to be used to approximate a circle
  1003. :param overlap: Overlap of toolpasses.
  1004. :param connect: Draw lines between disjoint segments to
  1005. minimize tool lifts.
  1006. :param contour: Paint around the edges. Inconsequential in
  1007. this painting method.
  1008. :param prog_plot: boolean; if Ture use the progressive plotting
  1009. :return:
  1010. """
  1011. # log.debug("camlib.clear_polygon()")
  1012. assert type(polygon) == Polygon or type(polygon) == MultiPolygon, \
  1013. "Expected a Polygon or MultiPolygon, got %s" % type(polygon)
  1014. # ## The toolpaths
  1015. # Index first and last points in paths
  1016. def get_pts(o):
  1017. return [o.coords[0], o.coords[-1]]
  1018. geoms = FlatCAMRTreeStorage()
  1019. geoms.get_points = get_pts
  1020. # Can only result in a Polygon or MultiPolygon
  1021. # NOTE: The resulting polygon can be "empty".
  1022. current = polygon.buffer((-tooldia / 1.999999), int(int(steps_per_circle) / 4))
  1023. if current.area == 0:
  1024. # Otherwise, trying to to insert current.exterior == None
  1025. # into the FlatCAMStorage will fail.
  1026. # print("Area is None")
  1027. return None
  1028. # current can be a MultiPolygon
  1029. try:
  1030. for p in current:
  1031. geoms.insert(p.exterior)
  1032. for i in p.interiors:
  1033. geoms.insert(i)
  1034. # Not a Multipolygon. Must be a Polygon
  1035. except TypeError:
  1036. geoms.insert(current.exterior)
  1037. for i in current.interiors:
  1038. geoms.insert(i)
  1039. while True:
  1040. if self.app.abort_flag:
  1041. # graceful abort requested by the user
  1042. raise FlatCAMApp.GracefulException
  1043. # provide the app with a way to process the GUI events when in a blocking loop
  1044. QtWidgets.QApplication.processEvents()
  1045. # Can only result in a Polygon or MultiPolygon
  1046. current = current.buffer(-tooldia * (1 - overlap), int(int(steps_per_circle) / 4))
  1047. if current.area > 0:
  1048. # current can be a MultiPolygon
  1049. try:
  1050. for p in current:
  1051. geoms.insert(p.exterior)
  1052. for i in p.interiors:
  1053. geoms.insert(i)
  1054. if prog_plot:
  1055. self.plot_temp_shapes(p)
  1056. # Not a Multipolygon. Must be a Polygon
  1057. except TypeError:
  1058. geoms.insert(current.exterior)
  1059. if prog_plot:
  1060. self.plot_temp_shapes(current.exterior)
  1061. for i in current.interiors:
  1062. geoms.insert(i)
  1063. if prog_plot:
  1064. self.plot_temp_shapes(i)
  1065. else:
  1066. log.debug("camlib.Geometry.clear_polygon() --> Current Area is zero")
  1067. break
  1068. if prog_plot:
  1069. self.temp_shapes.redraw()
  1070. # Optimization: Reduce lifts
  1071. if connect:
  1072. # log.debug("Reducing tool lifts...")
  1073. geoms = Geometry.paint_connect(geoms, polygon, tooldia, int(steps_per_circle))
  1074. return geoms
  1075. def clear_polygon2(self, polygon_to_clear, tooldia, steps_per_circle, seedpoint=None, overlap=0.15,
  1076. connect=True, contour=True, prog_plot=False):
  1077. """
  1078. Creates geometry inside a polygon for a tool to cover
  1079. the whole area.
  1080. This algorithm starts with a seed point inside the polygon
  1081. and draws circles around it. Arcs inside the polygons are
  1082. valid cuts. Finalizes by cutting around the inside edge of
  1083. the polygon.
  1084. :param polygon_to_clear: Shapely.geometry.Polygon
  1085. :param steps_per_circle: how many linear segments to use to approximate a circle
  1086. :param tooldia: Diameter of the tool
  1087. :param seedpoint: Shapely.geometry.Point or None
  1088. :param overlap: Tool fraction overlap bewteen passes
  1089. :param connect: Connect disjoint segment to minumize tool lifts
  1090. :param contour: Cut countour inside the polygon.
  1091. :return: List of toolpaths covering polygon.
  1092. :rtype: FlatCAMRTreeStorage | None
  1093. :param prog_plot: boolean; if True use the progressive plotting
  1094. """
  1095. # log.debug("camlib.clear_polygon2()")
  1096. # Current buffer radius
  1097. radius = tooldia / 2 * (1 - overlap)
  1098. # ## The toolpaths
  1099. # Index first and last points in paths
  1100. def get_pts(o):
  1101. return [o.coords[0], o.coords[-1]]
  1102. geoms = FlatCAMRTreeStorage()
  1103. geoms.get_points = get_pts
  1104. # Path margin
  1105. path_margin = polygon_to_clear.buffer(-tooldia / 2, int(steps_per_circle / 4))
  1106. if path_margin.is_empty or path_margin is None:
  1107. return
  1108. # Estimate good seedpoint if not provided.
  1109. if seedpoint is None:
  1110. seedpoint = path_margin.representative_point()
  1111. # Grow from seed until outside the box. The polygons will
  1112. # never have an interior, so take the exterior LinearRing.
  1113. while True:
  1114. if self.app.abort_flag:
  1115. # graceful abort requested by the user
  1116. raise FlatCAMApp.GracefulException
  1117. # provide the app with a way to process the GUI events when in a blocking loop
  1118. QtWidgets.QApplication.processEvents()
  1119. path = Point(seedpoint).buffer(radius, int(steps_per_circle / 4)).exterior
  1120. path = path.intersection(path_margin)
  1121. # Touches polygon?
  1122. if path.is_empty:
  1123. break
  1124. else:
  1125. # geoms.append(path)
  1126. # geoms.insert(path)
  1127. # path can be a collection of paths.
  1128. try:
  1129. for p in path:
  1130. geoms.insert(p)
  1131. if prog_plot:
  1132. self.plot_temp_shapes(p)
  1133. except TypeError:
  1134. geoms.insert(path)
  1135. if prog_plot:
  1136. self.plot_temp_shapes(path)
  1137. if prog_plot:
  1138. self.temp_shapes.redraw()
  1139. radius += tooldia * (1 - overlap)
  1140. # Clean inside edges (contours) of the original polygon
  1141. if contour:
  1142. outer_edges = [x.exterior for x in autolist(
  1143. polygon_to_clear.buffer(-tooldia / 2, int(steps_per_circle / 4)))]
  1144. inner_edges = []
  1145. # Over resulting polygons
  1146. for x in autolist(polygon_to_clear.buffer(-tooldia / 2, int(steps_per_circle / 4))):
  1147. for y in x.interiors: # Over interiors of each polygon
  1148. inner_edges.append(y)
  1149. # geoms += outer_edges + inner_edges
  1150. for g in outer_edges + inner_edges:
  1151. geoms.insert(g)
  1152. if prog_plot:
  1153. self.plot_temp_shapes(g)
  1154. if prog_plot:
  1155. self.temp_shapes.redraw()
  1156. # Optimization connect touching paths
  1157. # log.debug("Connecting paths...")
  1158. # geoms = Geometry.path_connect(geoms)
  1159. # Optimization: Reduce lifts
  1160. if connect:
  1161. # log.debug("Reducing tool lifts...")
  1162. geoms = Geometry.paint_connect(geoms, polygon_to_clear, tooldia, steps_per_circle)
  1163. return geoms
  1164. def clear_polygon3(self, polygon, tooldia, steps_per_circle, overlap=0.15, connect=True, contour=True,
  1165. prog_plot=False):
  1166. """
  1167. Creates geometry inside a polygon for a tool to cover
  1168. the whole area.
  1169. This algorithm draws horizontal lines inside the polygon.
  1170. :param polygon: The polygon being painted.
  1171. :type polygon: shapely.geometry.Polygon
  1172. :param tooldia: Tool diameter.
  1173. :param steps_per_circle: how many linear segments to use to approximate a circle
  1174. :param overlap: Tool path overlap percentage.
  1175. :param connect: Connect lines to avoid tool lifts.
  1176. :param contour: Paint around the edges.
  1177. :param prog_plot: boolean; if to use the progressive plotting
  1178. :return:
  1179. """
  1180. # log.debug("camlib.clear_polygon3()")
  1181. # ## The toolpaths
  1182. # Index first and last points in paths
  1183. def get_pts(o):
  1184. return [o.coords[0], o.coords[-1]]
  1185. geoms = FlatCAMRTreeStorage()
  1186. geoms.get_points = get_pts
  1187. lines_trimmed = []
  1188. # Bounding box
  1189. left, bot, right, top = polygon.bounds
  1190. margin_poly = polygon.buffer(-tooldia / 1.99999999, (int(steps_per_circle)))
  1191. # First line
  1192. y = top - tooldia / 1.99999999
  1193. while y > bot + tooldia / 1.999999999:
  1194. if self.app.abort_flag:
  1195. # graceful abort requested by the user
  1196. raise FlatCAMApp.GracefulException
  1197. # provide the app with a way to process the GUI events when in a blocking loop
  1198. QtWidgets.QApplication.processEvents()
  1199. line = LineString([(left, y), (right, y)])
  1200. line = line.intersection(margin_poly)
  1201. lines_trimmed.append(line)
  1202. y -= tooldia * (1 - overlap)
  1203. if prog_plot:
  1204. self.plot_temp_shapes(line)
  1205. self.temp_shapes.redraw()
  1206. # Last line
  1207. y = bot + tooldia / 2
  1208. line = LineString([(left, y), (right, y)])
  1209. line = line.intersection(margin_poly)
  1210. for ll in line:
  1211. lines_trimmed.append(ll)
  1212. if prog_plot:
  1213. self.plot_temp_shapes(line)
  1214. # Combine
  1215. # linesgeo = unary_union(lines)
  1216. # Trim to the polygon
  1217. # margin_poly = polygon.buffer(-tooldia / 1.99999999, (int(steps_per_circle)))
  1218. # lines_trimmed = linesgeo.intersection(margin_poly)
  1219. if prog_plot:
  1220. self.temp_shapes.redraw()
  1221. lines_trimmed = unary_union(lines_trimmed)
  1222. # Add lines to storage
  1223. try:
  1224. for line in lines_trimmed:
  1225. geoms.insert(line)
  1226. except TypeError:
  1227. # in case lines_trimmed are not iterable (Linestring, LinearRing)
  1228. geoms.insert(lines_trimmed)
  1229. # Add margin (contour) to storage
  1230. if contour:
  1231. if isinstance(margin_poly, Polygon):
  1232. geoms.insert(margin_poly.exterior)
  1233. if prog_plot:
  1234. self.plot_temp_shapes(margin_poly.exterior)
  1235. for ints in margin_poly.interiors:
  1236. geoms.insert(ints)
  1237. if prog_plot:
  1238. self.plot_temp_shapes(ints)
  1239. elif isinstance(margin_poly, MultiPolygon):
  1240. for poly in margin_poly:
  1241. geoms.insert(poly.exterior)
  1242. if prog_plot:
  1243. self.plot_temp_shapes(poly.exterior)
  1244. for ints in poly.interiors:
  1245. geoms.insert(ints)
  1246. if prog_plot:
  1247. self.plot_temp_shapes(ints)
  1248. if prog_plot:
  1249. self.temp_shapes.redraw()
  1250. # Optimization: Reduce lifts
  1251. if connect:
  1252. # log.debug("Reducing tool lifts...")
  1253. geoms = Geometry.paint_connect(geoms, polygon, tooldia, steps_per_circle)
  1254. return geoms
  1255. def scale(self, xfactor, yfactor, point=None):
  1256. """
  1257. Scales all of the object's geometry by a given factor. Override
  1258. this method.
  1259. :param xfactor: Number by which to scale on X axis.
  1260. :type xfactor: float
  1261. :param yfactor: Number by which to scale on Y axis.
  1262. :type yfactor: float
  1263. :param point: point to be used as reference for scaling; a tuple
  1264. :return: None
  1265. :rtype: None
  1266. """
  1267. return
  1268. def offset(self, vect):
  1269. """
  1270. Offset the geometry by the given vector. Override this method.
  1271. :param vect: (x, y) vector by which to offset the object.
  1272. :type vect: tuple
  1273. :return: None
  1274. """
  1275. return
  1276. @staticmethod
  1277. def paint_connect(storage, boundary, tooldia, steps_per_circle, max_walk=None):
  1278. """
  1279. Connects paths that results in a connection segment that is
  1280. within the paint area. This avoids unnecessary tool lifting.
  1281. :param storage: Geometry to be optimized.
  1282. :type storage: FlatCAMRTreeStorage
  1283. :param boundary: Polygon defining the limits of the paintable area.
  1284. :type boundary: Polygon
  1285. :param tooldia: Tool diameter.
  1286. :rtype tooldia: float
  1287. :param steps_per_circle: how many linear segments to use to approximate a circle
  1288. :param max_walk: Maximum allowable distance without lifting tool.
  1289. :type max_walk: float or None
  1290. :return: Optimized geometry.
  1291. :rtype: FlatCAMRTreeStorage
  1292. """
  1293. # If max_walk is not specified, the maximum allowed is
  1294. # 10 times the tool diameter
  1295. max_walk = max_walk or 10 * tooldia
  1296. # Assuming geolist is a flat list of flat elements
  1297. # ## Index first and last points in paths
  1298. def get_pts(o):
  1299. return [o.coords[0], o.coords[-1]]
  1300. # storage = FlatCAMRTreeStorage()
  1301. # storage.get_points = get_pts
  1302. #
  1303. # for shape in geolist:
  1304. # if shape is not None: # TODO: This shouldn't have happened.
  1305. # # Make LlinearRings into linestrings otherwise
  1306. # # When chaining the coordinates path is messed up.
  1307. # storage.insert(LineString(shape))
  1308. # #storage.insert(shape)
  1309. # ## Iterate over geometry paths getting the nearest each time.
  1310. #optimized_paths = []
  1311. optimized_paths = FlatCAMRTreeStorage()
  1312. optimized_paths.get_points = get_pts
  1313. path_count = 0
  1314. current_pt = (0, 0)
  1315. pt, geo = storage.nearest(current_pt)
  1316. storage.remove(geo)
  1317. geo = LineString(geo)
  1318. current_pt = geo.coords[-1]
  1319. try:
  1320. while True:
  1321. path_count += 1
  1322. # log.debug("Path %d" % path_count)
  1323. pt, candidate = storage.nearest(current_pt)
  1324. storage.remove(candidate)
  1325. candidate = LineString(candidate)
  1326. # If last point in geometry is the nearest
  1327. # then reverse coordinates.
  1328. # but prefer the first one if last == first
  1329. if pt != candidate.coords[0] and pt == candidate.coords[-1]:
  1330. candidate.coords = list(candidate.coords)[::-1]
  1331. # Straight line from current_pt to pt.
  1332. # Is the toolpath inside the geometry?
  1333. walk_path = LineString([current_pt, pt])
  1334. walk_cut = walk_path.buffer(tooldia / 2, int(steps_per_circle / 4))
  1335. if walk_cut.within(boundary) and walk_path.length < max_walk:
  1336. # log.debug("Walk to path #%d is inside. Joining." % path_count)
  1337. # Completely inside. Append...
  1338. geo.coords = list(geo.coords) + list(candidate.coords)
  1339. # try:
  1340. # last = optimized_paths[-1]
  1341. # last.coords = list(last.coords) + list(geo.coords)
  1342. # except IndexError:
  1343. # optimized_paths.append(geo)
  1344. else:
  1345. # Have to lift tool. End path.
  1346. # log.debug("Path #%d not within boundary. Next." % path_count)
  1347. # optimized_paths.append(geo)
  1348. optimized_paths.insert(geo)
  1349. geo = candidate
  1350. current_pt = geo.coords[-1]
  1351. # Next
  1352. # pt, geo = storage.nearest(current_pt)
  1353. except StopIteration: # Nothing left in storage.
  1354. # pass
  1355. optimized_paths.insert(geo)
  1356. return optimized_paths
  1357. @staticmethod
  1358. def path_connect(storage, origin=(0, 0)):
  1359. """
  1360. Simplifies paths in the FlatCAMRTreeStorage storage by
  1361. connecting paths that touch on their enpoints.
  1362. :param storage: Storage containing the initial paths.
  1363. :rtype storage: FlatCAMRTreeStorage
  1364. :return: Simplified storage.
  1365. :rtype: FlatCAMRTreeStorage
  1366. """
  1367. log.debug("path_connect()")
  1368. # ## Index first and last points in paths
  1369. def get_pts(o):
  1370. return [o.coords[0], o.coords[-1]]
  1371. #
  1372. # storage = FlatCAMRTreeStorage()
  1373. # storage.get_points = get_pts
  1374. #
  1375. # for shape in pathlist:
  1376. # if shape is not None: # TODO: This shouldn't have happened.
  1377. # storage.insert(shape)
  1378. path_count = 0
  1379. pt, geo = storage.nearest(origin)
  1380. storage.remove(geo)
  1381. # optimized_geometry = [geo]
  1382. optimized_geometry = FlatCAMRTreeStorage()
  1383. optimized_geometry.get_points = get_pts
  1384. # optimized_geometry.insert(geo)
  1385. try:
  1386. while True:
  1387. path_count += 1
  1388. _, left = storage.nearest(geo.coords[0])
  1389. # If left touches geo, remove left from original
  1390. # storage and append to geo.
  1391. if type(left) == LineString:
  1392. if left.coords[0] == geo.coords[0]:
  1393. storage.remove(left)
  1394. geo.coords = list(geo.coords)[::-1] + list(left.coords)
  1395. continue
  1396. if left.coords[-1] == geo.coords[0]:
  1397. storage.remove(left)
  1398. geo.coords = list(left.coords) + list(geo.coords)
  1399. continue
  1400. if left.coords[0] == geo.coords[-1]:
  1401. storage.remove(left)
  1402. geo.coords = list(geo.coords) + list(left.coords)
  1403. continue
  1404. if left.coords[-1] == geo.coords[-1]:
  1405. storage.remove(left)
  1406. geo.coords = list(geo.coords) + list(left.coords)[::-1]
  1407. continue
  1408. _, right = storage.nearest(geo.coords[-1])
  1409. # If right touches geo, remove left from original
  1410. # storage and append to geo.
  1411. if type(right) == LineString:
  1412. if right.coords[0] == geo.coords[-1]:
  1413. storage.remove(right)
  1414. geo.coords = list(geo.coords) + list(right.coords)
  1415. continue
  1416. if right.coords[-1] == geo.coords[-1]:
  1417. storage.remove(right)
  1418. geo.coords = list(geo.coords) + list(right.coords)[::-1]
  1419. continue
  1420. if right.coords[0] == geo.coords[0]:
  1421. storage.remove(right)
  1422. geo.coords = list(geo.coords)[::-1] + list(right.coords)
  1423. continue
  1424. if right.coords[-1] == geo.coords[0]:
  1425. storage.remove(right)
  1426. geo.coords = list(left.coords) + list(geo.coords)
  1427. continue
  1428. # right is either a LinearRing or it does not connect
  1429. # to geo (nothing left to connect to geo), so we continue
  1430. # with right as geo.
  1431. storage.remove(right)
  1432. if type(right) == LinearRing:
  1433. optimized_geometry.insert(right)
  1434. else:
  1435. # Cannot extend geo any further. Put it away.
  1436. optimized_geometry.insert(geo)
  1437. # Continue with right.
  1438. geo = right
  1439. except StopIteration: # Nothing found in storage.
  1440. optimized_geometry.insert(geo)
  1441. # print path_count
  1442. log.debug("path_count = %d" % path_count)
  1443. return optimized_geometry
  1444. def convert_units(self, obj_units):
  1445. """
  1446. Converts the units of the object to ``units`` by scaling all
  1447. the geometry appropriately. This call ``scale()``. Don't call
  1448. it again in descendents.
  1449. :param units: "IN" or "MM"
  1450. :type units: str
  1451. :return: Scaling factor resulting from unit change.
  1452. :rtype: float
  1453. """
  1454. if obj_units.upper() == self.units.upper():
  1455. log.debug("camlib.Geometry.convert_units() --> Factor: 1")
  1456. return 1.0
  1457. if obj_units.upper() == "MM":
  1458. factor = 25.4
  1459. log.debug("camlib.Geometry.convert_units() --> Factor: 25.4")
  1460. elif obj_units.upper() == "IN":
  1461. factor = 1 / 25.4
  1462. log.debug("camlib.Geometry.convert_units() --> Factor: %s" % str(1 / 25.4))
  1463. else:
  1464. log.error("Unsupported units: %s" % str(obj_units))
  1465. log.debug("camlib.Geometry.convert_units() --> Factor: 1")
  1466. return 1.0
  1467. self.units = obj_units
  1468. self.scale(factor, factor)
  1469. self.file_units_factor = factor
  1470. return factor
  1471. def to_dict(self):
  1472. """
  1473. Returns a representation of the object as a dictionary.
  1474. Attributes to include are listed in ``self.ser_attrs``.
  1475. :return: A dictionary-encoded copy of the object.
  1476. :rtype: dict
  1477. """
  1478. d = {}
  1479. for attr in self.ser_attrs:
  1480. d[attr] = getattr(self, attr)
  1481. return d
  1482. def from_dict(self, d):
  1483. """
  1484. Sets object's attributes from a dictionary.
  1485. Attributes to include are listed in ``self.ser_attrs``.
  1486. This method will look only for only and all the
  1487. attributes in ``self.ser_attrs``. They must all
  1488. be present. Use only for deserializing saved
  1489. objects.
  1490. :param d: Dictionary of attributes to set in the object.
  1491. :type d: dict
  1492. :return: None
  1493. """
  1494. for attr in self.ser_attrs:
  1495. setattr(self, attr, d[attr])
  1496. def union(self):
  1497. """
  1498. Runs a cascaded union on the list of objects in
  1499. solid_geometry.
  1500. :return: None
  1501. """
  1502. self.solid_geometry = [cascaded_union(self.solid_geometry)]
  1503. def export_svg(self, scale_stroke_factor=0.00,
  1504. scale_factor_x=None, scale_factor_y=None,
  1505. skew_factor_x=None, skew_factor_y=None,
  1506. skew_reference='center',
  1507. mirror=None):
  1508. """
  1509. Exports the Geometry Object as a SVG Element
  1510. :return: SVG Element
  1511. """
  1512. # Make sure we see a Shapely Geometry class and not a list
  1513. if str(type(self)) == "<class 'FlatCAMObj.FlatCAMGeometry'>":
  1514. flat_geo = []
  1515. if self.multigeo:
  1516. for tool in self.tools:
  1517. flat_geo += self.flatten(self.tools[tool]['solid_geometry'])
  1518. geom_svg = cascaded_union(flat_geo)
  1519. else:
  1520. geom_svg = cascaded_union(self.flatten())
  1521. else:
  1522. geom_svg = cascaded_union(self.flatten())
  1523. skew_ref = 'center'
  1524. if skew_reference != 'center':
  1525. xmin, ymin, xmax, ymax = geom_svg.bounds
  1526. if skew_reference == 'topleft':
  1527. skew_ref = (xmin, ymax)
  1528. elif skew_reference == 'bottomleft':
  1529. skew_ref = (xmin, ymin)
  1530. elif skew_reference == 'topright':
  1531. skew_ref = (xmax, ymax)
  1532. elif skew_reference == 'bottomright':
  1533. skew_ref = (xmax, ymin)
  1534. geom = geom_svg
  1535. if scale_factor_x:
  1536. geom = affinity.scale(geom_svg, scale_factor_x, 1.0)
  1537. if scale_factor_y:
  1538. geom = affinity.scale(geom_svg, 1.0, scale_factor_y)
  1539. if skew_factor_x:
  1540. geom = affinity.skew(geom_svg, skew_factor_x, 0.0, origin=skew_ref)
  1541. if skew_factor_y:
  1542. geom = affinity.skew(geom_svg, 0.0, skew_factor_y, origin=skew_ref)
  1543. if mirror:
  1544. if mirror == 'x':
  1545. geom = affinity.scale(geom_svg, 1.0, -1.0)
  1546. if mirror == 'y':
  1547. geom = affinity.scale(geom_svg, -1.0, 1.0)
  1548. if mirror == 'both':
  1549. geom = affinity.scale(geom_svg, -1.0, -1.0)
  1550. # scale_factor is a multiplication factor for the SVG stroke-width used within shapely's svg export
  1551. # If 0 or less which is invalid then default to 0.01
  1552. # This value appears to work for zooming, and getting the output svg line width
  1553. # to match that viewed on screen with FlatCam
  1554. # MS: I choose a factor of 0.01 so the scale is right for PCB UV film
  1555. if scale_stroke_factor <= 0:
  1556. scale_stroke_factor = 0.01
  1557. # Convert to a SVG
  1558. svg_elem = geom.svg(scale_factor=scale_stroke_factor)
  1559. return svg_elem
  1560. def mirror(self, axis, point):
  1561. """
  1562. Mirrors the object around a specified axis passign through
  1563. the given point.
  1564. :param axis: "X" or "Y" indicates around which axis to mirror.
  1565. :type axis: str
  1566. :param point: [x, y] point belonging to the mirror axis.
  1567. :type point: list
  1568. :return: None
  1569. """
  1570. log.debug("camlib.Geometry.mirror()")
  1571. px, py = point
  1572. xscale, yscale = {"X": (1.0, -1.0), "Y": (-1.0, 1.0)}[axis]
  1573. def mirror_geom(obj):
  1574. if type(obj) is list:
  1575. new_obj = []
  1576. for g in obj:
  1577. new_obj.append(mirror_geom(g))
  1578. return new_obj
  1579. else:
  1580. try:
  1581. self.el_count += 1
  1582. disp_number = int(np.interp(self.el_count, [0, self.geo_len], [0, 100]))
  1583. if self.old_disp_number < disp_number <= 100:
  1584. self.app.proc_container.update_view_text(' %d%%' % disp_number)
  1585. self.old_disp_number = disp_number
  1586. return affinity.scale(obj, xscale, yscale, origin=(px, py))
  1587. except AttributeError:
  1588. return obj
  1589. try:
  1590. if self.multigeo is True:
  1591. for tool in self.tools:
  1592. # variables to display the percentage of work done
  1593. self.geo_len = 0
  1594. try:
  1595. for g in self.tools[tool]['solid_geometry']:
  1596. self.geo_len += 1
  1597. except TypeError:
  1598. self.geo_len = 1
  1599. self.old_disp_number = 0
  1600. self.el_count = 0
  1601. self.tools[tool]['solid_geometry'] = mirror_geom(self.tools[tool]['solid_geometry'])
  1602. else:
  1603. # variables to display the percentage of work done
  1604. self.geo_len = 0
  1605. try:
  1606. for g in self.solid_geometry:
  1607. self.geo_len += 1
  1608. except TypeError:
  1609. self.geo_len = 1
  1610. self.old_disp_number = 0
  1611. self.el_count = 0
  1612. self.solid_geometry = mirror_geom(self.solid_geometry)
  1613. self.app.inform.emit('[success] %s...' %
  1614. _('Object was mirrored'))
  1615. except AttributeError:
  1616. self.app.inform.emit('[ERROR_NOTCL] %s' %
  1617. _("Failed to mirror. No object selected"))
  1618. self.app.proc_container.new_text = ''
  1619. def rotate(self, angle, point):
  1620. """
  1621. Rotate an object by an angle (in degrees) around the provided coordinates.
  1622. Parameters
  1623. ----------
  1624. The angle of rotation are specified in degrees (default). Positive angles are
  1625. counter-clockwise and negative are clockwise rotations.
  1626. The point of origin can be a keyword 'center' for the bounding box
  1627. center (default), 'centroid' for the geometry's centroid, a Point object
  1628. or a coordinate tuple (x0, y0).
  1629. See shapely manual for more information:
  1630. http://toblerity.org/shapely/manual.html#affine-transformations
  1631. """
  1632. log.debug("camlib.Geometry.rotate()")
  1633. px, py = point
  1634. def rotate_geom(obj):
  1635. if type(obj) is list:
  1636. new_obj = []
  1637. for g in obj:
  1638. new_obj.append(rotate_geom(g))
  1639. return new_obj
  1640. else:
  1641. try:
  1642. self.el_count += 1
  1643. disp_number = int(np.interp(self.el_count, [0, self.geo_len], [0, 100]))
  1644. if self.old_disp_number < disp_number <= 100:
  1645. self.app.proc_container.update_view_text(' %d%%' % disp_number)
  1646. self.old_disp_number = disp_number
  1647. return affinity.rotate(obj, angle, origin=(px, py))
  1648. except AttributeError:
  1649. return obj
  1650. try:
  1651. if self.multigeo is True:
  1652. for tool in self.tools:
  1653. # variables to display the percentage of work done
  1654. self.geo_len = 0
  1655. try:
  1656. for g in self.tools[tool]['solid_geometry']:
  1657. self.geo_len += 1
  1658. except TypeError:
  1659. self.geo_len = 1
  1660. self.old_disp_number = 0
  1661. self.el_count = 0
  1662. self.tools[tool]['solid_geometry'] = rotate_geom(self.tools[tool]['solid_geometry'])
  1663. else:
  1664. # variables to display the percentage of work done
  1665. self.geo_len = 0
  1666. try:
  1667. for g in self.solid_geometry:
  1668. self.geo_len += 1
  1669. except TypeError:
  1670. self.geo_len = 1
  1671. self.old_disp_number = 0
  1672. self.el_count = 0
  1673. self.solid_geometry = rotate_geom(self.solid_geometry)
  1674. self.app.inform.emit('[success] %s...' %
  1675. _('Object was rotated'))
  1676. except AttributeError:
  1677. self.app.inform.emit('[ERROR_NOTCL] %s' %
  1678. _("Failed to rotate. No object selected"))
  1679. self.app.proc_container.new_text = ''
  1680. def skew(self, angle_x, angle_y, point):
  1681. """
  1682. Shear/Skew the geometries of an object by angles along x and y dimensions.
  1683. Parameters
  1684. ----------
  1685. angle_x, angle_y : float, float
  1686. The shear angle(s) for the x and y axes respectively. These can be
  1687. specified in either degrees (default) or radians by setting
  1688. use_radians=True.
  1689. point: tuple of coordinates (x,y)
  1690. See shapely manual for more information:
  1691. http://toblerity.org/shapely/manual.html#affine-transformations
  1692. """
  1693. log.debug("camlib.Geometry.skew()")
  1694. px, py = point
  1695. def skew_geom(obj):
  1696. if type(obj) is list:
  1697. new_obj = []
  1698. for g in obj:
  1699. new_obj.append(skew_geom(g))
  1700. return new_obj
  1701. else:
  1702. try:
  1703. self.el_count += 1
  1704. disp_number = int(np.interp(self.el_count, [0, self.geo_len], [0, 100]))
  1705. if self.old_disp_number < disp_number <= 100:
  1706. self.app.proc_container.update_view_text(' %d%%' % disp_number)
  1707. self.old_disp_number = disp_number
  1708. return affinity.skew(obj, angle_x, angle_y, origin=(px, py))
  1709. except AttributeError:
  1710. return obj
  1711. try:
  1712. if self.multigeo is True:
  1713. for tool in self.tools:
  1714. # variables to display the percentage of work done
  1715. self.geo_len = 0
  1716. try:
  1717. for g in self.tools[tool]['solid_geometry']:
  1718. self.geo_len += 1
  1719. except TypeError:
  1720. self.geo_len = 1
  1721. self.old_disp_number = 0
  1722. self.el_count = 0
  1723. self.tools[tool]['solid_geometry'] = skew_geom(self.tools[tool]['solid_geometry'])
  1724. else:
  1725. # variables to display the percentage of work done
  1726. self.geo_len = 0
  1727. try:
  1728. for g in self.solid_geometry:
  1729. self.geo_len += 1
  1730. except TypeError:
  1731. self.geo_len = 1
  1732. self.old_disp_number = 0
  1733. self.el_count = 0
  1734. self.solid_geometry = skew_geom(self.solid_geometry)
  1735. self.app.inform.emit('[success] %s...' %
  1736. _('Object was skewed'))
  1737. except AttributeError:
  1738. self.app.inform.emit('[ERROR_NOTCL] %s' %
  1739. _("Failed to skew. No object selected"))
  1740. self.app.proc_container.new_text = ''
  1741. # if type(self.solid_geometry) == list:
  1742. # self.solid_geometry = [affinity.skew(g, angle_x, angle_y, origin=(px, py))
  1743. # for g in self.solid_geometry]
  1744. # else:
  1745. # self.solid_geometry = affinity.skew(self.solid_geometry, angle_x, angle_y,
  1746. # origin=(px, py))
  1747. class AttrDict(dict):
  1748. def __init__(self, *args, **kwargs):
  1749. super(AttrDict, self).__init__(*args, **kwargs)
  1750. self.__dict__ = self
  1751. class CNCjob(Geometry):
  1752. """
  1753. Represents work to be done by a CNC machine.
  1754. *ATTRIBUTES*
  1755. * ``gcode_parsed`` (list): Each is a dictionary:
  1756. ===================== =========================================
  1757. Key Value
  1758. ===================== =========================================
  1759. geom (Shapely.LineString) Tool path (XY plane)
  1760. kind (string) "AB", A is "T" (travel) or
  1761. "C" (cut). B is "F" (fast) or "S" (slow).
  1762. ===================== =========================================
  1763. """
  1764. defaults = {
  1765. "global_zdownrate": None,
  1766. "pp_geometry_name":'default',
  1767. "pp_excellon_name":'default',
  1768. "excellon_optimization_type": "B",
  1769. }
  1770. def __init__(self,
  1771. units="in", kind="generic", tooldia=0.0,
  1772. z_cut=-0.002, z_move=0.1,
  1773. feedrate=3.0, feedrate_z=3.0, feedrate_rapid=3.0, feedrate_probe=3.0,
  1774. pp_geometry_name='default', pp_excellon_name='default',
  1775. depthpercut=0.1,z_pdepth=-0.02,
  1776. spindlespeed=None, spindledir='CW', dwell=True, dwelltime=1000,
  1777. toolchangez=0.787402, toolchange_xy=[0.0, 0.0],
  1778. endz=2.0,
  1779. segx=None,
  1780. segy=None,
  1781. steps_per_circle=None):
  1782. # Used when parsing G-code arcs
  1783. self.steps_per_circle = int(self.app.defaults['cncjob_steps_per_circle'])
  1784. Geometry.__init__(self, geo_steps_per_circle=self.steps_per_circle)
  1785. self.kind = kind
  1786. self.origin_kind = None
  1787. self.units = units
  1788. self.z_cut = z_cut
  1789. self.tool_offset = {}
  1790. self.z_move = z_move
  1791. self.feedrate = feedrate
  1792. self.z_feedrate = feedrate_z
  1793. self.feedrate_rapid = feedrate_rapid
  1794. self.tooldia = tooldia
  1795. self.z_toolchange = toolchangez
  1796. self.xy_toolchange = toolchange_xy
  1797. self.toolchange_xy_type = None
  1798. self.toolC = tooldia
  1799. self.z_end = endz
  1800. self.z_depthpercut = depthpercut
  1801. self.unitcode = {"IN": "G20", "MM": "G21"}
  1802. self.feedminutecode = "G94"
  1803. # self.absolutecode = "G90"
  1804. # self.incrementalcode = "G91"
  1805. self.coordinates_type = self.app.defaults["cncjob_coords_type"]
  1806. self.gcode = ""
  1807. self.gcode_parsed = None
  1808. self.pp_geometry_name = pp_geometry_name
  1809. self.pp_geometry = self.app.postprocessors[self.pp_geometry_name]
  1810. self.pp_excellon_name = pp_excellon_name
  1811. self.pp_excellon = self.app.postprocessors[self.pp_excellon_name]
  1812. self.pp_solderpaste_name = None
  1813. # Controls if the move from Z_Toolchange to Z_Move is done fast with G0 or normally with G1
  1814. self.f_plunge = None
  1815. # Controls if the move from Z_Cutto Z_Move is done fast with G0 or G1 until zero and then G0 to Z_move
  1816. self.f_retract = None
  1817. # how much depth the probe can probe before error
  1818. self.z_pdepth = z_pdepth if z_pdepth else None
  1819. # the feedrate(speed) with which the probel travel while probing
  1820. self.feedrate_probe = feedrate_probe if feedrate_probe else None
  1821. self.spindlespeed = spindlespeed
  1822. self.spindledir = spindledir
  1823. self.dwell = dwell
  1824. self.dwelltime = dwelltime
  1825. self.segx = float(segx) if segx is not None else 0.0
  1826. self.segy = float(segy) if segy is not None else 0.0
  1827. self.input_geometry_bounds = None
  1828. self.oldx = None
  1829. self.oldy = None
  1830. self.tool = 0.0
  1831. # here store the travelled distance
  1832. self.travel_distance = 0.0
  1833. # here store the routing time
  1834. self.routing_time = 0.0
  1835. # used for creating drill CCode geometry; will be updated in the generate_from_excellon_by_tool()
  1836. self.exc_drills = None
  1837. self.exc_tools = None
  1838. # search for toolchange parameters in the Toolchange Custom Code
  1839. self.re_toolchange_custom = re.compile(r'(%[a-zA-Z0-9\-_]+%)')
  1840. # search for toolchange code: M6
  1841. self.re_toolchange = re.compile(r'^\s*(M6)$')
  1842. # Attributes to be included in serialization
  1843. # Always append to it because it carries contents
  1844. # from Geometry.
  1845. self.ser_attrs += ['kind', 'z_cut', 'z_move', 'z_toolchange', 'feedrate', 'z_feedrate', 'feedrate_rapid',
  1846. 'tooldia', 'gcode', 'input_geometry_bounds', 'gcode_parsed', 'steps_per_circle',
  1847. 'z_depthpercut', 'spindlespeed', 'dwell', 'dwelltime']
  1848. @property
  1849. def postdata(self):
  1850. return self.__dict__
  1851. def convert_units(self, units):
  1852. log.debug("camlib.CNCJob.convert_units()")
  1853. factor = Geometry.convert_units(self, units)
  1854. self.z_cut = float(self.z_cut) * factor
  1855. self.z_move *= factor
  1856. self.feedrate *= factor
  1857. self.z_feedrate *= factor
  1858. self.feedrate_rapid *= factor
  1859. self.tooldia *= factor
  1860. self.z_toolchange *= factor
  1861. self.z_end *= factor
  1862. self.z_depthpercut = float(self.z_depthpercut) * factor
  1863. return factor
  1864. def doformat(self, fun, **kwargs):
  1865. return self.doformat2(fun, **kwargs) + "\n"
  1866. def doformat2(self, fun, **kwargs):
  1867. attributes = AttrDict()
  1868. attributes.update(self.postdata)
  1869. attributes.update(kwargs)
  1870. try:
  1871. returnvalue = fun(attributes)
  1872. return returnvalue
  1873. except Exception as e:
  1874. self.app.log.error('Exception occurred within a postprocessor: ' + traceback.format_exc())
  1875. return ''
  1876. def parse_custom_toolchange_code(self, data):
  1877. text = data
  1878. match_list = self.re_toolchange_custom.findall(text)
  1879. if match_list:
  1880. for match in match_list:
  1881. command = match.strip('%')
  1882. try:
  1883. value = getattr(self, command)
  1884. except AttributeError:
  1885. self.app.inform.emit('[ERROR] %s: %s' %
  1886. (_("There is no such parameter"), str(match)))
  1887. log.debug("CNCJob.parse_custom_toolchange_code() --> AttributeError ")
  1888. return 'fail'
  1889. text = text.replace(match, str(value))
  1890. return text
  1891. def optimized_travelling_salesman(self, points, start=None):
  1892. """
  1893. As solving the problem in the brute force way is too slow,
  1894. this function implements a simple heuristic: always
  1895. go to the nearest city.
  1896. Even if this algorithm is extremely simple, it works pretty well
  1897. giving a solution only about 25%% longer than the optimal one (cit. Wikipedia),
  1898. and runs very fast in O(N^2) time complexity.
  1899. >>> optimized_travelling_salesman([[i,j] for i in range(5) for j in range(5)])
  1900. [[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [1, 4], [1, 3], [1, 2], [1, 1], [1, 0], [2, 0], [2, 1], [2, 2],
  1901. [2, 3], [2, 4], [3, 4], [3, 3], [3, 2], [3, 1], [3, 0], [4, 0], [4, 1], [4, 2], [4, 3], [4, 4]]
  1902. >>> optimized_travelling_salesman([[0,0],[10,0],[6,0]])
  1903. [[0, 0], [6, 0], [10, 0]]
  1904. """
  1905. if start is None:
  1906. start = points[0]
  1907. must_visit = points
  1908. path = [start]
  1909. # must_visit.remove(start)
  1910. while must_visit:
  1911. nearest = min(must_visit, key=lambda x: distance(path[-1], x))
  1912. path.append(nearest)
  1913. must_visit.remove(nearest)
  1914. return path
  1915. def generate_from_excellon_by_tool(
  1916. self, exobj, tools="all", drillz = 3.0,
  1917. toolchange=False, toolchangez=0.1, toolchangexy='',
  1918. endz=2.0, startz=None,
  1919. excellon_optimization_type='B'):
  1920. """
  1921. Creates gcode for this object from an Excellon object
  1922. for the specified tools.
  1923. :param exobj: Excellon object to process
  1924. :type exobj: Excellon
  1925. :param tools: Comma separated tool names
  1926. :type: tools: str
  1927. :param drillz: drill Z depth
  1928. :type drillz: float
  1929. :param toolchange: Use tool change sequence between tools.
  1930. :type toolchange: bool
  1931. :param toolchangez: Height at which to perform the tool change.
  1932. :type toolchangez: float
  1933. :param toolchangexy: Toolchange X,Y position
  1934. :type toolchangexy: String containing 2 floats separated by comma
  1935. :param startz: Z position just before starting the job
  1936. :type startz: float
  1937. :param endz: final Z position to move to at the end of the CNC job
  1938. :type endz: float
  1939. :param excellon_optimization_type: Single character that defines which drill re-ordering optimisation algorithm
  1940. is to be used: 'M' for meta-heuristic and 'B' for basic
  1941. :type excellon_optimization_type: string
  1942. :return: None
  1943. :rtype: None
  1944. """
  1945. # create a local copy of the exobj.drills so it can be used for creating drill CCode geometry
  1946. self.exc_drills = deepcopy(exobj.drills)
  1947. self.exc_tools = deepcopy(exobj.tools)
  1948. if drillz > 0:
  1949. self.app.inform.emit('[WARNING] %s' %
  1950. _("The Cut Z parameter has positive value. "
  1951. "It is the depth value to drill into material.\n"
  1952. "The Cut Z parameter needs to have a negative value, assuming it is a typo "
  1953. "therefore the app will convert the value to negative. "
  1954. "Check the resulting CNC code (Gcode etc)."))
  1955. self.z_cut = -drillz
  1956. elif drillz == 0:
  1957. self.app.inform.emit('[WARNING] %s: %s' %
  1958. (_("The Cut Z parameter is zero. There will be no cut, skipping file"),
  1959. exobj.options['name']))
  1960. return 'fail'
  1961. else:
  1962. self.z_cut = drillz
  1963. self.z_toolchange = toolchangez
  1964. try:
  1965. if toolchangexy == '':
  1966. self.xy_toolchange = None
  1967. else:
  1968. self.xy_toolchange = [float(eval(a)) for a in toolchangexy.split(",")]
  1969. if len(self.xy_toolchange) < 2:
  1970. self.app.inform.emit('[ERROR]%s' %
  1971. _("The Toolchange X,Y field in Edit -> Preferences has to be "
  1972. "in the format (x, y) \nbut now there is only one value, not two. "))
  1973. return 'fail'
  1974. except Exception as e:
  1975. log.debug("camlib.CNCJob.generate_from_excellon_by_tool() --> %s" % str(e))
  1976. pass
  1977. self.startz = startz
  1978. self.z_end = endz
  1979. self.pp_excellon = self.app.postprocessors[self.pp_excellon_name]
  1980. p = self.pp_excellon
  1981. log.debug("Creating CNC Job from Excellon...")
  1982. # Tools
  1983. # sort the tools list by the second item in tuple (here we have a dict with diameter of the tool)
  1984. # so we actually are sorting the tools by diameter
  1985. #sorted_tools = sorted(exobj.tools.items(), key=lambda t1: t1['C'])
  1986. sort = []
  1987. for k, v in list(exobj.tools.items()):
  1988. sort.append((k, v.get('C')))
  1989. sorted_tools = sorted(sort,key=lambda t1: t1[1])
  1990. if tools == "all":
  1991. tools = [i[0] for i in sorted_tools] # we get a array of ordered tools
  1992. log.debug("Tools 'all' and sorted are: %s" % str(tools))
  1993. else:
  1994. selected_tools = [x.strip() for x in tools.split(",")] # we strip spaces and also separate the tools by ','
  1995. selected_tools = [t1 for t1 in selected_tools if t1 in selected_tools]
  1996. # Create a sorted list of selected tools from the sorted_tools list
  1997. tools = [i for i, j in sorted_tools for k in selected_tools if i == k]
  1998. log.debug("Tools selected and sorted are: %s" % str(tools))
  1999. self.app.inform.emit(_("Creating a list of points to drill..."))
  2000. # Points (Group by tool)
  2001. points = {}
  2002. for drill in exobj.drills:
  2003. if self.app.abort_flag:
  2004. # graceful abort requested by the user
  2005. raise FlatCAMApp.GracefulException
  2006. if drill['tool'] in tools:
  2007. try:
  2008. points[drill['tool']].append(drill['point'])
  2009. except KeyError:
  2010. points[drill['tool']] = [drill['point']]
  2011. #log.debug("Found %d drills." % len(points))
  2012. self.gcode = []
  2013. self.f_plunge = self.app.defaults["excellon_f_plunge"]
  2014. self.f_retract = self.app.defaults["excellon_f_retract"]
  2015. # Initialization
  2016. gcode = self.doformat(p.start_code)
  2017. gcode += self.doformat(p.feedrate_code)
  2018. if toolchange is False:
  2019. if self.xy_toolchange is not None:
  2020. gcode += self.doformat(p.lift_code, x=self.xy_toolchange[0], y=self.xy_toolchange[1])
  2021. gcode += self.doformat(p.startz_code, x=self.xy_toolchange[0], y=self.xy_toolchange[1])
  2022. else:
  2023. gcode += self.doformat(p.lift_code, x=0.0, y=0.0)
  2024. gcode += self.doformat(p.startz_code, x=0.0, y=0.0)
  2025. # Distance callback
  2026. class CreateDistanceCallback(object):
  2027. """Create callback to calculate distances between points."""
  2028. def __init__(self):
  2029. """Initialize distance array."""
  2030. locations = create_data_array()
  2031. size = len(locations)
  2032. self.matrix = {}
  2033. for from_node in range(size):
  2034. self.matrix[from_node] = {}
  2035. for to_node in range(size):
  2036. if from_node == to_node:
  2037. self.matrix[from_node][to_node] = 0
  2038. else:
  2039. x1 = locations[from_node][0]
  2040. y1 = locations[from_node][1]
  2041. x2 = locations[to_node][0]
  2042. y2 = locations[to_node][1]
  2043. self.matrix[from_node][to_node] = distance_euclidian(x1, y1, x2, y2)
  2044. # def Distance(self, from_node, to_node):
  2045. # return int(self.matrix[from_node][to_node])
  2046. def Distance(self, from_index, to_index):
  2047. # Convert from routing variable Index to distance matrix NodeIndex.
  2048. from_node = manager.IndexToNode(from_index)
  2049. to_node = manager.IndexToNode(to_index)
  2050. return self.matrix[from_node][to_node]
  2051. # Create the data.
  2052. def create_data_array():
  2053. locations = []
  2054. for point in points[tool]:
  2055. locations.append((point.coords.xy[0][0], point.coords.xy[1][0]))
  2056. return locations
  2057. if self.xy_toolchange is not None:
  2058. self.oldx = self.xy_toolchange[0]
  2059. self.oldy = self.xy_toolchange[1]
  2060. else:
  2061. self.oldx = 0.0
  2062. self.oldy = 0.0
  2063. measured_distance = 0.0
  2064. measured_down_distance = 0.0
  2065. measured_up_to_zero_distance = 0.0
  2066. measured_lift_distance = 0.0
  2067. self.app.inform.emit('%s...' %
  2068. _("Starting G-Code"))
  2069. current_platform = platform.architecture()[0]
  2070. if current_platform == '64bit':
  2071. used_excellon_optimization_type = excellon_optimization_type
  2072. if used_excellon_optimization_type == 'M':
  2073. log.debug("Using OR-Tools Metaheuristic Guided Local Search drill path optimization.")
  2074. if exobj.drills:
  2075. for tool in tools:
  2076. self.tool=tool
  2077. self.postdata['toolC'] = exobj.tools[tool]["C"]
  2078. self.tooldia = exobj.tools[tool]["C"]
  2079. if self.app.abort_flag:
  2080. # graceful abort requested by the user
  2081. raise FlatCAMApp.GracefulException
  2082. # ###############################################
  2083. # ############ Create the data. #################
  2084. # ###############################################
  2085. node_list = []
  2086. locations = create_data_array()
  2087. tsp_size = len(locations)
  2088. num_routes = 1 # The number of routes, which is 1 in the TSP.
  2089. # Nodes are indexed from 0 to tsp_size - 1. The depot is the starting node of the route.
  2090. depot = 0
  2091. # Create routing model.
  2092. if tsp_size > 0:
  2093. manager = pywrapcp.RoutingIndexManager(tsp_size, num_routes, depot)
  2094. routing = pywrapcp.RoutingModel(manager)
  2095. search_parameters = pywrapcp.DefaultRoutingSearchParameters()
  2096. search_parameters.local_search_metaheuristic = (
  2097. routing_enums_pb2.LocalSearchMetaheuristic.GUIDED_LOCAL_SEARCH)
  2098. # Set search time limit in milliseconds.
  2099. if float(self.app.defaults["excellon_search_time"]) != 0:
  2100. search_parameters.time_limit.seconds = int(
  2101. float(self.app.defaults["excellon_search_time"]))
  2102. else:
  2103. search_parameters.time_limit.seconds = 3
  2104. # Callback to the distance function. The callback takes two
  2105. # arguments (the from and to node indices) and returns the distance between them.
  2106. dist_between_locations = CreateDistanceCallback()
  2107. dist_callback = dist_between_locations.Distance
  2108. transit_callback_index = routing.RegisterTransitCallback(dist_callback)
  2109. routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index)
  2110. # Solve, returns a solution if any.
  2111. assignment = routing.SolveWithParameters(search_parameters)
  2112. if assignment:
  2113. # Solution cost.
  2114. log.info("Total distance: " + str(assignment.ObjectiveValue()))
  2115. # Inspect solution.
  2116. # Only one route here; otherwise iterate from 0 to routing.vehicles() - 1.
  2117. route_number = 0
  2118. node = routing.Start(route_number)
  2119. start_node = node
  2120. while not routing.IsEnd(node):
  2121. if self.app.abort_flag:
  2122. # graceful abort requested by the user
  2123. raise FlatCAMApp.GracefulException
  2124. node_list.append(node)
  2125. node = assignment.Value(routing.NextVar(node))
  2126. else:
  2127. log.warning('No solution found.')
  2128. else:
  2129. log.warning('Specify an instance greater than 0.')
  2130. # ############################################# ##
  2131. # Only if tool has points.
  2132. if tool in points:
  2133. if self.app.abort_flag:
  2134. # graceful abort requested by the user
  2135. raise FlatCAMApp.GracefulException
  2136. # Tool change sequence (optional)
  2137. if toolchange:
  2138. gcode += self.doformat(p.toolchange_code,toolchangexy=(self.oldx, self.oldy))
  2139. gcode += self.doformat(p.spindle_code) # Spindle start
  2140. if self.dwell is True:
  2141. gcode += self.doformat(p.dwell_code) # Dwell time
  2142. else:
  2143. gcode += self.doformat(p.spindle_code)
  2144. if self.dwell is True:
  2145. gcode += self.doformat(p.dwell_code) # Dwell time
  2146. if self.units == 'MM':
  2147. current_tooldia = float('%.2f' % float(exobj.tools[tool]["C"]))
  2148. else:
  2149. current_tooldia = float('%.4f' % float(exobj.tools[tool]["C"]))
  2150. self.app.inform.emit(
  2151. '%s: %s%s.' % (_("Starting G-Code for tool with diameter"),
  2152. str(current_tooldia),
  2153. str(self.units))
  2154. )
  2155. # TODO apply offset only when using the GUI, for TclCommand this will create an error
  2156. # because the values for Z offset are created in build_ui()
  2157. try:
  2158. z_offset = float(self.tool_offset[current_tooldia]) * (-1)
  2159. except KeyError:
  2160. z_offset = 0
  2161. self.z_cut += z_offset
  2162. self.coordinates_type = self.app.defaults["cncjob_coords_type"]
  2163. if self.coordinates_type == "G90":
  2164. # Drillling! for Absolute coordinates type G90
  2165. # variables to display the percentage of work done
  2166. geo_len = len(node_list)
  2167. disp_number = 0
  2168. old_disp_number = 0
  2169. log.warning("Number of drills for which to generate GCode: %s" % str(geo_len))
  2170. loc_nr = 0
  2171. for k in node_list:
  2172. if self.app.abort_flag:
  2173. # graceful abort requested by the user
  2174. raise FlatCAMApp.GracefulException
  2175. locx = locations[k][0]
  2176. locy = locations[k][1]
  2177. gcode += self.doformat(p.rapid_code, x=locx, y=locy)
  2178. gcode += self.doformat(p.down_code, x=locx, y=locy)
  2179. measured_down_distance += abs(self.z_cut) + abs(self.z_move)
  2180. if self.f_retract is False:
  2181. gcode += self.doformat(p.up_to_zero_code, x=locx, y=locy)
  2182. measured_up_to_zero_distance += abs(self.z_cut)
  2183. measured_lift_distance += abs(self.z_move)
  2184. else:
  2185. measured_lift_distance += abs(self.z_cut) + abs(self.z_move)
  2186. gcode += self.doformat(p.lift_code, x=locx, y=locy)
  2187. measured_distance += abs(distance_euclidian(locx, locy, self.oldx, self.oldy))
  2188. self.oldx = locx
  2189. self.oldy = locy
  2190. loc_nr += 1
  2191. disp_number = int(np.interp(loc_nr, [0, geo_len], [0, 100]))
  2192. if old_disp_number < disp_number <= 100:
  2193. self.app.proc_container.update_view_text(' %d%%' % disp_number)
  2194. old_disp_number = disp_number
  2195. else:
  2196. self.app.inform.emit('[ERROR_NOTCL] %s...' %
  2197. _('G91 coordinates not implemented'))
  2198. return 'fail'
  2199. else:
  2200. log.debug("camlib.CNCJob.generate_from_excellon_by_tool() --> "
  2201. "The loaded Excellon file has no drills ...")
  2202. self.app.inform.emit('[ERROR_NOTCL] %s...' %
  2203. _('The loaded Excellon file has no drills'))
  2204. return 'fail'
  2205. log.debug("The total travel distance with OR-TOOLS Metaheuristics is: %s" % str(measured_distance))
  2206. if used_excellon_optimization_type == 'B':
  2207. log.debug("Using OR-Tools Basic drill path optimization.")
  2208. if exobj.drills:
  2209. for tool in tools:
  2210. if self.app.abort_flag:
  2211. # graceful abort requested by the user
  2212. raise FlatCAMApp.GracefulException
  2213. self.tool=tool
  2214. self.postdata['toolC']=exobj.tools[tool]["C"]
  2215. self.tooldia = exobj.tools[tool]["C"]
  2216. # ############################################# ##
  2217. node_list = []
  2218. locations = create_data_array()
  2219. tsp_size = len(locations)
  2220. num_routes = 1 # The number of routes, which is 1 in the TSP.
  2221. # Nodes are indexed from 0 to tsp_size - 1. The depot is the starting node of the route.
  2222. depot = 0
  2223. # Create routing model.
  2224. if tsp_size > 0:
  2225. manager = pywrapcp.RoutingIndexManager(tsp_size, num_routes, depot)
  2226. routing = pywrapcp.RoutingModel(manager)
  2227. search_parameters = pywrapcp.DefaultRoutingSearchParameters()
  2228. # Callback to the distance function. The callback takes two
  2229. # arguments (the from and to node indices) and returns the distance between them.
  2230. dist_between_locations = CreateDistanceCallback()
  2231. dist_callback = dist_between_locations.Distance
  2232. transit_callback_index = routing.RegisterTransitCallback(dist_callback)
  2233. routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index)
  2234. # Solve, returns a solution if any.
  2235. assignment = routing.SolveWithParameters(search_parameters)
  2236. if assignment:
  2237. # Solution cost.
  2238. log.info("Total distance: " + str(assignment.ObjectiveValue()))
  2239. # Inspect solution.
  2240. # Only one route here; otherwise iterate from 0 to routing.vehicles() - 1.
  2241. route_number = 0
  2242. node = routing.Start(route_number)
  2243. start_node = node
  2244. while not routing.IsEnd(node):
  2245. node_list.append(node)
  2246. node = assignment.Value(routing.NextVar(node))
  2247. else:
  2248. log.warning('No solution found.')
  2249. else:
  2250. log.warning('Specify an instance greater than 0.')
  2251. # ############################################# ##
  2252. # Only if tool has points.
  2253. if tool in points:
  2254. if self.app.abort_flag:
  2255. # graceful abort requested by the user
  2256. raise FlatCAMApp.GracefulException
  2257. # Tool change sequence (optional)
  2258. if toolchange:
  2259. gcode += self.doformat(p.toolchange_code,toolchangexy=(self.oldx, self.oldy))
  2260. gcode += self.doformat(p.spindle_code) # Spindle start)
  2261. if self.dwell is True:
  2262. gcode += self.doformat(p.dwell_code) # Dwell time
  2263. else:
  2264. gcode += self.doformat(p.spindle_code)
  2265. if self.dwell is True:
  2266. gcode += self.doformat(p.dwell_code) # Dwell time
  2267. if self.units == 'MM':
  2268. current_tooldia = float('%.2f' % float(exobj.tools[tool]["C"]))
  2269. else:
  2270. current_tooldia = float('%.4f' % float(exobj.tools[tool]["C"]))
  2271. self.app.inform.emit(
  2272. '%s: %s%s.' % (_("Starting G-Code for tool with diameter"),
  2273. str(current_tooldia),
  2274. str(self.units))
  2275. )
  2276. # TODO apply offset only when using the GUI, for TclCommand this will create an error
  2277. # because the values for Z offset are created in build_ui()
  2278. try:
  2279. z_offset = float(self.tool_offset[current_tooldia]) * (-1)
  2280. except KeyError:
  2281. z_offset = 0
  2282. self.z_cut += z_offset
  2283. self.coordinates_type = self.app.defaults["cncjob_coords_type"]
  2284. if self.coordinates_type == "G90":
  2285. # Drillling! for Absolute coordinates type G90
  2286. # variables to display the percentage of work done
  2287. geo_len = len(node_list)
  2288. disp_number = 0
  2289. old_disp_number = 0
  2290. log.warning("Number of drills for which to generate GCode: %s" % str(geo_len))
  2291. loc_nr = 0
  2292. for k in node_list:
  2293. if self.app.abort_flag:
  2294. # graceful abort requested by the user
  2295. raise FlatCAMApp.GracefulException
  2296. locx = locations[k][0]
  2297. locy = locations[k][1]
  2298. gcode += self.doformat(p.rapid_code, x=locx, y=locy)
  2299. gcode += self.doformat(p.down_code, x=locx, y=locy)
  2300. measured_down_distance += abs(self.z_cut) + abs(self.z_move)
  2301. if self.f_retract is False:
  2302. gcode += self.doformat(p.up_to_zero_code, x=locx, y=locy)
  2303. measured_up_to_zero_distance += abs(self.z_cut)
  2304. measured_lift_distance += abs(self.z_move)
  2305. else:
  2306. measured_lift_distance += abs(self.z_cut) + abs(self.z_move)
  2307. gcode += self.doformat(p.lift_code, x=locx, y=locy)
  2308. measured_distance += abs(distance_euclidian(locx, locy, self.oldx, self.oldy))
  2309. self.oldx = locx
  2310. self.oldy = locy
  2311. loc_nr += 1
  2312. disp_number = int(np.interp(loc_nr, [0, geo_len], [0, 100]))
  2313. if old_disp_number < disp_number <= 100:
  2314. self.app.proc_container.update_view_text(' %d%%' % disp_number)
  2315. old_disp_number = disp_number
  2316. else:
  2317. self.app.inform.emit('[ERROR_NOTCL] %s...' %
  2318. _('G91 coordinates not implemented'))
  2319. return 'fail'
  2320. else:
  2321. log.debug("camlib.CNCJob.generate_from_excellon_by_tool() --> "
  2322. "The loaded Excellon file has no drills ...")
  2323. self.app.inform.emit('[ERROR_NOTCL] %s...' %
  2324. _('The loaded Excellon file has no drills'))
  2325. return 'fail'
  2326. log.debug("The total travel distance with OR-TOOLS Basic Algorithm is: %s" % str(measured_distance))
  2327. else:
  2328. used_excellon_optimization_type = 'T'
  2329. if used_excellon_optimization_type == 'T':
  2330. log.debug("Using Travelling Salesman drill path optimization.")
  2331. for tool in tools:
  2332. if self.app.abort_flag:
  2333. # graceful abort requested by the user
  2334. raise FlatCAMApp.GracefulException
  2335. if exobj.drills:
  2336. self.tool = tool
  2337. self.postdata['toolC'] = exobj.tools[tool]["C"]
  2338. self.tooldia = exobj.tools[tool]["C"]
  2339. # Only if tool has points.
  2340. if tool in points:
  2341. if self.app.abort_flag:
  2342. # graceful abort requested by the user
  2343. raise FlatCAMApp.GracefulException
  2344. # Tool change sequence (optional)
  2345. if toolchange:
  2346. gcode += self.doformat(p.toolchange_code, toolchangexy=(self.oldx, self.oldy))
  2347. gcode += self.doformat(p.spindle_code) # Spindle start)
  2348. if self.dwell is True:
  2349. gcode += self.doformat(p.dwell_code) # Dwell time
  2350. else:
  2351. gcode += self.doformat(p.spindle_code)
  2352. if self.dwell is True:
  2353. gcode += self.doformat(p.dwell_code) # Dwell time
  2354. if self.units == 'MM':
  2355. current_tooldia = float('%.2f' % float(exobj.tools[tool]["C"]))
  2356. else:
  2357. current_tooldia = float('%.4f' % float(exobj.tools[tool]["C"]))
  2358. self.app.inform.emit(
  2359. '%s: %s%s.' % (_("Starting G-Code for tool with diameter"),
  2360. str(current_tooldia),
  2361. str(self.units))
  2362. )
  2363. # TODO apply offset only when using the GUI, for TclCommand this will create an error
  2364. # because the values for Z offset are created in build_ui()
  2365. try:
  2366. z_offset = float(self.tool_offset[current_tooldia]) * (-1)
  2367. except KeyError:
  2368. z_offset = 0
  2369. self.z_cut += z_offset
  2370. self.coordinates_type = self.app.defaults["cncjob_coords_type"]
  2371. if self.coordinates_type == "G90":
  2372. # Drillling! for Absolute coordinates type G90
  2373. altPoints = []
  2374. for point in points[tool]:
  2375. altPoints.append((point.coords.xy[0][0], point.coords.xy[1][0]))
  2376. node_list = self.optimized_travelling_salesman(altPoints)
  2377. # variables to display the percentage of work done
  2378. geo_len = len(node_list)
  2379. disp_number = 0
  2380. old_disp_number = 0
  2381. log.warning("Number of drills for which to generate GCode: %s" % str(geo_len))
  2382. loc_nr = 0
  2383. for point in node_list:
  2384. if self.app.abort_flag:
  2385. # graceful abort requested by the user
  2386. raise FlatCAMApp.GracefulException
  2387. gcode += self.doformat(p.rapid_code, x=point[0], y=point[1])
  2388. gcode += self.doformat(p.down_code, x=point[0], y=point[1])
  2389. measured_down_distance += abs(self.z_cut) + abs(self.z_move)
  2390. if self.f_retract is False:
  2391. gcode += self.doformat(p.up_to_zero_code, x=point[0], y=point[1])
  2392. measured_up_to_zero_distance += abs(self.z_cut)
  2393. measured_lift_distance += abs(self.z_move)
  2394. else:
  2395. measured_lift_distance += abs(self.z_cut) + abs(self.z_move)
  2396. gcode += self.doformat(p.lift_code, x=point[0], y=point[1])
  2397. measured_distance += abs(distance_euclidian(point[0], point[1], self.oldx, self.oldy))
  2398. self.oldx = point[0]
  2399. self.oldy = point[1]
  2400. loc_nr += 1
  2401. disp_number = int(np.interp(loc_nr, [0, geo_len], [0, 100]))
  2402. if old_disp_number < disp_number <= 100:
  2403. self.app.proc_container.update_view_text(' %d%%' % disp_number)
  2404. old_disp_number = disp_number
  2405. else:
  2406. self.app.inform.emit('[ERROR_NOTCL] %s...' %
  2407. _('G91 coordinates not implemented'))
  2408. return 'fail'
  2409. else:
  2410. log.debug("camlib.CNCJob.generate_from_excellon_by_tool() --> "
  2411. "The loaded Excellon file has no drills ...")
  2412. self.app.inform.emit('[ERROR_NOTCL] %s...' %
  2413. _('The loaded Excellon file has no drills'))
  2414. return 'fail'
  2415. log.debug("The total travel distance with Travelling Salesman Algorithm is: %s" % str(measured_distance))
  2416. gcode += self.doformat(p.spindle_stop_code) # Spindle stop
  2417. gcode += self.doformat(p.end_code, x=0, y=0)
  2418. measured_distance += abs(distance_euclidian(self.oldx, self.oldy, 0, 0))
  2419. log.debug("The total travel distance including travel to end position is: %s" %
  2420. str(measured_distance) + '\n')
  2421. self.travel_distance = measured_distance
  2422. # I use the value of self.feedrate_rapid for the feadrate in case of the measure_lift_distance and for
  2423. # traveled_time because it is not always possible to determine the feedrate that the CNC machine uses
  2424. # for G0 move (the fastest speed available to the CNC router). Although self.feedrate_rapids is used only with
  2425. # Marlin postprocessor and derivatives.
  2426. self.routing_time = (measured_down_distance + measured_up_to_zero_distance) / self.feedrate
  2427. lift_time = measured_lift_distance / self.feedrate_rapid
  2428. traveled_time = measured_distance / self.feedrate_rapid
  2429. self.routing_time += lift_time + traveled_time
  2430. self.gcode = gcode
  2431. self.app.inform.emit(_("Finished G-Code generation..."))
  2432. return 'OK'
  2433. def generate_from_multitool_geometry(self, geometry, append=True,
  2434. tooldia=None, offset=0.0, tolerance=0, z_cut=1.0, z_move=2.0,
  2435. feedrate=2.0, feedrate_z=2.0, feedrate_rapid=30,
  2436. spindlespeed=None, spindledir='CW', dwell=False, dwelltime=1.0,
  2437. multidepth=False, depthpercut=None,
  2438. toolchange=False, toolchangez=1.0, toolchangexy="0.0, 0.0", extracut=False,
  2439. startz=None, endz=2.0, pp_geometry_name=None, tool_no=1):
  2440. """
  2441. Algorithm to generate from multitool Geometry.
  2442. Algorithm description:
  2443. ----------------------
  2444. Uses RTree to find the nearest path to follow.
  2445. :param geometry:
  2446. :param append:
  2447. :param tooldia:
  2448. :param tolerance:
  2449. :param multidepth: If True, use multiple passes to reach
  2450. the desired depth.
  2451. :param depthpercut: Maximum depth in each pass.
  2452. :param extracut: Adds (or not) an extra cut at the end of each path
  2453. overlapping the first point in path to ensure complete copper removal
  2454. :return: GCode - string
  2455. """
  2456. log.debug("Generate_from_multitool_geometry()")
  2457. temp_solid_geometry = []
  2458. if offset != 0.0:
  2459. for it in geometry:
  2460. # if the geometry is a closed shape then create a Polygon out of it
  2461. if isinstance(it, LineString):
  2462. c = it.coords
  2463. if c[0] == c[-1]:
  2464. it = Polygon(it)
  2465. temp_solid_geometry.append(it.buffer(offset, join_style=2))
  2466. else:
  2467. temp_solid_geometry = geometry
  2468. # ## Flatten the geometry. Only linear elements (no polygons) remain.
  2469. flat_geometry = self.flatten(temp_solid_geometry, pathonly=True)
  2470. log.debug("%d paths" % len(flat_geometry))
  2471. self.tooldia = float(tooldia) if tooldia else None
  2472. self.z_cut = float(z_cut) if z_cut else None
  2473. self.z_move = float(z_move) if z_move else None
  2474. self.feedrate = float(feedrate) if feedrate else None
  2475. self.z_feedrate = float(feedrate_z) if feedrate_z else None
  2476. self.feedrate_rapid = float(feedrate_rapid) if feedrate_rapid else None
  2477. self.spindlespeed = int(spindlespeed) if spindlespeed else None
  2478. self.spindledir = spindledir
  2479. self.dwell = dwell
  2480. self.dwelltime = float(dwelltime) if dwelltime else None
  2481. self.startz = float(startz) if startz else None
  2482. self.z_end = float(endz) if endz else None
  2483. self.z_depthpercut = float(depthpercut) if depthpercut else None
  2484. self.multidepth = multidepth
  2485. self.z_toolchange = float(toolchangez) if toolchangez else None
  2486. # it servers in the postprocessor file
  2487. self.tool = tool_no
  2488. try:
  2489. if toolchangexy == '':
  2490. self.xy_toolchange = None
  2491. else:
  2492. self.xy_toolchange = [float(eval(a)) for a in toolchangexy.split(",")]
  2493. if len(self.xy_toolchange) < 2:
  2494. self.app.inform.emit('[ERROR] %s' % _("The Toolchange X,Y field in Edit -> Preferences has to be "
  2495. "in the format (x, y) \n"
  2496. "but now there is only one value, not two."))
  2497. return 'fail'
  2498. except Exception as e:
  2499. log.debug("camlib.CNCJob.generate_from_multitool_geometry() --> %s" % str(e))
  2500. pass
  2501. self.pp_geometry_name = pp_geometry_name if pp_geometry_name else 'default'
  2502. self.f_plunge = self.app.defaults["geometry_f_plunge"]
  2503. if self.z_cut is None:
  2504. self.app.inform.emit('[ERROR_NOTCL] %s' %
  2505. _("Cut_Z parameter is None or zero. Most likely a bad combinations of "
  2506. "other parameters."))
  2507. return 'fail'
  2508. if self.z_cut > 0:
  2509. self.app.inform.emit('[WARNING] %s' %
  2510. _("The Cut Z parameter has positive value. "
  2511. "It is the depth value to cut into material.\n"
  2512. "The Cut Z parameter needs to have a negative value, assuming it is a typo "
  2513. "therefore the app will convert the value to negative."
  2514. "Check the resulting CNC code (Gcode etc)."))
  2515. self.z_cut = -self.z_cut
  2516. elif self.z_cut == 0:
  2517. self.app.inform.emit('[WARNING] %s: %s' %
  2518. (_("The Cut Z parameter is zero. There will be no cut, skipping file"),
  2519. self.options['name']))
  2520. return 'fail'
  2521. # made sure that depth_per_cut is no more then the z_cut
  2522. if abs(self.z_cut) < self.z_depthpercut:
  2523. self.z_depthpercut = abs(self.z_cut)
  2524. if self.z_move is None:
  2525. self.app.inform.emit('[ERROR_NOTCL] %s' %
  2526. _("Travel Z parameter is None or zero."))
  2527. return 'fail'
  2528. if self.z_move < 0:
  2529. self.app.inform.emit('[WARNING] %s' %
  2530. _("The Travel Z parameter has negative value. "
  2531. "It is the height value to travel between cuts.\n"
  2532. "The Z Travel parameter needs to have a positive value, assuming it is a typo "
  2533. "therefore the app will convert the value to positive."
  2534. "Check the resulting CNC code (Gcode etc)."))
  2535. self.z_move = -self.z_move
  2536. elif self.z_move == 0:
  2537. self.app.inform.emit('[WARNING] %s: %s' %
  2538. (_("The Z Travel parameter is zero. This is dangerous, skipping file"),
  2539. self.options['name']))
  2540. return 'fail'
  2541. # ## Index first and last points in paths
  2542. # What points to index.
  2543. def get_pts(o):
  2544. return [o.coords[0], o.coords[-1]]
  2545. # Create the indexed storage.
  2546. storage = FlatCAMRTreeStorage()
  2547. storage.get_points = get_pts
  2548. # Store the geometry
  2549. log.debug("Indexing geometry before generating G-Code...")
  2550. self.app.inform.emit(_("Indexing geometry before generating G-Code..."))
  2551. for shape in flat_geometry:
  2552. if self.app.abort_flag:
  2553. # graceful abort requested by the user
  2554. raise FlatCAMApp.GracefulException
  2555. if shape is not None: # TODO: This shouldn't have happened.
  2556. storage.insert(shape)
  2557. # self.input_geometry_bounds = geometry.bounds()
  2558. if not append:
  2559. self.gcode = ""
  2560. # tell postprocessor the number of tool (for toolchange)
  2561. self.tool = tool_no
  2562. # this is the tool diameter, it is used as such to accommodate the postprocessor who need the tool diameter
  2563. # given under the name 'toolC'
  2564. self.postdata['toolC'] = self.tooldia
  2565. # Initial G-Code
  2566. self.pp_geometry = self.app.postprocessors[self.pp_geometry_name]
  2567. p = self.pp_geometry
  2568. self.gcode = self.doformat(p.start_code)
  2569. self.gcode += self.doformat(p.feedrate_code) # sets the feed rate
  2570. if toolchange is False:
  2571. self.gcode += self.doformat(p.lift_code, x=0, y=0) # Move (up) to travel height
  2572. self.gcode += self.doformat(p.startz_code, x=0, y=0)
  2573. if toolchange:
  2574. # if "line_xyz" in self.pp_geometry_name:
  2575. # self.gcode += self.doformat(p.toolchange_code, x=self.xy_toolchange[0], y=self.xy_toolchange[1])
  2576. # else:
  2577. # self.gcode += self.doformat(p.toolchange_code)
  2578. self.gcode += self.doformat(p.toolchange_code)
  2579. if 'laser' not in self.pp_geometry_name:
  2580. self.gcode += self.doformat(p.spindle_code) # Spindle start
  2581. else:
  2582. # for laser this will disable the laser
  2583. self.gcode += self.doformat(p.lift_code, x=self.oldx, y=self.oldy) # Move (up) to travel height
  2584. if self.dwell is True:
  2585. self.gcode += self.doformat(p.dwell_code) # Dwell time
  2586. else:
  2587. if 'laser' not in self.pp_geometry_name:
  2588. self.gcode += self.doformat(p.spindle_code) # Spindle start
  2589. if self.dwell is True:
  2590. self.gcode += self.doformat(p.dwell_code) # Dwell time
  2591. total_travel = 0.0
  2592. total_cut = 0.0
  2593. # ## Iterate over geometry paths getting the nearest each time.
  2594. log.debug("Starting G-Code...")
  2595. self.app.inform.emit(_("Starting G-Code..."))
  2596. path_count = 0
  2597. current_pt = (0, 0)
  2598. # variables to display the percentage of work done
  2599. geo_len = len(flat_geometry)
  2600. disp_number = 0
  2601. old_disp_number = 0
  2602. log.warning("Number of paths for which to generate GCode: %s" % str(geo_len))
  2603. if self.units == 'MM':
  2604. current_tooldia = float('%.2f' % float(self.tooldia))
  2605. else:
  2606. current_tooldia = float('%.4f' % float(self.tooldia))
  2607. self.app.inform.emit(
  2608. '%s: %s%s.' % (_("Starting G-Code for tool with diameter"),
  2609. str(current_tooldia),
  2610. str(self.units))
  2611. )
  2612. pt, geo = storage.nearest(current_pt)
  2613. try:
  2614. while True:
  2615. if self.app.abort_flag:
  2616. # graceful abort requested by the user
  2617. raise FlatCAMApp.GracefulException
  2618. path_count += 1
  2619. # Remove before modifying, otherwise deletion will fail.
  2620. storage.remove(geo)
  2621. # If last point in geometry is the nearest but prefer the first one if last point == first point
  2622. # then reverse coordinates.
  2623. if pt != geo.coords[0] and pt == geo.coords[-1]:
  2624. geo.coords = list(geo.coords)[::-1]
  2625. # ---------- Single depth/pass --------
  2626. if not multidepth:
  2627. # calculate the cut distance
  2628. total_cut = total_cut + geo.length
  2629. self.gcode += self.create_gcode_single_pass(geo, extracut, tolerance, old_point=current_pt)
  2630. # --------- Multi-pass ---------
  2631. else:
  2632. # calculate the cut distance
  2633. # due of the number of cuts (multi depth) it has to multiplied by the number of cuts
  2634. nr_cuts = 0
  2635. depth = abs(self.z_cut)
  2636. while depth > 0:
  2637. nr_cuts += 1
  2638. depth -= float(self.z_depthpercut)
  2639. total_cut += (geo.length * nr_cuts)
  2640. self.gcode += self.create_gcode_multi_pass(geo, extracut, tolerance,
  2641. postproc=p, old_point=current_pt)
  2642. # calculate the total distance
  2643. total_travel = total_travel + abs(distance(pt1=current_pt, pt2=pt))
  2644. current_pt = geo.coords[-1]
  2645. pt, geo = storage.nearest(current_pt) # Next
  2646. disp_number = int(np.interp(path_count, [0, geo_len], [0, 100]))
  2647. if old_disp_number < disp_number <= 100:
  2648. self.app.proc_container.update_view_text(' %d%%' % disp_number)
  2649. old_disp_number = disp_number
  2650. except StopIteration: # Nothing found in storage.
  2651. pass
  2652. log.debug("Finished G-Code... %s paths traced." % path_count)
  2653. # add move to end position
  2654. total_travel += abs(distance_euclidian(current_pt[0], current_pt[1], 0, 0))
  2655. self.travel_distance += total_travel + total_cut
  2656. self.routing_time += total_cut / self.feedrate
  2657. # Finish
  2658. self.gcode += self.doformat(p.spindle_stop_code)
  2659. self.gcode += self.doformat(p.lift_code, x=current_pt[0], y=current_pt[1])
  2660. self.gcode += self.doformat(p.end_code, x=0, y=0)
  2661. self.app.inform.emit('%s... %s %s.' %
  2662. (_("Finished G-Code generation"),
  2663. str(path_count),
  2664. _("paths traced")
  2665. )
  2666. )
  2667. return self.gcode
  2668. def generate_from_geometry_2(
  2669. self, geometry, append=True,
  2670. tooldia=None, offset=0.0, tolerance=0,
  2671. z_cut=1.0, z_move=2.0,
  2672. feedrate=2.0, feedrate_z=2.0, feedrate_rapid=30,
  2673. spindlespeed=None, spindledir='CW', dwell=False, dwelltime=1.0,
  2674. multidepth=False, depthpercut=None,
  2675. toolchange=False, toolchangez=1.0, toolchangexy="0.0, 0.0",
  2676. extracut=False, startz=None, endz=2.0,
  2677. pp_geometry_name=None, tool_no=1):
  2678. """
  2679. Second algorithm to generate from Geometry.
  2680. Algorithm description:
  2681. ----------------------
  2682. Uses RTree to find the nearest path to follow.
  2683. :param geometry:
  2684. :param append:
  2685. :param tooldia:
  2686. :param tolerance:
  2687. :param multidepth: If True, use multiple passes to reach
  2688. the desired depth.
  2689. :param depthpercut: Maximum depth in each pass.
  2690. :param extracut: Adds (or not) an extra cut at the end of each path
  2691. overlapping the first point in path to ensure complete copper removal
  2692. :return: None
  2693. """
  2694. if not isinstance(geometry, Geometry):
  2695. self.app.inform.emit('[ERROR] %s: %s' %
  2696. (_("Expected a Geometry, got"), type(geometry)))
  2697. return 'fail'
  2698. log.debug("Generate_from_geometry_2()")
  2699. # if solid_geometry is empty raise an exception
  2700. if not geometry.solid_geometry:
  2701. self.app.inform.emit('[ERROR_NOTCL] %s' %
  2702. _("Trying to generate a CNC Job "
  2703. "from a Geometry object without solid_geometry."))
  2704. temp_solid_geometry = []
  2705. def bounds_rec(obj):
  2706. if type(obj) is list:
  2707. minx = np.Inf
  2708. miny = np.Inf
  2709. maxx = -np.Inf
  2710. maxy = -np.Inf
  2711. for k in obj:
  2712. if type(k) is dict:
  2713. for key in k:
  2714. minx_, miny_, maxx_, maxy_ = bounds_rec(k[key])
  2715. minx = min(minx, minx_)
  2716. miny = min(miny, miny_)
  2717. maxx = max(maxx, maxx_)
  2718. maxy = max(maxy, maxy_)
  2719. else:
  2720. minx_, miny_, maxx_, maxy_ = bounds_rec(k)
  2721. minx = min(minx, minx_)
  2722. miny = min(miny, miny_)
  2723. maxx = max(maxx, maxx_)
  2724. maxy = max(maxy, maxy_)
  2725. return minx, miny, maxx, maxy
  2726. else:
  2727. # it's a Shapely object, return it's bounds
  2728. return obj.bounds
  2729. if offset != 0.0:
  2730. offset_for_use = offset
  2731. if offset < 0:
  2732. a, b, c, d = bounds_rec(geometry.solid_geometry)
  2733. # if the offset is less than half of the total length or less than half of the total width of the
  2734. # solid geometry it's obvious we can't do the offset
  2735. if -offset > ((c - a) / 2) or -offset > ((d - b) / 2):
  2736. self.app.inform.emit('[ERROR_NOTCL] %s' % _(
  2737. "The Tool Offset value is too negative to use "
  2738. "for the current_geometry.\n"
  2739. "Raise the value (in module) and try again."))
  2740. return 'fail'
  2741. # hack: make offset smaller by 0.0000000001 which is insignificant difference but allow the job
  2742. # to continue
  2743. elif -offset == ((c - a) / 2) or -offset == ((d - b) / 2):
  2744. offset_for_use = offset - 0.0000000001
  2745. for it in geometry.solid_geometry:
  2746. # if the geometry is a closed shape then create a Polygon out of it
  2747. if isinstance(it, LineString):
  2748. c = it.coords
  2749. if c[0] == c[-1]:
  2750. it = Polygon(it)
  2751. temp_solid_geometry.append(it.buffer(offset_for_use, join_style=2))
  2752. else:
  2753. temp_solid_geometry = geometry.solid_geometry
  2754. # ## Flatten the geometry. Only linear elements (no polygons) remain.
  2755. flat_geometry = self.flatten(temp_solid_geometry, pathonly=True)
  2756. log.debug("%d paths" % len(flat_geometry))
  2757. try:
  2758. self.tooldia = float(tooldia) if tooldia else None
  2759. except ValueError:
  2760. self.tooldia = [float(el) for el in tooldia.split(',') if el != ''] if tooldia else None
  2761. self.z_cut = float(z_cut) if z_cut else None
  2762. self.z_move = float(z_move) if z_move else None
  2763. self.feedrate = float(feedrate) if feedrate else None
  2764. self.z_feedrate = float(feedrate_z) if feedrate_z else None
  2765. self.feedrate_rapid = float(feedrate_rapid) if feedrate_rapid else None
  2766. self.spindlespeed = int(spindlespeed) if spindlespeed else None
  2767. self.spindledir = spindledir
  2768. self.dwell = dwell
  2769. self.dwelltime = float(dwelltime) if dwelltime else None
  2770. self.startz = float(startz) if startz else None
  2771. self.z_end = float(endz) if endz else None
  2772. self.z_depthpercut = float(depthpercut) if depthpercut else None
  2773. self.multidepth = multidepth
  2774. self.z_toolchange = float(toolchangez) if toolchangez else None
  2775. try:
  2776. if toolchangexy == '':
  2777. self.xy_toolchange = None
  2778. else:
  2779. self.xy_toolchange = [float(eval(a)) for a in toolchangexy.split(",")]
  2780. if len(self.xy_toolchange) < 2:
  2781. self.app.inform.emit('[ERROR] %s' %
  2782. _("The Toolchange X,Y field in Edit -> Preferences has to be "
  2783. "in the format (x, y) \nbut now there is only one value, not two. "))
  2784. return 'fail'
  2785. except Exception as e:
  2786. log.debug("camlib.CNCJob.generate_from_geometry_2() --> %s" % str(e))
  2787. pass
  2788. self.pp_geometry_name = pp_geometry_name if pp_geometry_name else 'default'
  2789. self.f_plunge = self.app.defaults["geometry_f_plunge"]
  2790. if self.z_cut is None:
  2791. self.app.inform.emit('[ERROR_NOTCL] %s' %
  2792. _("Cut_Z parameter is None or zero. Most likely a bad combinations of "
  2793. "other parameters."))
  2794. return 'fail'
  2795. if self.z_cut > 0:
  2796. self.app.inform.emit('[WARNING] %s' %
  2797. _("The Cut Z parameter has positive value. "
  2798. "It is the depth value to cut into material.\n"
  2799. "The Cut Z parameter needs to have a negative value, assuming it is a typo "
  2800. "therefore the app will convert the value to negative."
  2801. "Check the resulting CNC code (Gcode etc)."))
  2802. self.z_cut = -self.z_cut
  2803. elif self.z_cut == 0:
  2804. self.app.inform.emit('[WARNING] %s: %s' %
  2805. (_("The Cut Z parameter is zero. There will be no cut, skipping file"),
  2806. geometry.options['name']))
  2807. return 'fail'
  2808. if self.z_move is None:
  2809. self.app.inform.emit('[ERROR_NOTCL] %s' %
  2810. _("Travel Z parameter is None or zero."))
  2811. return 'fail'
  2812. if self.z_move < 0:
  2813. self.app.inform.emit('[WARNING] %s' %
  2814. _("The Travel Z parameter has negative value. "
  2815. "It is the height value to travel between cuts.\n"
  2816. "The Z Travel parameter needs to have a positive value, assuming it is a typo "
  2817. "therefore the app will convert the value to positive."
  2818. "Check the resulting CNC code (Gcode etc)."))
  2819. self.z_move = -self.z_move
  2820. elif self.z_move == 0:
  2821. self.app.inform.emit('[WARNING] %s: %s' %
  2822. (_("The Z Travel parameter is zero. "
  2823. "This is dangerous, skipping file"), self.options['name']))
  2824. return 'fail'
  2825. # made sure that depth_per_cut is no more then the z_cut
  2826. if abs(self.z_cut) < self.z_depthpercut:
  2827. self.z_depthpercut = abs(self.z_cut)
  2828. # ## Index first and last points in paths
  2829. # What points to index.
  2830. def get_pts(o):
  2831. return [o.coords[0], o.coords[-1]]
  2832. # Create the indexed storage.
  2833. storage = FlatCAMRTreeStorage()
  2834. storage.get_points = get_pts
  2835. # Store the geometry
  2836. log.debug("Indexing geometry before generating G-Code...")
  2837. self.app.inform.emit(_("Indexing geometry before generating G-Code..."))
  2838. for shape in flat_geometry:
  2839. if self.app.abort_flag:
  2840. # graceful abort requested by the user
  2841. raise FlatCAMApp.GracefulException
  2842. if shape is not None: # TODO: This shouldn't have happened.
  2843. storage.insert(shape)
  2844. if not append:
  2845. self.gcode = ""
  2846. # tell postprocessor the number of tool (for toolchange)
  2847. self.tool = tool_no
  2848. # this is the tool diameter, it is used as such to accommodate the postprocessor who need the tool diameter
  2849. # given under the name 'toolC'
  2850. self.postdata['toolC'] = self.tooldia
  2851. # Initial G-Code
  2852. self.pp_geometry = self.app.postprocessors[self.pp_geometry_name]
  2853. p = self.pp_geometry
  2854. self.oldx = 0.0
  2855. self.oldy = 0.0
  2856. self.gcode = self.doformat(p.start_code)
  2857. self.gcode += self.doformat(p.feedrate_code) # sets the feed rate
  2858. if toolchange is False:
  2859. self.gcode += self.doformat(p.lift_code, x=self.oldx , y=self.oldy ) # Move (up) to travel height
  2860. self.gcode += self.doformat(p.startz_code, x=self.oldx , y=self.oldy )
  2861. if toolchange:
  2862. # if "line_xyz" in self.pp_geometry_name:
  2863. # self.gcode += self.doformat(p.toolchange_code, x=self.xy_toolchange[0], y=self.xy_toolchange[1])
  2864. # else:
  2865. # self.gcode += self.doformat(p.toolchange_code)
  2866. self.gcode += self.doformat(p.toolchange_code)
  2867. if 'laser' not in self.pp_geometry_name:
  2868. self.gcode += self.doformat(p.spindle_code) # Spindle start
  2869. else:
  2870. # for laser this will disable the laser
  2871. self.gcode += self.doformat(p.lift_code, x=self.oldx, y=self.oldy) # Move (up) to travel height
  2872. if self.dwell is True:
  2873. self.gcode += self.doformat(p.dwell_code) # Dwell time
  2874. else:
  2875. if 'laser' not in self.pp_geometry_name:
  2876. self.gcode += self.doformat(p.spindle_code) # Spindle start
  2877. if self.dwell is True:
  2878. self.gcode += self.doformat(p.dwell_code) # Dwell time
  2879. total_travel = 0.0
  2880. total_cut = 0.0
  2881. # Iterate over geometry paths getting the nearest each time.
  2882. log.debug("Starting G-Code...")
  2883. self.app.inform.emit(_("Starting G-Code..."))
  2884. # variables to display the percentage of work done
  2885. geo_len = len(flat_geometry)
  2886. disp_number = 0
  2887. old_disp_number = 0
  2888. log.warning("Number of paths for which to generate GCode: %s" % str(geo_len))
  2889. if self.units == 'MM':
  2890. current_tooldia = float('%.2f' % float(self.tooldia))
  2891. else:
  2892. current_tooldia = float('%.4f' % float(self.tooldia))
  2893. self.app.inform.emit(
  2894. '%s: %s%s.' % (_("Starting G-Code for tool with diameter"),
  2895. str(current_tooldia),
  2896. str(self.units))
  2897. )
  2898. path_count = 0
  2899. current_pt = (0, 0)
  2900. pt, geo = storage.nearest(current_pt)
  2901. try:
  2902. while True:
  2903. if self.app.abort_flag:
  2904. # graceful abort requested by the user
  2905. raise FlatCAMApp.GracefulException
  2906. path_count += 1
  2907. # Remove before modifying, otherwise deletion will fail.
  2908. storage.remove(geo)
  2909. # If last point in geometry is the nearest but prefer the first one if last point == first point
  2910. # then reverse coordinates.
  2911. if pt != geo.coords[0] and pt == geo.coords[-1]:
  2912. geo.coords = list(geo.coords)[::-1]
  2913. # ---------- Single depth/pass --------
  2914. if not multidepth:
  2915. # calculate the cut distance
  2916. total_cut += geo.length
  2917. self.gcode += self.create_gcode_single_pass(geo, extracut, tolerance, old_point=current_pt)
  2918. # --------- Multi-pass ---------
  2919. else:
  2920. # calculate the cut distance
  2921. # due of the number of cuts (multi depth) it has to multiplied by the number of cuts
  2922. nr_cuts = 0
  2923. depth = abs(self.z_cut)
  2924. while depth > 0:
  2925. nr_cuts += 1
  2926. depth -= float(self.z_depthpercut)
  2927. total_cut += (geo.length * nr_cuts)
  2928. self.gcode += self.create_gcode_multi_pass(geo, extracut, tolerance,
  2929. postproc=p, old_point=current_pt)
  2930. # calculate the travel distance
  2931. total_travel += abs(distance(pt1=current_pt, pt2=pt))
  2932. current_pt = geo.coords[-1]
  2933. pt, geo = storage.nearest(current_pt) # Next
  2934. disp_number = int(np.interp(path_count, [0, geo_len], [0, 100]))
  2935. if old_disp_number < disp_number <= 100:
  2936. self.app.proc_container.update_view_text(' %d%%' % disp_number)
  2937. old_disp_number = disp_number
  2938. except StopIteration: # Nothing found in storage.
  2939. pass
  2940. log.debug("Finishing G-Code... %s paths traced." % path_count)
  2941. # add move to end position
  2942. total_travel += abs(distance_euclidian(current_pt[0], current_pt[1], 0, 0))
  2943. self.travel_distance += total_travel + total_cut
  2944. self.routing_time += total_cut / self.feedrate
  2945. # Finish
  2946. self.gcode += self.doformat(p.spindle_stop_code)
  2947. self.gcode += self.doformat(p.lift_code, x=current_pt[0], y=current_pt[1])
  2948. self.gcode += self.doformat(p.end_code, x=0, y=0)
  2949. self.app.inform.emit('%s... %s %s' %
  2950. (_("Finished G-Code generation"),
  2951. str(path_count),
  2952. _(" paths traced.")
  2953. )
  2954. )
  2955. return self.gcode
  2956. def generate_gcode_from_solderpaste_geo(self, **kwargs):
  2957. """
  2958. Algorithm to generate from multitool Geometry.
  2959. Algorithm description:
  2960. ----------------------
  2961. Uses RTree to find the nearest path to follow.
  2962. :return: Gcode string
  2963. """
  2964. log.debug("Generate_from_solderpaste_geometry()")
  2965. # ## Index first and last points in paths
  2966. # What points to index.
  2967. def get_pts(o):
  2968. return [o.coords[0], o.coords[-1]]
  2969. self.gcode = ""
  2970. if not kwargs:
  2971. log.debug("camlib.generate_from_solderpaste_geo() --> No tool in the solderpaste geometry.")
  2972. self.app.inform.emit('[ERROR_NOTCL] %s' %
  2973. _("There is no tool data in the SolderPaste geometry."))
  2974. # this is the tool diameter, it is used as such to accommodate the postprocessor who need the tool diameter
  2975. # given under the name 'toolC'
  2976. self.postdata['z_start'] = kwargs['data']['tools_solderpaste_z_start']
  2977. self.postdata['z_dispense'] = kwargs['data']['tools_solderpaste_z_dispense']
  2978. self.postdata['z_stop'] = kwargs['data']['tools_solderpaste_z_stop']
  2979. self.postdata['z_travel'] = kwargs['data']['tools_solderpaste_z_travel']
  2980. self.postdata['z_toolchange'] = kwargs['data']['tools_solderpaste_z_toolchange']
  2981. self.postdata['xy_toolchange'] = kwargs['data']['tools_solderpaste_xy_toolchange']
  2982. self.postdata['frxy'] = kwargs['data']['tools_solderpaste_frxy']
  2983. self.postdata['frz'] = kwargs['data']['tools_solderpaste_frz']
  2984. self.postdata['frz_dispense'] = kwargs['data']['tools_solderpaste_frz_dispense']
  2985. self.postdata['speedfwd'] = kwargs['data']['tools_solderpaste_speedfwd']
  2986. self.postdata['dwellfwd'] = kwargs['data']['tools_solderpaste_dwellfwd']
  2987. self.postdata['speedrev'] = kwargs['data']['tools_solderpaste_speedrev']
  2988. self.postdata['dwellrev'] = kwargs['data']['tools_solderpaste_dwellrev']
  2989. self.postdata['pp_solderpaste_name'] = kwargs['data']['tools_solderpaste_pp']
  2990. self.postdata['toolC'] = kwargs['tooldia']
  2991. self.pp_solderpaste_name = kwargs['data']['tools_solderpaste_pp'] if kwargs['data']['tools_solderpaste_pp'] \
  2992. else self.app.defaults['tools_solderpaste_pp']
  2993. p = self.app.postprocessors[self.pp_solderpaste_name]
  2994. # ## Flatten the geometry. Only linear elements (no polygons) remain.
  2995. flat_geometry = self.flatten(kwargs['solid_geometry'], pathonly=True)
  2996. log.debug("%d paths" % len(flat_geometry))
  2997. # Create the indexed storage.
  2998. storage = FlatCAMRTreeStorage()
  2999. storage.get_points = get_pts
  3000. # Store the geometry
  3001. log.debug("Indexing geometry before generating G-Code...")
  3002. for shape in flat_geometry:
  3003. if shape is not None:
  3004. storage.insert(shape)
  3005. # Initial G-Code
  3006. self.gcode = self.doformat(p.start_code)
  3007. self.gcode += self.doformat(p.spindle_off_code)
  3008. self.gcode += self.doformat(p.toolchange_code)
  3009. # ## Iterate over geometry paths getting the nearest each time.
  3010. log.debug("Starting SolderPaste G-Code...")
  3011. path_count = 0
  3012. current_pt = (0, 0)
  3013. # variables to display the percentage of work done
  3014. geo_len = len(flat_geometry)
  3015. disp_number = 0
  3016. old_disp_number = 0
  3017. pt, geo = storage.nearest(current_pt)
  3018. try:
  3019. while True:
  3020. if self.app.abort_flag:
  3021. # graceful abort requested by the user
  3022. raise FlatCAMApp.GracefulException
  3023. path_count += 1
  3024. # Remove before modifying, otherwise deletion will fail.
  3025. storage.remove(geo)
  3026. # If last point in geometry is the nearest but prefer the first one if last point == first point
  3027. # then reverse coordinates.
  3028. if pt != geo.coords[0] and pt == geo.coords[-1]:
  3029. geo.coords = list(geo.coords)[::-1]
  3030. self.gcode += self.create_soldepaste_gcode(geo, p=p, old_point=current_pt)
  3031. current_pt = geo.coords[-1]
  3032. pt, geo = storage.nearest(current_pt) # Next
  3033. disp_number = int(np.interp(path_count, [0, geo_len], [0, 100]))
  3034. if old_disp_number < disp_number <= 100:
  3035. self.app.proc_container.update_view_text(' %d%%' % disp_number)
  3036. old_disp_number = disp_number
  3037. except StopIteration: # Nothing found in storage.
  3038. pass
  3039. log.debug("Finishing SolderPste G-Code... %s paths traced." % path_count)
  3040. self.app.inform.emit('%s... %s %s' %
  3041. (_("Finished SolderPste G-Code generation"),
  3042. str(path_count),
  3043. _("paths traced.")
  3044. )
  3045. )
  3046. # Finish
  3047. self.gcode += self.doformat(p.lift_code)
  3048. self.gcode += self.doformat(p.end_code)
  3049. return self.gcode
  3050. def create_soldepaste_gcode(self, geometry, p, old_point=(0, 0)):
  3051. gcode = ''
  3052. path = geometry.coords
  3053. self.coordinates_type = self.app.defaults["cncjob_coords_type"]
  3054. if self.coordinates_type == "G90":
  3055. # For Absolute coordinates type G90
  3056. first_x = path[0][0]
  3057. first_y = path[0][1]
  3058. else:
  3059. # For Incremental coordinates type G91
  3060. first_x = path[0][0] - old_point[0]
  3061. first_y = path[0][1] - old_point[1]
  3062. if type(geometry) == LineString or type(geometry) == LinearRing:
  3063. # Move fast to 1st point
  3064. gcode += self.doformat(p.rapid_code, x=first_x, y=first_y) # Move to first point
  3065. # Move down to cutting depth
  3066. gcode += self.doformat(p.z_feedrate_code)
  3067. gcode += self.doformat(p.down_z_start_code)
  3068. gcode += self.doformat(p.spindle_fwd_code) # Start dispensing
  3069. gcode += self.doformat(p.dwell_fwd_code)
  3070. gcode += self.doformat(p.feedrate_z_dispense_code)
  3071. gcode += self.doformat(p.lift_z_dispense_code)
  3072. gcode += self.doformat(p.feedrate_xy_code)
  3073. # Cutting...
  3074. prev_x = first_x
  3075. prev_y = first_y
  3076. for pt in path[1:]:
  3077. if self.coordinates_type == "G90":
  3078. # For Absolute coordinates type G90
  3079. next_x = pt[0]
  3080. next_y = pt[1]
  3081. else:
  3082. # For Incremental coordinates type G91
  3083. next_x = pt[0] - prev_x
  3084. next_y = pt[1] - prev_y
  3085. gcode += self.doformat(p.linear_code, x=next_x, y=next_y) # Linear motion to point
  3086. prev_x = next_x
  3087. prev_y = next_y
  3088. # Up to travelling height.
  3089. gcode += self.doformat(p.spindle_off_code) # Stop dispensing
  3090. gcode += self.doformat(p.spindle_rev_code)
  3091. gcode += self.doformat(p.down_z_stop_code)
  3092. gcode += self.doformat(p.spindle_off_code)
  3093. gcode += self.doformat(p.dwell_rev_code)
  3094. gcode += self.doformat(p.z_feedrate_code)
  3095. gcode += self.doformat(p.lift_code)
  3096. elif type(geometry) == Point:
  3097. gcode += self.doformat(p.linear_code, x=first_x, y=first_y) # Move to first point
  3098. gcode += self.doformat(p.feedrate_z_dispense_code)
  3099. gcode += self.doformat(p.down_z_start_code)
  3100. gcode += self.doformat(p.spindle_fwd_code) # Start dispensing
  3101. gcode += self.doformat(p.dwell_fwd_code)
  3102. gcode += self.doformat(p.lift_z_dispense_code)
  3103. gcode += self.doformat(p.spindle_off_code) # Stop dispensing
  3104. gcode += self.doformat(p.spindle_rev_code)
  3105. gcode += self.doformat(p.spindle_off_code)
  3106. gcode += self.doformat(p.down_z_stop_code)
  3107. gcode += self.doformat(p.dwell_rev_code)
  3108. gcode += self.doformat(p.z_feedrate_code)
  3109. gcode += self.doformat(p.lift_code)
  3110. return gcode
  3111. def create_gcode_single_pass(self, geometry, extracut, tolerance, old_point=(0, 0)):
  3112. # G-code. Note: self.linear2gcode() and self.point2gcode() will lower and raise the tool every time.
  3113. gcode_single_pass = ''
  3114. if type(geometry) == LineString or type(geometry) == LinearRing:
  3115. if extracut is False:
  3116. gcode_single_pass = self.linear2gcode(geometry, tolerance=tolerance, old_point=old_point)
  3117. else:
  3118. if geometry.is_ring:
  3119. gcode_single_pass = self.linear2gcode_extra(geometry, tolerance=tolerance, old_point=old_point)
  3120. else:
  3121. gcode_single_pass = self.linear2gcode(geometry, tolerance=tolerance, old_point=old_point)
  3122. elif type(geometry) == Point:
  3123. gcode_single_pass = self.point2gcode(geometry)
  3124. else:
  3125. log.warning("G-code generation not implemented for %s" % (str(type(geometry))))
  3126. return
  3127. return gcode_single_pass
  3128. def create_gcode_multi_pass(self, geometry, extracut, tolerance, postproc, old_point=(0, 0)):
  3129. gcode_multi_pass = ''
  3130. if isinstance(self.z_cut, Decimal):
  3131. z_cut = self.z_cut
  3132. else:
  3133. z_cut = Decimal(self.z_cut).quantize(Decimal('0.000000001'))
  3134. if self.z_depthpercut is None:
  3135. self.z_depthpercut = z_cut
  3136. elif not isinstance(self.z_depthpercut, Decimal):
  3137. self.z_depthpercut = Decimal(self.z_depthpercut).quantize(Decimal('0.000000001'))
  3138. depth = 0
  3139. reverse = False
  3140. while depth > z_cut:
  3141. # Increase depth. Limit to z_cut.
  3142. depth -= self.z_depthpercut
  3143. if depth < z_cut:
  3144. depth = z_cut
  3145. # Cut at specific depth and do not lift the tool.
  3146. # Note: linear2gcode() will use G00 to move to the first point in the path, but it should be already
  3147. # at the first point if the tool is down (in the material). So, an extra G00 should show up but
  3148. # is inconsequential.
  3149. if type(geometry) == LineString or type(geometry) == LinearRing:
  3150. if extracut is False:
  3151. gcode_multi_pass += self.linear2gcode(geometry, tolerance=tolerance, z_cut=depth, up=False,
  3152. old_point=old_point)
  3153. else:
  3154. if geometry.is_ring:
  3155. gcode_multi_pass += self.linear2gcode_extra(geometry, tolerance=tolerance, z_cut=depth,
  3156. up=False, old_point=old_point)
  3157. else:
  3158. gcode_multi_pass += self.linear2gcode(geometry, tolerance=tolerance, z_cut=depth, up=False,
  3159. old_point=old_point)
  3160. # Ignore multi-pass for points.
  3161. elif type(geometry) == Point:
  3162. gcode_multi_pass += self.point2gcode(geometry, old_point=old_point)
  3163. break # Ignoring ...
  3164. else:
  3165. log.warning("G-code generation not implemented for %s" % (str(type(geometry))))
  3166. # Reverse coordinates if not a loop so we can continue cutting without returning to the beginning.
  3167. if type(geometry) == LineString:
  3168. geometry.coords = list(geometry.coords)[::-1]
  3169. reverse = True
  3170. # If geometry is reversed, revert.
  3171. if reverse:
  3172. if type(geometry) == LineString:
  3173. geometry.coords = list(geometry.coords)[::-1]
  3174. # Lift the tool
  3175. gcode_multi_pass += self.doformat(postproc.lift_code, x=old_point[0], y=old_point[1])
  3176. return gcode_multi_pass
  3177. def codes_split(self, gline):
  3178. """
  3179. Parses a line of G-Code such as "G01 X1234 Y987" into
  3180. a dictionary: {'G': 1.0, 'X': 1234.0, 'Y': 987.0}
  3181. :param gline: G-Code line string
  3182. :return: Dictionary with parsed line.
  3183. """
  3184. command = {}
  3185. if 'Roland' in self.pp_excellon_name or 'Roland' in self.pp_geometry_name:
  3186. match_z = re.search(r"^Z(\s*-?\d+\.\d+?),(\s*\s*-?\d+\.\d+?),(\s*\s*-?\d+\.\d+?)*;$", gline)
  3187. if match_z:
  3188. command['G'] = 0
  3189. command['X'] = float(match_z.group(1).replace(" ", "")) * 0.025
  3190. command['Y'] = float(match_z.group(2).replace(" ", "")) * 0.025
  3191. command['Z'] = float(match_z.group(3).replace(" ", "")) * 0.025
  3192. elif 'hpgl' in self.pp_excellon_name or 'hpgl' in self.pp_geometry_name:
  3193. match_pa = re.search(r"^PA(\s*-?\d+\.\d+?),(\s*\s*-?\d+\.\d+?)*;$", gline)
  3194. if match_pa:
  3195. command['G'] = 0
  3196. command['X'] = float(match_pa.group(1).replace(" ", ""))
  3197. command['Y'] = float(match_pa.group(2).replace(" ", ""))
  3198. match_pen = re.search(r"^(P[U|D])", gline)
  3199. if match_pen:
  3200. if match_pen.group(1) == 'PU':
  3201. # the value does not matter, only that it is positive so the gcode_parse() know it is > 0,
  3202. # therefore the move is of kind T (travel)
  3203. command['Z'] = 1
  3204. else:
  3205. command['Z'] = 0
  3206. elif 'grbl_laser' in self.pp_excellon_name or 'grbl_laser' in self.pp_geometry_name or \
  3207. (self.pp_solderpaste_name is not None and 'Paste' in self.pp_solderpaste_name):
  3208. match_lsr = re.search(r"X([\+-]?\d+.[\+-]?\d+)\s*Y([\+-]?\d+.[\+-]?\d+)", gline)
  3209. if match_lsr:
  3210. command['X'] = float(match_lsr.group(1).replace(" ", ""))
  3211. command['Y'] = float(match_lsr.group(2).replace(" ", ""))
  3212. match_lsr_pos = re.search(r"^(M0[3|5])", gline)
  3213. if match_lsr_pos:
  3214. if 'M05' in match_lsr_pos.group(1):
  3215. # the value does not matter, only that it is positive so the gcode_parse() know it is > 0,
  3216. # therefore the move is of kind T (travel)
  3217. command['Z'] = 1
  3218. else:
  3219. command['Z'] = 0
  3220. elif self.pp_solderpaste_name is not None:
  3221. if 'Paste' in self.pp_solderpaste_name:
  3222. match_paste = re.search(r"X([\+-]?\d+.[\+-]?\d+)\s*Y([\+-]?\d+.[\+-]?\d+)", gline)
  3223. if match_paste:
  3224. command['X'] = float(match_paste.group(1).replace(" ", ""))
  3225. command['Y'] = float(match_paste.group(2).replace(" ", ""))
  3226. else:
  3227. match = re.search(r'^\s*([A-Z])\s*([\+\-\.\d\s]+)', gline)
  3228. while match:
  3229. command[match.group(1)] = float(match.group(2).replace(" ", ""))
  3230. gline = gline[match.end():]
  3231. match = re.search(r'^\s*([A-Z])\s*([\+\-\.\d\s]+)', gline)
  3232. return command
  3233. def gcode_parse(self, force_parsing=None):
  3234. """
  3235. G-Code parser (from self.gcode). Generates dictionary with
  3236. single-segment LineString's and "kind" indicating cut or travel,
  3237. fast or feedrate speed.
  3238. """
  3239. kind = ["C", "F"] # T=travel, C=cut, F=fast, S=slow
  3240. # Results go here
  3241. geometry = []
  3242. # Last known instruction
  3243. current = {'X': 0.0, 'Y': 0.0, 'Z': 0.0, 'G': 0}
  3244. # Current path: temporary storage until tool is
  3245. # lifted or lowered.
  3246. if self.toolchange_xy_type == "excellon":
  3247. if self.app.defaults["excellon_toolchangexy"] == '':
  3248. pos_xy = [0, 0]
  3249. else:
  3250. pos_xy = [float(eval(a)) for a in self.app.defaults["excellon_toolchangexy"].split(",")]
  3251. else:
  3252. if self.app.defaults["geometry_toolchangexy"] == '':
  3253. pos_xy = [0, 0]
  3254. else:
  3255. pos_xy = [float(eval(a)) for a in self.app.defaults["geometry_toolchangexy"].split(",")]
  3256. path = [pos_xy]
  3257. # path = [(0, 0)]
  3258. self.app.inform.emit('%s: %d' % (_("Parsing GCode file. Number of lines"), len(self.gcode.splitlines())))
  3259. # Process every instruction
  3260. for line in StringIO(self.gcode):
  3261. if force_parsing is False or force_parsing is None:
  3262. if '%MO' in line or '%' in line or 'MOIN' in line or 'MOMM' in line:
  3263. return "fail"
  3264. gobj = self.codes_split(line)
  3265. # ## Units
  3266. if 'G' in gobj and (gobj['G'] == 20.0 or gobj['G'] == 21.0):
  3267. self.units = {20.0: "IN", 21.0: "MM"}[gobj['G']]
  3268. continue
  3269. # ## Changing height
  3270. if 'Z' in gobj:
  3271. if 'Roland' in self.pp_excellon_name or 'Roland' in self.pp_geometry_name:
  3272. pass
  3273. elif 'hpgl' in self.pp_excellon_name or 'hpgl' in self.pp_geometry_name:
  3274. pass
  3275. elif 'laser' in self.pp_excellon_name or 'laser' in self.pp_geometry_name:
  3276. pass
  3277. elif ('X' in gobj or 'Y' in gobj) and gobj['Z'] != current['Z']:
  3278. if self.pp_geometry_name == 'line_xyz' or self.pp_excellon_name == 'line_xyz':
  3279. pass
  3280. else:
  3281. log.warning("Non-orthogonal motion: From %s" % str(current))
  3282. log.warning(" To: %s" % str(gobj))
  3283. current['Z'] = gobj['Z']
  3284. # Store the path into geometry and reset path
  3285. if len(path) > 1:
  3286. geometry.append({"geom": LineString(path),
  3287. "kind": kind})
  3288. path = [path[-1]] # Start with the last point of last path.
  3289. # create the geometry for the holes created when drilling Excellon drills
  3290. if self.origin_kind == 'excellon':
  3291. if current['Z'] < 0:
  3292. current_drill_point_coords = (float('%.4f' % current['X']), float('%.4f' % current['Y']))
  3293. # find the drill diameter knowing the drill coordinates
  3294. for pt_dict in self.exc_drills:
  3295. point_in_dict_coords = (float('%.4f' % pt_dict['point'].x),
  3296. float('%.4f' % pt_dict['point'].y))
  3297. if point_in_dict_coords == current_drill_point_coords:
  3298. tool = pt_dict['tool']
  3299. dia = self.exc_tools[tool]['C']
  3300. kind = ['C', 'F']
  3301. geometry.append({"geom": Point(current_drill_point_coords).
  3302. buffer(dia/2).exterior,
  3303. "kind": kind})
  3304. break
  3305. if 'G' in gobj:
  3306. current['G'] = int(gobj['G'])
  3307. if 'X' in gobj or 'Y' in gobj:
  3308. if 'X' in gobj:
  3309. x = gobj['X']
  3310. # current['X'] = x
  3311. else:
  3312. x = current['X']
  3313. if 'Y' in gobj:
  3314. y = gobj['Y']
  3315. else:
  3316. y = current['Y']
  3317. kind = ["C", "F"] # T=travel, C=cut, F=fast, S=slow
  3318. if current['Z'] > 0:
  3319. kind[0] = 'T'
  3320. if current['G'] > 0:
  3321. kind[1] = 'S'
  3322. if current['G'] in [0, 1]: # line
  3323. path.append((x, y))
  3324. arcdir = [None, None, "cw", "ccw"]
  3325. if current['G'] in [2, 3]: # arc
  3326. center = [gobj['I'] + current['X'], gobj['J'] + current['Y']]
  3327. radius = np.sqrt(gobj['I']**2 + gobj['J']**2)
  3328. start = np.arctan2(-gobj['J'], -gobj['I'])
  3329. stop = np.arctan2(-center[1] + y, -center[0] + x)
  3330. path += arc(center, radius, start, stop, arcdir[current['G']], int(self.steps_per_circle / 4))
  3331. # Update current instruction
  3332. for code in gobj:
  3333. current[code] = gobj[code]
  3334. self.app.inform.emit('%s...' % _("Creating Geometry from the parsed GCode file. "))
  3335. # There might not be a change in height at the
  3336. # end, therefore, see here too if there is
  3337. # a final path.
  3338. if len(path) > 1:
  3339. geometry.append({"geom": LineString(path),
  3340. "kind": kind})
  3341. self.gcode_parsed = geometry
  3342. return geometry
  3343. # def plot(self, tooldia=None, dpi=75, margin=0.1,
  3344. # color={"T": ["#F0E24D", "#B5AB3A"], "C": ["#5E6CFF", "#4650BD"]},
  3345. # alpha={"T": 0.3, "C": 1.0}):
  3346. # """
  3347. # Creates a Matplotlib figure with a plot of the
  3348. # G-code job.
  3349. # """
  3350. # if tooldia is None:
  3351. # tooldia = self.tooldia
  3352. #
  3353. # fig = Figure(dpi=dpi)
  3354. # ax = fig.add_subplot(111)
  3355. # ax.set_aspect(1)
  3356. # xmin, ymin, xmax, ymax = self.input_geometry_bounds
  3357. # ax.set_xlim(xmin-margin, xmax+margin)
  3358. # ax.set_ylim(ymin-margin, ymax+margin)
  3359. #
  3360. # if tooldia == 0:
  3361. # for geo in self.gcode_parsed:
  3362. # linespec = '--'
  3363. # linecolor = color[geo['kind'][0]][1]
  3364. # if geo['kind'][0] == 'C':
  3365. # linespec = 'k-'
  3366. # x, y = geo['geom'].coords.xy
  3367. # ax.plot(x, y, linespec, color=linecolor)
  3368. # else:
  3369. # for geo in self.gcode_parsed:
  3370. # poly = geo['geom'].buffer(tooldia/2.0)
  3371. # patch = PolygonPatch(poly, facecolor=color[geo['kind'][0]][0],
  3372. # edgecolor=color[geo['kind'][0]][1],
  3373. # alpha=alpha[geo['kind'][0]], zorder=2)
  3374. # ax.add_patch(patch)
  3375. #
  3376. # return fig
  3377. def plot2(self, tooldia=None, dpi=75, margin=0.1, gcode_parsed=None,
  3378. color={"T": ["#F0E24D4C", "#B5AB3A4C"], "C": ["#5E6CFFFF", "#4650BDFF"]},
  3379. alpha={"T": 0.3, "C": 1.0}, tool_tolerance=0.0005, obj=None, visible=False, kind='all'):
  3380. """
  3381. Plots the G-code job onto the given axes.
  3382. :param tooldia: Tool diameter.
  3383. :param dpi: Not used!
  3384. :param margin: Not used!
  3385. :param color: Color specification.
  3386. :param alpha: Transparency specification.
  3387. :param tool_tolerance: Tolerance when drawing the toolshape.
  3388. :param obj
  3389. :param visible
  3390. :param kind
  3391. :return: None
  3392. """
  3393. # units = self.app.ui.general_defaults_form.general_app_group.units_radio.get_value().upper()
  3394. gcode_parsed = gcode_parsed if gcode_parsed else self.gcode_parsed
  3395. path_num = 0
  3396. if tooldia is None:
  3397. tooldia = self.tooldia
  3398. # this should be unlikely unless when upstream the tooldia is a tuple made by one dia and a comma like (2.4,)
  3399. if isinstance(tooldia, list):
  3400. tooldia = tooldia[0] if tooldia[0] is not None else self.tooldia
  3401. if tooldia == 0:
  3402. for geo in gcode_parsed:
  3403. if kind == 'all':
  3404. obj.add_shape(shape=geo['geom'], color=color[geo['kind'][0]][1], visible=visible)
  3405. elif kind == 'travel':
  3406. if geo['kind'][0] == 'T':
  3407. obj.add_shape(shape=geo['geom'], color=color['T'][1], visible=visible)
  3408. elif kind == 'cut':
  3409. if geo['kind'][0] == 'C':
  3410. obj.add_shape(shape=geo['geom'], color=color['C'][1], visible=visible)
  3411. else:
  3412. text = []
  3413. pos = []
  3414. self.coordinates_type = self.app.defaults["cncjob_coords_type"]
  3415. if self.coordinates_type == "G90":
  3416. # For Absolute coordinates type G90
  3417. for geo in gcode_parsed:
  3418. if geo['kind'][0] == 'T':
  3419. current_position = geo['geom'].coords[0]
  3420. if current_position not in pos:
  3421. pos.append(current_position)
  3422. path_num += 1
  3423. text.append(str(path_num))
  3424. current_position = geo['geom'].coords[-1]
  3425. if current_position not in pos:
  3426. pos.append(current_position)
  3427. path_num += 1
  3428. text.append(str(path_num))
  3429. # plot the geometry of Excellon objects
  3430. if self.origin_kind == 'excellon':
  3431. try:
  3432. poly = Polygon(geo['geom'])
  3433. except ValueError:
  3434. # if the geos are travel lines it will enter into Exception
  3435. poly = geo['geom'].buffer(distance=(tooldia / 1.99999999), resolution=self.steps_per_circle)
  3436. poly = poly.simplify(tool_tolerance)
  3437. else:
  3438. # plot the geometry of any objects other than Excellon
  3439. poly = geo['geom'].buffer(distance=(tooldia / 1.99999999), resolution=self.steps_per_circle)
  3440. poly = poly.simplify(tool_tolerance)
  3441. if kind == 'all':
  3442. obj.add_shape(shape=poly, color=color[geo['kind'][0]][1], face_color=color[geo['kind'][0]][0],
  3443. visible=visible, layer=1 if geo['kind'][0] == 'C' else 2)
  3444. elif kind == 'travel':
  3445. if geo['kind'][0] == 'T':
  3446. obj.add_shape(shape=poly, color=color['T'][1], face_color=color['T'][0],
  3447. visible=visible, layer=2)
  3448. elif kind == 'cut':
  3449. if geo['kind'][0] == 'C':
  3450. obj.add_shape(shape=poly, color=color['C'][1], face_color=color['C'][0],
  3451. visible=visible, layer=1)
  3452. else:
  3453. # For Incremental coordinates type G91
  3454. self.app.inform.emit('[ERROR_NOTCL] %s' %
  3455. _('G91 coordinates not implemented ...'))
  3456. for geo in gcode_parsed:
  3457. if geo['kind'][0] == 'T':
  3458. current_position = geo['geom'].coords[0]
  3459. if current_position not in pos:
  3460. pos.append(current_position)
  3461. path_num += 1
  3462. text.append(str(path_num))
  3463. current_position = geo['geom'].coords[-1]
  3464. if current_position not in pos:
  3465. pos.append(current_position)
  3466. path_num += 1
  3467. text.append(str(path_num))
  3468. # plot the geometry of Excellon objects
  3469. if self.origin_kind == 'excellon':
  3470. try:
  3471. poly = Polygon(geo['geom'])
  3472. except ValueError:
  3473. # if the geos are travel lines it will enter into Exception
  3474. poly = geo['geom'].buffer(distance=(tooldia / 1.99999999), resolution=self.steps_per_circle)
  3475. poly = poly.simplify(tool_tolerance)
  3476. else:
  3477. # plot the geometry of any objects other than Excellon
  3478. poly = geo['geom'].buffer(distance=(tooldia / 1.99999999), resolution=self.steps_per_circle)
  3479. poly = poly.simplify(tool_tolerance)
  3480. if kind == 'all':
  3481. obj.add_shape(shape=poly, color=color[geo['kind'][0]][1], face_color=color[geo['kind'][0]][0],
  3482. visible=visible, layer=1 if geo['kind'][0] == 'C' else 2)
  3483. elif kind == 'travel':
  3484. if geo['kind'][0] == 'T':
  3485. obj.add_shape(shape=poly, color=color['T'][1], face_color=color['T'][0],
  3486. visible=visible, layer=2)
  3487. elif kind == 'cut':
  3488. if geo['kind'][0] == 'C':
  3489. obj.add_shape(shape=poly, color=color['C'][1], face_color=color['C'][0],
  3490. visible=visible, layer=1)
  3491. # current_x = gcode_parsed[0]['geom'].coords[0][0]
  3492. # current_y = gcode_parsed[0]['geom'].coords[0][1]
  3493. # old_pos = (
  3494. # current_x,
  3495. # current_y
  3496. # )
  3497. #
  3498. # for geo in gcode_parsed:
  3499. # if geo['kind'][0] == 'T':
  3500. # current_position = (
  3501. # geo['geom'].coords[0][0] + old_pos[0],
  3502. # geo['geom'].coords[0][1] + old_pos[1]
  3503. # )
  3504. # if current_position not in pos:
  3505. # pos.append(current_position)
  3506. # path_num += 1
  3507. # text.append(str(path_num))
  3508. #
  3509. # delta = (
  3510. # geo['geom'].coords[-1][0] - geo['geom'].coords[0][0],
  3511. # geo['geom'].coords[-1][1] - geo['geom'].coords[0][1]
  3512. # )
  3513. # current_position = (
  3514. # current_position[0] + geo['geom'].coords[-1][0],
  3515. # current_position[1] + geo['geom'].coords[-1][1]
  3516. # )
  3517. # if current_position not in pos:
  3518. # pos.append(current_position)
  3519. # path_num += 1
  3520. # text.append(str(path_num))
  3521. #
  3522. # # plot the geometry of Excellon objects
  3523. # if self.origin_kind == 'excellon':
  3524. # if isinstance(geo['geom'], Point):
  3525. # # if geo is Point
  3526. # current_position = (
  3527. # current_position[0] + geo['geom'].x,
  3528. # current_position[1] + geo['geom'].y
  3529. # )
  3530. # poly = Polygon(Point(current_position))
  3531. # elif isinstance(geo['geom'], LineString):
  3532. # # if the geos are travel lines (LineStrings)
  3533. # new_line_pts = []
  3534. # old_line_pos = deepcopy(current_position)
  3535. # for p in list(geo['geom'].coords):
  3536. # current_position = (
  3537. # current_position[0] + p[0],
  3538. # current_position[1] + p[1]
  3539. # )
  3540. # new_line_pts.append(current_position)
  3541. # old_line_pos = p
  3542. # new_line = LineString(new_line_pts)
  3543. #
  3544. # poly = new_line.buffer(distance=(tooldia / 1.99999999), resolution=self.steps_per_circle)
  3545. # poly = poly.simplify(tool_tolerance)
  3546. # else:
  3547. # # plot the geometry of any objects other than Excellon
  3548. # new_line_pts = []
  3549. # old_line_pos = deepcopy(current_position)
  3550. # for p in list(geo['geom'].coords):
  3551. # current_position = (
  3552. # current_position[0] + p[0],
  3553. # current_position[1] + p[1]
  3554. # )
  3555. # new_line_pts.append(current_position)
  3556. # old_line_pos = p
  3557. # new_line = LineString(new_line_pts)
  3558. #
  3559. # poly = new_line.buffer(distance=(tooldia / 1.99999999), resolution=self.steps_per_circle)
  3560. # poly = poly.simplify(tool_tolerance)
  3561. #
  3562. # old_pos = deepcopy(current_position)
  3563. #
  3564. # if kind == 'all':
  3565. # obj.add_shape(shape=poly, color=color[geo['kind'][0]][1], face_color=color[geo['kind'][0]][0],
  3566. # visible=visible, layer=1 if geo['kind'][0] == 'C' else 2)
  3567. # elif kind == 'travel':
  3568. # if geo['kind'][0] == 'T':
  3569. # obj.add_shape(shape=poly, color=color['T'][1], face_color=color['T'][0],
  3570. # visible=visible, layer=2)
  3571. # elif kind == 'cut':
  3572. # if geo['kind'][0] == 'C':
  3573. # obj.add_shape(shape=poly, color=color['C'][1], face_color=color['C'][0],
  3574. # visible=visible, layer=1)
  3575. try:
  3576. obj.annotation.set(text=text, pos=pos, visible=obj.options['plot'],
  3577. font_size=self.app.defaults["cncjob_annotation_fontsize"],
  3578. color=self.app.defaults["cncjob_annotation_fontcolor"])
  3579. except Exception as e:
  3580. pass
  3581. def create_geometry(self):
  3582. self.app.inform.emit('%s: %s' % (_("Unifying Geometry from parsed Geometry segments"),
  3583. str(len(self.gcode_parsed))))
  3584. # TODO: This takes forever. Too much data?
  3585. # self.solid_geometry = cascaded_union([geo['geom'] for geo in self.gcode_parsed])
  3586. # This is much faster but not so nice to look at as you can see different segments of the geometry
  3587. self.solid_geometry = [geo['geom'] for geo in self.gcode_parsed]
  3588. return self.solid_geometry
  3589. # code snippet added by Lei Zheng in a rejected pull request on FlatCAM https://bitbucket.org/realthunder/
  3590. def segment(self, coords):
  3591. """
  3592. break long linear lines to make it more auto level friendly
  3593. """
  3594. if len(coords) < 2 or self.segx <= 0 and self.segy <= 0:
  3595. return list(coords)
  3596. path = [coords[0]]
  3597. # break the line in either x or y dimension only
  3598. def linebreak_single(line, dim, dmax):
  3599. if dmax <= 0:
  3600. return None
  3601. if line[1][dim] > line[0][dim]:
  3602. sign = 1.0
  3603. d = line[1][dim] - line[0][dim]
  3604. else:
  3605. sign = -1.0
  3606. d = line[0][dim] - line[1][dim]
  3607. if d > dmax:
  3608. # make sure we don't make any new lines too short
  3609. if d > dmax * 2:
  3610. dd = dmax
  3611. else:
  3612. dd = d / 2
  3613. other = dim ^ 1
  3614. return (line[0][dim] + dd * sign, line[0][other] + \
  3615. dd * (line[1][other] - line[0][other]) / d)
  3616. return None
  3617. # recursively breaks down a given line until it is within the
  3618. # required step size
  3619. def linebreak(line):
  3620. pt_new = linebreak_single(line, 0, self.segx)
  3621. if pt_new is None:
  3622. pt_new2 = linebreak_single(line, 1, self.segy)
  3623. else:
  3624. pt_new2 = linebreak_single((line[0], pt_new), 1, self.segy)
  3625. if pt_new2 is not None:
  3626. pt_new = pt_new2[::-1]
  3627. if pt_new is None:
  3628. path.append(line[1])
  3629. else:
  3630. path.append(pt_new)
  3631. linebreak((pt_new, line[1]))
  3632. for pt in coords[1:]:
  3633. linebreak((path[-1], pt))
  3634. return path
  3635. def linear2gcode(self, linear, tolerance=0, down=True, up=True,
  3636. z_cut=None, z_move=None, zdownrate=None,
  3637. feedrate=None, feedrate_z=None, feedrate_rapid=None, cont=False, old_point=(0, 0)):
  3638. """
  3639. Generates G-code to cut along the linear feature.
  3640. :param linear: The path to cut along.
  3641. :type: Shapely.LinearRing or Shapely.Linear String
  3642. :param tolerance: All points in the simplified object will be within the
  3643. tolerance distance of the original geometry.
  3644. :type tolerance: float
  3645. :param feedrate: speed for cut on X - Y plane
  3646. :param feedrate_z: speed for cut on Z plane
  3647. :param feedrate_rapid: speed to move between cuts; usually is G0 but some CNC require to specify it
  3648. :return: G-code to cut along the linear feature.
  3649. :rtype: str
  3650. """
  3651. if z_cut is None:
  3652. z_cut = self.z_cut
  3653. if z_move is None:
  3654. z_move = self.z_move
  3655. #
  3656. # if zdownrate is None:
  3657. # zdownrate = self.zdownrate
  3658. if feedrate is None:
  3659. feedrate = self.feedrate
  3660. if feedrate_z is None:
  3661. feedrate_z = self.z_feedrate
  3662. if feedrate_rapid is None:
  3663. feedrate_rapid = self.feedrate_rapid
  3664. # Simplify paths?
  3665. if tolerance > 0:
  3666. target_linear = linear.simplify(tolerance)
  3667. else:
  3668. target_linear = linear
  3669. gcode = ""
  3670. # path = list(target_linear.coords)
  3671. path = self.segment(target_linear.coords)
  3672. p = self.pp_geometry
  3673. self.coordinates_type = self.app.defaults["cncjob_coords_type"]
  3674. if self.coordinates_type == "G90":
  3675. # For Absolute coordinates type G90
  3676. first_x = path[0][0]
  3677. first_y = path[0][1]
  3678. else:
  3679. # For Incremental coordinates type G91
  3680. first_x = path[0][0] - old_point[0]
  3681. first_y = path[0][1] - old_point[1]
  3682. # Move fast to 1st point
  3683. if not cont:
  3684. gcode += self.doformat(p.rapid_code, x=first_x, y=first_y) # Move to first point
  3685. # Move down to cutting depth
  3686. if down:
  3687. # Different feedrate for vertical cut?
  3688. gcode += self.doformat(p.z_feedrate_code)
  3689. # gcode += self.doformat(p.feedrate_code)
  3690. gcode += self.doformat(p.down_code, x=first_x, y=first_y, z_cut=z_cut)
  3691. gcode += self.doformat(p.feedrate_code, feedrate=feedrate)
  3692. # Cutting...
  3693. prev_x = first_x
  3694. prev_y = first_y
  3695. for pt in path[1:]:
  3696. if self.app.abort_flag:
  3697. # graceful abort requested by the user
  3698. raise FlatCAMApp.GracefulException
  3699. if self.coordinates_type == "G90":
  3700. # For Absolute coordinates type G90
  3701. next_x = pt[0]
  3702. next_y = pt[1]
  3703. else:
  3704. # For Incremental coordinates type G91
  3705. # next_x = pt[0] - prev_x
  3706. # next_y = pt[1] - prev_y
  3707. self.app.inform.emit('[ERROR_NOTCL] %s' %
  3708. _('G91 coordinates not implemented ...'))
  3709. next_x = pt[0]
  3710. next_y = pt[1]
  3711. gcode += self.doformat(p.linear_code, x=next_x, y=next_y, z=z_cut) # Linear motion to point
  3712. prev_x = pt[0]
  3713. prev_y = pt[1]
  3714. # Up to travelling height.
  3715. if up:
  3716. gcode += self.doformat(p.lift_code, x=prev_x, y=prev_y, z_move=z_move) # Stop cutting
  3717. return gcode
  3718. def linear2gcode_extra(self, linear, tolerance=0, down=True, up=True,
  3719. z_cut=None, z_move=None, zdownrate=None,
  3720. feedrate=None, feedrate_z=None, feedrate_rapid=None, cont=False, old_point=(0, 0)):
  3721. """
  3722. Generates G-code to cut along the linear feature.
  3723. :param linear: The path to cut along.
  3724. :type: Shapely.LinearRing or Shapely.Linear String
  3725. :param tolerance: All points in the simplified object will be within the
  3726. tolerance distance of the original geometry.
  3727. :type tolerance: float
  3728. :param feedrate: speed for cut on X - Y plane
  3729. :param feedrate_z: speed for cut on Z plane
  3730. :param feedrate_rapid: speed to move between cuts; usually is G0 but some CNC require to specify it
  3731. :return: G-code to cut along the linear feature.
  3732. :rtype: str
  3733. """
  3734. if z_cut is None:
  3735. z_cut = self.z_cut
  3736. if z_move is None:
  3737. z_move = self.z_move
  3738. #
  3739. # if zdownrate is None:
  3740. # zdownrate = self.zdownrate
  3741. if feedrate is None:
  3742. feedrate = self.feedrate
  3743. if feedrate_z is None:
  3744. feedrate_z = self.z_feedrate
  3745. if feedrate_rapid is None:
  3746. feedrate_rapid = self.feedrate_rapid
  3747. # Simplify paths?
  3748. if tolerance > 0:
  3749. target_linear = linear.simplify(tolerance)
  3750. else:
  3751. target_linear = linear
  3752. gcode = ""
  3753. path = list(target_linear.coords)
  3754. p = self.pp_geometry
  3755. self.coordinates_type = self.app.defaults["cncjob_coords_type"]
  3756. if self.coordinates_type == "G90":
  3757. # For Absolute coordinates type G90
  3758. first_x = path[0][0]
  3759. first_y = path[0][1]
  3760. else:
  3761. # For Incremental coordinates type G91
  3762. first_x = path[0][0] - old_point[0]
  3763. first_y = path[0][1] - old_point[1]
  3764. # Move fast to 1st point
  3765. if not cont:
  3766. gcode += self.doformat(p.rapid_code, x=first_x, y=first_y) # Move to first point
  3767. # Move down to cutting depth
  3768. if down:
  3769. # Different feedrate for vertical cut?
  3770. if self.z_feedrate is not None:
  3771. gcode += self.doformat(p.z_feedrate_code)
  3772. # gcode += self.doformat(p.feedrate_code)
  3773. gcode += self.doformat(p.down_code, x=first_x, y=first_y, z_cut=z_cut)
  3774. gcode += self.doformat(p.feedrate_code, feedrate=feedrate)
  3775. else:
  3776. gcode += self.doformat(p.down_code, x=first_x, y=first_y, z_cut=z_cut) # Start cutting
  3777. # Cutting...
  3778. prev_x = first_x
  3779. prev_y = first_y
  3780. for pt in path[1:]:
  3781. if self.app.abort_flag:
  3782. # graceful abort requested by the user
  3783. raise FlatCAMApp.GracefulException
  3784. if self.coordinates_type == "G90":
  3785. # For Absolute coordinates type G90
  3786. next_x = pt[0]
  3787. next_y = pt[1]
  3788. else:
  3789. # For Incremental coordinates type G91
  3790. # For Incremental coordinates type G91
  3791. # next_x = pt[0] - prev_x
  3792. # next_y = pt[1] - prev_y
  3793. self.app.inform.emit('[ERROR_NOTCL] %s' %
  3794. _('G91 coordinates not implemented ...'))
  3795. next_x = pt[0]
  3796. next_y = pt[1]
  3797. gcode += self.doformat(p.linear_code, x=next_x, y=next_y, z=z_cut) # Linear motion to point
  3798. prev_x = pt[0]
  3799. prev_y = pt[1]
  3800. # this line is added to create an extra cut over the first point in patch
  3801. # to make sure that we remove the copper leftovers
  3802. # Linear motion to the 1st point in the cut path
  3803. if self.coordinates_type == "G90":
  3804. # For Absolute coordinates type G90
  3805. last_x = path[1][0]
  3806. last_y = path[1][1]
  3807. else:
  3808. # For Incremental coordinates type G91
  3809. last_x = path[1][0] - first_x
  3810. last_y = path[1][1] - first_y
  3811. gcode += self.doformat(p.linear_code, x=last_x, y=last_y)
  3812. # Up to travelling height.
  3813. if up:
  3814. gcode += self.doformat(p.lift_code, x=last_x, y=last_y, z_move=z_move) # Stop cutting
  3815. return gcode
  3816. def point2gcode(self, point, old_point=(0, 0)):
  3817. gcode = ""
  3818. if self.app.abort_flag:
  3819. # graceful abort requested by the user
  3820. raise FlatCAMApp.GracefulException
  3821. path = list(point.coords)
  3822. p = self.pp_geometry
  3823. self.coordinates_type = self.app.defaults["cncjob_coords_type"]
  3824. if self.coordinates_type == "G90":
  3825. # For Absolute coordinates type G90
  3826. first_x = path[0][0]
  3827. first_y = path[0][1]
  3828. else:
  3829. # For Incremental coordinates type G91
  3830. # first_x = path[0][0] - old_point[0]
  3831. # first_y = path[0][1] - old_point[1]
  3832. self.app.inform.emit('[ERROR_NOTCL] %s' %
  3833. _('G91 coordinates not implemented ...'))
  3834. first_x = path[0][0]
  3835. first_y = path[0][1]
  3836. gcode += self.doformat(p.linear_code, x=first_x, y=first_y) # Move to first point
  3837. if self.z_feedrate is not None:
  3838. gcode += self.doformat(p.z_feedrate_code)
  3839. gcode += self.doformat(p.down_code, x=first_x, y=first_y, z_cut = self.z_cut)
  3840. gcode += self.doformat(p.feedrate_code)
  3841. else:
  3842. gcode += self.doformat(p.down_code, x=first_x, y=first_y, z_cut = self.z_cut) # Start cutting
  3843. gcode += self.doformat(p.lift_code, x=first_x, y=first_y) # Stop cutting
  3844. return gcode
  3845. def export_svg(self, scale_stroke_factor=0.00):
  3846. """
  3847. Exports the CNC Job as a SVG Element
  3848. :scale_factor: float
  3849. :return: SVG Element string
  3850. """
  3851. # scale_factor is a multiplication factor for the SVG stroke-width used within shapely's svg export
  3852. # If not specified then try and use the tool diameter
  3853. # This way what is on screen will match what is outputed for the svg
  3854. # This is quite a useful feature for svg's used with visicut
  3855. if scale_stroke_factor <= 0:
  3856. scale_stroke_factor = self.options['tooldia'] / 2
  3857. # If still 0 then default to 0.05
  3858. # This value appears to work for zooming, and getting the output svg line width
  3859. # to match that viewed on screen with FlatCam
  3860. if scale_stroke_factor == 0:
  3861. scale_stroke_factor = 0.01
  3862. # Separate the list of cuts and travels into 2 distinct lists
  3863. # This way we can add different formatting / colors to both
  3864. cuts = []
  3865. travels = []
  3866. for g in self.gcode_parsed:
  3867. if self.app.abort_flag:
  3868. # graceful abort requested by the user
  3869. raise FlatCAMApp.GracefulException
  3870. if g['kind'][0] == 'C': cuts.append(g)
  3871. if g['kind'][0] == 'T': travels.append(g)
  3872. # Used to determine the overall board size
  3873. self.solid_geometry = cascaded_union([geo['geom'] for geo in self.gcode_parsed])
  3874. # Convert the cuts and travels into single geometry objects we can render as svg xml
  3875. if travels:
  3876. travelsgeom = cascaded_union([geo['geom'] for geo in travels])
  3877. if self.app.abort_flag:
  3878. # graceful abort requested by the user
  3879. raise FlatCAMApp.GracefulException
  3880. if cuts:
  3881. cutsgeom = cascaded_union([geo['geom'] for geo in cuts])
  3882. # Render the SVG Xml
  3883. # The scale factor affects the size of the lines, and the stroke color adds different formatting for each set
  3884. # It's better to have the travels sitting underneath the cuts for visicut
  3885. svg_elem = ""
  3886. if travels:
  3887. svg_elem = travelsgeom.svg(scale_factor=scale_stroke_factor, stroke_color="#F0E24D")
  3888. if cuts:
  3889. svg_elem += cutsgeom.svg(scale_factor=scale_stroke_factor, stroke_color="#5E6CFF")
  3890. return svg_elem
  3891. def bounds(self):
  3892. """
  3893. Returns coordinates of rectangular bounds
  3894. of geometry: (xmin, ymin, xmax, ymax).
  3895. """
  3896. # fixed issue of getting bounds only for one level lists of objects
  3897. # now it can get bounds for nested lists of objects
  3898. log.debug("camlib.CNCJob.bounds()")
  3899. def bounds_rec(obj):
  3900. if type(obj) is list:
  3901. minx = np.Inf
  3902. miny = np.Inf
  3903. maxx = -np.Inf
  3904. maxy = -np.Inf
  3905. for k in obj:
  3906. if type(k) is dict:
  3907. for key in k:
  3908. minx_, miny_, maxx_, maxy_ = bounds_rec(k[key])
  3909. minx = min(minx, minx_)
  3910. miny = min(miny, miny_)
  3911. maxx = max(maxx, maxx_)
  3912. maxy = max(maxy, maxy_)
  3913. else:
  3914. minx_, miny_, maxx_, maxy_ = bounds_rec(k)
  3915. minx = min(minx, minx_)
  3916. miny = min(miny, miny_)
  3917. maxx = max(maxx, maxx_)
  3918. maxy = max(maxy, maxy_)
  3919. return minx, miny, maxx, maxy
  3920. else:
  3921. # it's a Shapely object, return it's bounds
  3922. return obj.bounds
  3923. if self.multitool is False:
  3924. log.debug("CNCJob->bounds()")
  3925. if self.solid_geometry is None:
  3926. log.debug("solid_geometry is None")
  3927. return 0, 0, 0, 0
  3928. bounds_coords = bounds_rec(self.solid_geometry)
  3929. else:
  3930. minx = np.Inf
  3931. miny = np.Inf
  3932. maxx = -np.Inf
  3933. maxy = -np.Inf
  3934. for k, v in self.cnc_tools.items():
  3935. minx = np.Inf
  3936. miny = np.Inf
  3937. maxx = -np.Inf
  3938. maxy = -np.Inf
  3939. try:
  3940. for k in v['solid_geometry']:
  3941. minx_, miny_, maxx_, maxy_ = bounds_rec(k)
  3942. minx = min(minx, minx_)
  3943. miny = min(miny, miny_)
  3944. maxx = max(maxx, maxx_)
  3945. maxy = max(maxy, maxy_)
  3946. except TypeError:
  3947. minx_, miny_, maxx_, maxy_ = bounds_rec(v['solid_geometry'])
  3948. minx = min(minx, minx_)
  3949. miny = min(miny, miny_)
  3950. maxx = max(maxx, maxx_)
  3951. maxy = max(maxy, maxy_)
  3952. bounds_coords = minx, miny, maxx, maxy
  3953. return bounds_coords
  3954. # TODO This function should be replaced at some point with a "real" function. Until then it's an ugly hack ...
  3955. def scale(self, xfactor, yfactor=None, point=None):
  3956. """
  3957. Scales all the geometry on the XY plane in the object by the
  3958. given factor. Tool sizes, feedrates, or Z-axis dimensions are
  3959. not altered.
  3960. :param factor: Number by which to scale the object.
  3961. :type factor: float
  3962. :param point: the (x,y) coords for the point of origin of scale
  3963. :type tuple of floats
  3964. :return: None
  3965. :rtype: None
  3966. """
  3967. log.debug("camlib.CNCJob.scale()")
  3968. if yfactor is None:
  3969. yfactor = xfactor
  3970. if point is None:
  3971. px = 0
  3972. py = 0
  3973. else:
  3974. px, py = point
  3975. def scale_g(g):
  3976. """
  3977. :param g: 'g' parameter it's a gcode string
  3978. :return: scaled gcode string
  3979. """
  3980. temp_gcode = ''
  3981. header_start = False
  3982. header_stop = False
  3983. units = self.app.ui.general_defaults_form.general_app_group.units_radio.get_value().upper()
  3984. lines = StringIO(g)
  3985. for line in lines:
  3986. # this changes the GCODE header ---- UGLY HACK
  3987. if "TOOL DIAMETER" in line or "Feedrate:" in line:
  3988. header_start = True
  3989. if "G20" in line or "G21" in line:
  3990. header_start = False
  3991. header_stop = True
  3992. if header_start is True:
  3993. header_stop = False
  3994. if "in" in line:
  3995. if units == 'MM':
  3996. line = line.replace("in", "mm")
  3997. if "mm" in line:
  3998. if units == 'IN':
  3999. line = line.replace("mm", "in")
  4000. # find any float number in header (even multiple on the same line) and convert it
  4001. numbers_in_header = re.findall(self.g_nr_re, line)
  4002. if numbers_in_header:
  4003. for nr in numbers_in_header:
  4004. new_nr = float(nr) * xfactor
  4005. # replace the updated string
  4006. line = line.replace(nr, ('%.*f' % (self.app.defaults["cncjob_coords_decimals"], new_nr))
  4007. )
  4008. # this scales all the X and Y and Z and F values and also the Tool Dia in the toolchange message
  4009. if header_stop is True:
  4010. if "G20" in line:
  4011. if units == 'MM':
  4012. line = line.replace("G20", "G21")
  4013. if "G21" in line:
  4014. if units == 'IN':
  4015. line = line.replace("G21", "G20")
  4016. # find the X group
  4017. match_x = self.g_x_re.search(line)
  4018. if match_x:
  4019. if match_x.group(1) is not None:
  4020. new_x = float(match_x.group(1)[1:]) * xfactor
  4021. # replace the updated string
  4022. line = line.replace(
  4023. match_x.group(1),
  4024. 'X%.*f' % (self.app.defaults["cncjob_coords_decimals"], new_x)
  4025. )
  4026. # find the Y group
  4027. match_y = self.g_y_re.search(line)
  4028. if match_y:
  4029. if match_y.group(1) is not None:
  4030. new_y = float(match_y.group(1)[1:]) * yfactor
  4031. line = line.replace(
  4032. match_y.group(1),
  4033. 'Y%.*f' % (self.app.defaults["cncjob_coords_decimals"], new_y)
  4034. )
  4035. # find the Z group
  4036. match_z = self.g_z_re.search(line)
  4037. if match_z:
  4038. if match_z.group(1) is not None:
  4039. new_z = float(match_z.group(1)[1:]) * xfactor
  4040. line = line.replace(
  4041. match_z.group(1),
  4042. 'Z%.*f' % (self.app.defaults["cncjob_coords_decimals"], new_z)
  4043. )
  4044. # find the F group
  4045. match_f = self.g_f_re.search(line)
  4046. if match_f:
  4047. if match_f.group(1) is not None:
  4048. new_f = float(match_f.group(1)[1:]) * xfactor
  4049. line = line.replace(
  4050. match_f.group(1),
  4051. 'F%.*f' % (self.app.defaults["cncjob_fr_decimals"], new_f)
  4052. )
  4053. # find the T group (tool dia on toolchange)
  4054. match_t = self.g_t_re.search(line)
  4055. if match_t:
  4056. if match_t.group(1) is not None:
  4057. new_t = float(match_t.group(1)[1:]) * xfactor
  4058. line = line.replace(
  4059. match_t.group(1),
  4060. '= %.*f' % (self.app.defaults["cncjob_coords_decimals"], new_t)
  4061. )
  4062. temp_gcode += line
  4063. lines.close()
  4064. header_stop = False
  4065. return temp_gcode
  4066. if self.multitool is False:
  4067. # offset Gcode
  4068. self.gcode = scale_g(self.gcode)
  4069. # variables to display the percentage of work done
  4070. self.geo_len = 0
  4071. try:
  4072. for g in self.gcode_parsed:
  4073. self.geo_len += 1
  4074. except TypeError:
  4075. self.geo_len = 1
  4076. self.old_disp_number = 0
  4077. self.el_count = 0
  4078. # scale geometry
  4079. for g in self.gcode_parsed:
  4080. try:
  4081. g['geom'] = affinity.scale(g['geom'], xfactor, yfactor, origin=(px, py))
  4082. except AttributeError:
  4083. return g['geom']
  4084. self.el_count += 1
  4085. disp_number = int(np.interp(self.el_count, [0, self.geo_len], [0, 100]))
  4086. if self.old_disp_number < disp_number <= 100:
  4087. self.app.proc_container.update_view_text(' %d%%' % disp_number)
  4088. self.old_disp_number = disp_number
  4089. self.create_geometry()
  4090. else:
  4091. for k, v in self.cnc_tools.items():
  4092. # scale Gcode
  4093. v['gcode'] = scale_g(v['gcode'])
  4094. # variables to display the percentage of work done
  4095. self.geo_len = 0
  4096. try:
  4097. for g in v['gcode_parsed']:
  4098. self.geo_len += 1
  4099. except TypeError:
  4100. self.geo_len = 1
  4101. self.old_disp_number = 0
  4102. self.el_count = 0
  4103. # scale gcode_parsed
  4104. for g in v['gcode_parsed']:
  4105. try:
  4106. g['geom'] = affinity.scale(g['geom'], xfactor, yfactor, origin=(px, py))
  4107. except AttributeError:
  4108. return g['geom']
  4109. self.el_count += 1
  4110. disp_number = int(np.interp(self.el_count, [0, self.geo_len], [0, 100]))
  4111. if self.old_disp_number < disp_number <= 100:
  4112. self.app.proc_container.update_view_text(' %d%%' % disp_number)
  4113. self.old_disp_number = disp_number
  4114. v['solid_geometry'] = cascaded_union([geo['geom'] for geo in v['gcode_parsed']])
  4115. self.create_geometry()
  4116. self.app.proc_container.new_text = ''
  4117. def offset(self, vect):
  4118. """
  4119. Offsets all the geometry on the XY plane in the object by the
  4120. given vector.
  4121. Offsets all the GCODE on the XY plane in the object by the
  4122. given vector.
  4123. g_offsetx_re, g_offsety_re, multitool, cnnc_tools are attributes of FlatCAMCNCJob class in camlib
  4124. :param vect: (x, y) offset vector.
  4125. :type vect: tuple
  4126. :return: None
  4127. """
  4128. log.debug("camlib.CNCJob.offset()")
  4129. dx, dy = vect
  4130. def offset_g(g):
  4131. """
  4132. :param g: 'g' parameter it's a gcode string
  4133. :return: offseted gcode string
  4134. """
  4135. temp_gcode = ''
  4136. lines = StringIO(g)
  4137. for line in lines:
  4138. # find the X group
  4139. match_x = self.g_x_re.search(line)
  4140. if match_x:
  4141. if match_x.group(1) is not None:
  4142. # get the coordinate and add X offset
  4143. new_x = float(match_x.group(1)[1:]) + dx
  4144. # replace the updated string
  4145. line = line.replace(
  4146. match_x.group(1),
  4147. 'X%.*f' % (self.app.defaults["cncjob_coords_decimals"], new_x)
  4148. )
  4149. match_y = self.g_y_re.search(line)
  4150. if match_y:
  4151. if match_y.group(1) is not None:
  4152. new_y = float(match_y.group(1)[1:]) + dy
  4153. line = line.replace(
  4154. match_y.group(1),
  4155. 'Y%.*f' % (self.app.defaults["cncjob_coords_decimals"], new_y)
  4156. )
  4157. temp_gcode += line
  4158. lines.close()
  4159. return temp_gcode
  4160. if self.multitool is False:
  4161. # offset Gcode
  4162. self.gcode = offset_g(self.gcode)
  4163. # variables to display the percentage of work done
  4164. self.geo_len = 0
  4165. try:
  4166. for g in self.gcode_parsed:
  4167. self.geo_len += 1
  4168. except TypeError:
  4169. self.geo_len = 1
  4170. self.old_disp_number = 0
  4171. self.el_count = 0
  4172. # offset geometry
  4173. for g in self.gcode_parsed:
  4174. try:
  4175. g['geom'] = affinity.translate(g['geom'], xoff=dx, yoff=dy)
  4176. except AttributeError:
  4177. return g['geom']
  4178. self.el_count += 1
  4179. disp_number = int(np.interp(self.el_count, [0, self.geo_len], [0, 100]))
  4180. if self.old_disp_number < disp_number <= 100:
  4181. self.app.proc_container.update_view_text(' %d%%' % disp_number)
  4182. self.old_disp_number = disp_number
  4183. self.create_geometry()
  4184. else:
  4185. for k, v in self.cnc_tools.items():
  4186. # offset Gcode
  4187. v['gcode'] = offset_g(v['gcode'])
  4188. # variables to display the percentage of work done
  4189. self.geo_len = 0
  4190. try:
  4191. for g in v['gcode_parsed']:
  4192. self.geo_len += 1
  4193. except TypeError:
  4194. self.geo_len = 1
  4195. self.old_disp_number = 0
  4196. self.el_count = 0
  4197. # offset gcode_parsed
  4198. for g in v['gcode_parsed']:
  4199. try:
  4200. g['geom'] = affinity.translate(g['geom'], xoff=dx, yoff=dy)
  4201. except AttributeError:
  4202. return g['geom']
  4203. self.el_count += 1
  4204. disp_number = int(np.interp(self.el_count, [0, self.geo_len], [0, 100]))
  4205. if self.old_disp_number < disp_number <= 100:
  4206. self.app.proc_container.update_view_text(' %d%%' % disp_number)
  4207. self.old_disp_number = disp_number
  4208. # for the bounding box
  4209. v['solid_geometry'] = cascaded_union([geo['geom'] for geo in v['gcode_parsed']])
  4210. self.app.proc_container.new_text = ''
  4211. def mirror(self, axis, point):
  4212. """
  4213. Mirror the geometrys of an object by an given axis around the coordinates of the 'point'
  4214. :param angle:
  4215. :param point: tupple of coordinates (x,y)
  4216. :return:
  4217. """
  4218. log.debug("camlib.CNCJob.mirror()")
  4219. px, py = point
  4220. xscale, yscale = {"X": (1.0, -1.0), "Y": (-1.0, 1.0)}[axis]
  4221. # variables to display the percentage of work done
  4222. self.geo_len = 0
  4223. try:
  4224. for g in self.gcode_parsed:
  4225. self.geo_len += 1
  4226. except TypeError:
  4227. self.geo_len = 1
  4228. self.old_disp_number = 0
  4229. self.el_count = 0
  4230. for g in self.gcode_parsed:
  4231. try:
  4232. g['geom'] = affinity.scale(g['geom'], xscale, yscale, origin=(px, py))
  4233. except AttributeError:
  4234. return g['geom']
  4235. self.el_count += 1
  4236. disp_number = int(np.interp(self.el_count, [0, self.geo_len], [0, 100]))
  4237. if self.old_disp_number < disp_number <= 100:
  4238. self.app.proc_container.update_view_text(' %d%%' % disp_number)
  4239. self.old_disp_number = disp_number
  4240. self.create_geometry()
  4241. self.app.proc_container.new_text = ''
  4242. def skew(self, angle_x, angle_y, point):
  4243. """
  4244. Shear/Skew the geometries of an object by angles along x and y dimensions.
  4245. Parameters
  4246. ----------
  4247. angle_x, angle_y : float, float
  4248. The shear angle(s) for the x and y axes respectively. These can be
  4249. specified in either degrees (default) or radians by setting
  4250. use_radians=True.
  4251. point: tupple of coordinates (x,y)
  4252. See shapely manual for more information:
  4253. http://toblerity.org/shapely/manual.html#affine-transformations
  4254. """
  4255. log.debug("camlib.CNCJob.skew()")
  4256. px, py = point
  4257. # variables to display the percentage of work done
  4258. self.geo_len = 0
  4259. try:
  4260. for g in self.gcode_parsed:
  4261. self.geo_len += 1
  4262. except TypeError:
  4263. self.geo_len = 1
  4264. self.old_disp_number = 0
  4265. self.el_count = 0
  4266. for g in self.gcode_parsed:
  4267. try:
  4268. g['geom'] = affinity.skew(g['geom'], angle_x, angle_y, origin=(px, py))
  4269. except AttributeError:
  4270. return g['geom']
  4271. self.el_count += 1
  4272. disp_number = int(np.interp(self.el_count, [0, self.geo_len], [0, 100]))
  4273. if self.old_disp_number < disp_number <= 100:
  4274. self.app.proc_container.update_view_text(' %d%%' % disp_number)
  4275. self.old_disp_number = disp_number
  4276. self.create_geometry()
  4277. self.app.proc_container.new_text = ''
  4278. def rotate(self, angle, point):
  4279. """
  4280. Rotate the geometrys of an object by an given angle around the coordinates of the 'point'
  4281. :param angle:
  4282. :param point: tupple of coordinates (x,y)
  4283. :return:
  4284. """
  4285. log.debug("camlib.CNCJob.rotate()")
  4286. px, py = point
  4287. # variables to display the percentage of work done
  4288. self.geo_len = 0
  4289. try:
  4290. for g in self.gcode_parsed:
  4291. self.geo_len += 1
  4292. except TypeError:
  4293. self.geo_len = 1
  4294. self.old_disp_number = 0
  4295. self.el_count = 0
  4296. for g in self.gcode_parsed:
  4297. try:
  4298. g['geom'] = affinity.rotate(g['geom'], angle, origin=(px, py))
  4299. except AttributeError:
  4300. return g['geom']
  4301. self.el_count += 1
  4302. disp_number = int(np.interp(self.el_count, [0, self.geo_len], [0, 100]))
  4303. if self.old_disp_number < disp_number <= 100:
  4304. self.app.proc_container.update_view_text(' %d%%' % disp_number)
  4305. self.old_disp_number = disp_number
  4306. self.create_geometry()
  4307. self.app.proc_container.new_text = ''
  4308. def get_bounds(geometry_list):
  4309. xmin = np.Inf
  4310. ymin = np.Inf
  4311. xmax = -np.Inf
  4312. ymax = -np.Inf
  4313. for gs in geometry_list:
  4314. try:
  4315. gxmin, gymin, gxmax, gymax = gs.bounds()
  4316. xmin = min([xmin, gxmin])
  4317. ymin = min([ymin, gymin])
  4318. xmax = max([xmax, gxmax])
  4319. ymax = max([ymax, gymax])
  4320. except:
  4321. log.warning("DEVELOPMENT: Tried to get bounds of empty geometry.")
  4322. return [xmin, ymin, xmax, ymax]
  4323. def arc(center, radius, start, stop, direction, steps_per_circ):
  4324. """
  4325. Creates a list of point along the specified arc.
  4326. :param center: Coordinates of the center [x, y]
  4327. :type center: list
  4328. :param radius: Radius of the arc.
  4329. :type radius: float
  4330. :param start: Starting angle in radians
  4331. :type start: float
  4332. :param stop: End angle in radians
  4333. :type stop: float
  4334. :param direction: Orientation of the arc, "CW" or "CCW"
  4335. :type direction: string
  4336. :param steps_per_circ: Number of straight line segments to
  4337. represent a circle.
  4338. :type steps_per_circ: int
  4339. :return: The desired arc, as list of tuples
  4340. :rtype: list
  4341. """
  4342. # TODO: Resolution should be established by maximum error from the exact arc.
  4343. da_sign = {"cw": -1.0, "ccw": 1.0}
  4344. points = []
  4345. if direction == "ccw" and stop <= start:
  4346. stop += 2 * np.pi
  4347. if direction == "cw" and stop >= start:
  4348. stop -= 2 * np.pi
  4349. angle = abs(stop - start)
  4350. # angle = stop-start
  4351. steps = max([int(np.ceil(angle / (2 * np.pi) * steps_per_circ)), 2])
  4352. delta_angle = da_sign[direction] * angle * 1.0 / steps
  4353. for i in range(steps + 1):
  4354. theta = start + delta_angle * i
  4355. points.append((center[0] + radius * np.cos(theta), center[1] + radius * np.sin(theta)))
  4356. return points
  4357. def arc2(p1, p2, center, direction, steps_per_circ):
  4358. r = np.sqrt((center[0] - p1[0]) ** 2 + (center[1] - p1[1]) ** 2)
  4359. start = np.arctan2(p1[1] - center[1], p1[0] - center[0])
  4360. stop = np.arctan2(p2[1] - center[1], p2[0] - center[0])
  4361. return arc(center, r, start, stop, direction, steps_per_circ)
  4362. def arc_angle(start, stop, direction):
  4363. if direction == "ccw" and stop <= start:
  4364. stop += 2 * np.pi
  4365. if direction == "cw" and stop >= start:
  4366. stop -= 2 * np.pi
  4367. angle = abs(stop - start)
  4368. return angle
  4369. # def find_polygon(poly, point):
  4370. # """
  4371. # Find an object that object.contains(Point(point)) in
  4372. # poly, which can can be iterable, contain iterable of, or
  4373. # be itself an implementer of .contains().
  4374. #
  4375. # :param poly: See description
  4376. # :return: Polygon containing point or None.
  4377. # """
  4378. #
  4379. # if poly is None:
  4380. # return None
  4381. #
  4382. # try:
  4383. # for sub_poly in poly:
  4384. # p = find_polygon(sub_poly, point)
  4385. # if p is not None:
  4386. # return p
  4387. # except TypeError:
  4388. # try:
  4389. # if poly.contains(Point(point)):
  4390. # return poly
  4391. # except AttributeError:
  4392. # return None
  4393. #
  4394. # return None
  4395. def to_dict(obj):
  4396. """
  4397. Makes the following types into serializable form:
  4398. * ApertureMacro
  4399. * BaseGeometry
  4400. :param obj: Shapely geometry.
  4401. :type obj: BaseGeometry
  4402. :return: Dictionary with serializable form if ``obj`` was
  4403. BaseGeometry or ApertureMacro, otherwise returns ``obj``.
  4404. """
  4405. if isinstance(obj, ApertureMacro):
  4406. return {
  4407. "__class__": "ApertureMacro",
  4408. "__inst__": obj.to_dict()
  4409. }
  4410. if isinstance(obj, BaseGeometry):
  4411. return {
  4412. "__class__": "Shply",
  4413. "__inst__": sdumps(obj)
  4414. }
  4415. return obj
  4416. def dict2obj(d):
  4417. """
  4418. Default deserializer.
  4419. :param d: Serializable dictionary representation of an object
  4420. to be reconstructed.
  4421. :return: Reconstructed object.
  4422. """
  4423. if '__class__' in d and '__inst__' in d:
  4424. if d['__class__'] == "Shply":
  4425. return sloads(d['__inst__'])
  4426. if d['__class__'] == "ApertureMacro":
  4427. am = ApertureMacro()
  4428. am.from_dict(d['__inst__'])
  4429. return am
  4430. return d
  4431. else:
  4432. return d
  4433. # def plotg(geo, solid_poly=False, color="black"):
  4434. # try:
  4435. # __ = iter(geo)
  4436. # except:
  4437. # geo = [geo]
  4438. #
  4439. # for g in geo:
  4440. # if type(g) == Polygon:
  4441. # if solid_poly:
  4442. # patch = PolygonPatch(g,
  4443. # facecolor="#BBF268",
  4444. # edgecolor="#006E20",
  4445. # alpha=0.75,
  4446. # zorder=2)
  4447. # ax = subplot(111)
  4448. # ax.add_patch(patch)
  4449. # else:
  4450. # x, y = g.exterior.coords.xy
  4451. # plot(x, y, color=color)
  4452. # for ints in g.interiors:
  4453. # x, y = ints.coords.xy
  4454. # plot(x, y, color=color)
  4455. # continue
  4456. #
  4457. # if type(g) == LineString or type(g) == LinearRing:
  4458. # x, y = g.coords.xy
  4459. # plot(x, y, color=color)
  4460. # continue
  4461. #
  4462. # if type(g) == Point:
  4463. # x, y = g.coords.xy
  4464. # plot(x, y, 'o')
  4465. # continue
  4466. #
  4467. # try:
  4468. # __ = iter(g)
  4469. # plotg(g, color=color)
  4470. # except:
  4471. # log.error("Cannot plot: " + str(type(g)))
  4472. # continue
  4473. # def alpha_shape(points, alpha):
  4474. # """
  4475. # Compute the alpha shape (concave hull) of a set of points.
  4476. #
  4477. # @param points: Iterable container of points.
  4478. # @param alpha: alpha value to influence the gooeyness of the border. Smaller
  4479. # numbers don't fall inward as much as larger numbers. Too large,
  4480. # and you lose everything!
  4481. # """
  4482. # if len(points) < 4:
  4483. # # When you have a triangle, there is no sense in computing an alpha
  4484. # # shape.
  4485. # return MultiPoint(list(points)).convex_hull
  4486. #
  4487. # def add_edge(edges, edge_points, coords, i, j):
  4488. # """Add a line between the i-th and j-th points, if not in the list already"""
  4489. # if (i, j) in edges or (j, i) in edges:
  4490. # # already added
  4491. # return
  4492. # edges.add( (i, j) )
  4493. # edge_points.append(coords[ [i, j] ])
  4494. #
  4495. # coords = np.array([point.coords[0] for point in points])
  4496. #
  4497. # tri = Delaunay(coords)
  4498. # edges = set()
  4499. # edge_points = []
  4500. # # loop over triangles:
  4501. # # ia, ib, ic = indices of corner points of the triangle
  4502. # for ia, ib, ic in tri.vertices:
  4503. # pa = coords[ia]
  4504. # pb = coords[ib]
  4505. # pc = coords[ic]
  4506. #
  4507. # # Lengths of sides of triangle
  4508. # a = math.sqrt((pa[0]-pb[0])**2 + (pa[1]-pb[1])**2)
  4509. # b = math.sqrt((pb[0]-pc[0])**2 + (pb[1]-pc[1])**2)
  4510. # c = math.sqrt((pc[0]-pa[0])**2 + (pc[1]-pa[1])**2)
  4511. #
  4512. # # Semiperimeter of triangle
  4513. # s = (a + b + c)/2.0
  4514. #
  4515. # # Area of triangle by Heron's formula
  4516. # area = math.sqrt(s*(s-a)*(s-b)*(s-c))
  4517. # circum_r = a*b*c/(4.0*area)
  4518. #
  4519. # # Here's the radius filter.
  4520. # #print circum_r
  4521. # if circum_r < 1.0/alpha:
  4522. # add_edge(edges, edge_points, coords, ia, ib)
  4523. # add_edge(edges, edge_points, coords, ib, ic)
  4524. # add_edge(edges, edge_points, coords, ic, ia)
  4525. #
  4526. # m = MultiLineString(edge_points)
  4527. # triangles = list(polygonize(m))
  4528. # return cascaded_union(triangles), edge_points
  4529. # def voronoi(P):
  4530. # """
  4531. # Returns a list of all edges of the voronoi diagram for the given input points.
  4532. # """
  4533. # delauny = Delaunay(P)
  4534. # triangles = delauny.points[delauny.vertices]
  4535. #
  4536. # circum_centers = np.array([triangle_csc(tri) for tri in triangles])
  4537. # long_lines_endpoints = []
  4538. #
  4539. # lineIndices = []
  4540. # for i, triangle in enumerate(triangles):
  4541. # circum_center = circum_centers[i]
  4542. # for j, neighbor in enumerate(delauny.neighbors[i]):
  4543. # if neighbor != -1:
  4544. # lineIndices.append((i, neighbor))
  4545. # else:
  4546. # ps = triangle[(j+1)%3] - triangle[(j-1)%3]
  4547. # ps = np.array((ps[1], -ps[0]))
  4548. #
  4549. # middle = (triangle[(j+1)%3] + triangle[(j-1)%3]) * 0.5
  4550. # di = middle - triangle[j]
  4551. #
  4552. # ps /= np.linalg.norm(ps)
  4553. # di /= np.linalg.norm(di)
  4554. #
  4555. # if np.dot(di, ps) < 0.0:
  4556. # ps *= -1000.0
  4557. # else:
  4558. # ps *= 1000.0
  4559. #
  4560. # long_lines_endpoints.append(circum_center + ps)
  4561. # lineIndices.append((i, len(circum_centers) + len(long_lines_endpoints)-1))
  4562. #
  4563. # vertices = np.vstack((circum_centers, long_lines_endpoints))
  4564. #
  4565. # # filter out any duplicate lines
  4566. # lineIndicesSorted = np.sort(lineIndices) # make (1,2) and (2,1) both (1,2)
  4567. # lineIndicesTupled = [tuple(row) for row in lineIndicesSorted]
  4568. # lineIndicesUnique = np.unique(lineIndicesTupled)
  4569. #
  4570. # return vertices, lineIndicesUnique
  4571. #
  4572. #
  4573. # def triangle_csc(pts):
  4574. # rows, cols = pts.shape
  4575. #
  4576. # A = np.bmat([[2 * np.dot(pts, pts.T), np.ones((rows, 1))],
  4577. # [np.ones((1, rows)), np.zeros((1, 1))]])
  4578. #
  4579. # b = np.hstack((np.sum(pts * pts, axis=1), np.ones((1))))
  4580. # x = np.linalg.solve(A,b)
  4581. # bary_coords = x[:-1]
  4582. # return np.sum(pts * np.tile(bary_coords.reshape((pts.shape[0], 1)), (1, pts.shape[1])), axis=0)
  4583. #
  4584. #
  4585. # def voronoi_cell_lines(points, vertices, lineIndices):
  4586. # """
  4587. # Returns a mapping from a voronoi cell to its edges.
  4588. #
  4589. # :param points: shape (m,2)
  4590. # :param vertices: shape (n,2)
  4591. # :param lineIndices: shape (o,2)
  4592. # :rtype: dict point index -> list of shape (n,2) with vertex indices
  4593. # """
  4594. # kd = KDTree(points)
  4595. #
  4596. # cells = collections.defaultdict(list)
  4597. # for i1, i2 in lineIndices:
  4598. # v1, v2 = vertices[i1], vertices[i2]
  4599. # mid = (v1+v2)/2
  4600. # _, (p1Idx, p2Idx) = kd.query(mid, 2)
  4601. # cells[p1Idx].append((i1, i2))
  4602. # cells[p2Idx].append((i1, i2))
  4603. #
  4604. # return cells
  4605. #
  4606. #
  4607. # def voronoi_edges2polygons(cells):
  4608. # """
  4609. # Transforms cell edges into polygons.
  4610. #
  4611. # :param cells: as returned from voronoi_cell_lines
  4612. # :rtype: dict point index -> list of vertex indices which form a polygon
  4613. # """
  4614. #
  4615. # # first, close the outer cells
  4616. # for pIdx, lineIndices_ in cells.items():
  4617. # dangling_lines = []
  4618. # for i1, i2 in lineIndices_:
  4619. # p = (i1, i2)
  4620. # connections = filter(lambda k: p != k and
  4621. # (p[0] == k[0] or p[0] == k[1] or p[1] == k[0] or p[1] == k[1]), lineIndices_)
  4622. # # connections = filter(lambda (i1_, i2_): (i1, i2) != (i1_, i2_) and
  4623. # (i1 == i1_ or i1 == i2_ or i2 == i1_ or i2 == i2_), lineIndices_)
  4624. # assert 1 <= len(connections) <= 2
  4625. # if len(connections) == 1:
  4626. # dangling_lines.append((i1, i2))
  4627. # assert len(dangling_lines) in [0, 2]
  4628. # if len(dangling_lines) == 2:
  4629. # (i11, i12), (i21, i22) = dangling_lines
  4630. # s = (i11, i12)
  4631. # t = (i21, i22)
  4632. #
  4633. # # determine which line ends are unconnected
  4634. # connected = filter(lambda k: k != s and (k[0] == s[0] or k[1] == s[0]), lineIndices_)
  4635. # # connected = filter(lambda (i1,i2): (i1,i2) != (i11,i12) and (i1 == i11 or i2 == i11), lineIndices_)
  4636. # i11Unconnected = len(connected) == 0
  4637. #
  4638. # connected = filter(lambda k: k != t and (k[0] == t[0] or k[1] == t[0]), lineIndices_)
  4639. # # connected = filter(lambda (i1,i2): (i1,i2) != (i21,i22) and (i1 == i21 or i2 == i21), lineIndices_)
  4640. # i21Unconnected = len(connected) == 0
  4641. #
  4642. # startIdx = i11 if i11Unconnected else i12
  4643. # endIdx = i21 if i21Unconnected else i22
  4644. #
  4645. # cells[pIdx].append((startIdx, endIdx))
  4646. #
  4647. # # then, form polygons by storing vertex indices in (counter-)clockwise order
  4648. # polys = dict()
  4649. # for pIdx, lineIndices_ in cells.items():
  4650. # # get a directed graph which contains both directions and arbitrarily follow one of both
  4651. # directedGraph = lineIndices_ + [(i2, i1) for (i1, i2) in lineIndices_]
  4652. # directedGraphMap = collections.defaultdict(list)
  4653. # for (i1, i2) in directedGraph:
  4654. # directedGraphMap[i1].append(i2)
  4655. # orderedEdges = []
  4656. # currentEdge = directedGraph[0]
  4657. # while len(orderedEdges) < len(lineIndices_):
  4658. # i1 = currentEdge[1]
  4659. # i2 = directedGraphMap[i1][0] if directedGraphMap[i1][0] != currentEdge[0] else directedGraphMap[i1][1]
  4660. # nextEdge = (i1, i2)
  4661. # orderedEdges.append(nextEdge)
  4662. # currentEdge = nextEdge
  4663. #
  4664. # polys[pIdx] = [i1 for (i1, i2) in orderedEdges]
  4665. #
  4666. # return polys
  4667. #
  4668. #
  4669. # def voronoi_polygons(points):
  4670. # """
  4671. # Returns the voronoi polygon for each input point.
  4672. #
  4673. # :param points: shape (n,2)
  4674. # :rtype: list of n polygons where each polygon is an array of vertices
  4675. # """
  4676. # vertices, lineIndices = voronoi(points)
  4677. # cells = voronoi_cell_lines(points, vertices, lineIndices)
  4678. # polys = voronoi_edges2polygons(cells)
  4679. # polylist = []
  4680. # for i in range(len(points)):
  4681. # poly = vertices[np.asarray(polys[i])]
  4682. # polylist.append(poly)
  4683. # return polylist
  4684. #
  4685. #
  4686. # class Zprofile:
  4687. # def __init__(self):
  4688. #
  4689. # # data contains lists of [x, y, z]
  4690. # self.data = []
  4691. #
  4692. # # Computed voronoi polygons (shapely)
  4693. # self.polygons = []
  4694. # pass
  4695. #
  4696. # # def plot_polygons(self):
  4697. # # axes = plt.subplot(1, 1, 1)
  4698. # #
  4699. # # plt.axis([-0.05, 1.05, -0.05, 1.05])
  4700. # #
  4701. # # for poly in self.polygons:
  4702. # # p = PolygonPatch(poly, facecolor=np.random.rand(3, 1), alpha=0.3)
  4703. # # axes.add_patch(p)
  4704. #
  4705. # def init_from_csv(self, filename):
  4706. # pass
  4707. #
  4708. # def init_from_string(self, zpstring):
  4709. # pass
  4710. #
  4711. # def init_from_list(self, zplist):
  4712. # self.data = zplist
  4713. #
  4714. # def generate_polygons(self):
  4715. # self.polygons = [Polygon(p) for p in voronoi_polygons(array([[x[0], x[1]] for x in self.data]))]
  4716. #
  4717. # def normalize(self, origin):
  4718. # pass
  4719. #
  4720. # def paste(self, path):
  4721. # """
  4722. # Return a list of dictionaries containing the parts of the original
  4723. # path and their z-axis offset.
  4724. # """
  4725. #
  4726. # # At most one region/polygon will contain the path
  4727. # containing = [i for i in range(len(self.polygons)) if self.polygons[i].contains(path)]
  4728. #
  4729. # if len(containing) > 0:
  4730. # return [{"path": path, "z": self.data[containing[0]][2]}]
  4731. #
  4732. # # All region indexes that intersect with the path
  4733. # crossing = [i for i in range(len(self.polygons)) if self.polygons[i].intersects(path)]
  4734. #
  4735. # return [{"path": path.intersection(self.polygons[i]),
  4736. # "z": self.data[i][2]} for i in crossing]
  4737. def autolist(obj):
  4738. try:
  4739. __ = iter(obj)
  4740. return obj
  4741. except TypeError:
  4742. return [obj]
  4743. def three_point_circle(p1, p2, p3):
  4744. """
  4745. Computes the center and radius of a circle from
  4746. 3 points on its circumference.
  4747. :param p1: Point 1
  4748. :param p2: Point 2
  4749. :param p3: Point 3
  4750. :return: center, radius
  4751. """
  4752. # Midpoints
  4753. a1 = (p1 + p2) / 2.0
  4754. a2 = (p2 + p3) / 2.0
  4755. # Normals
  4756. b1 = np.dot((p2 - p1), np.array([[0, -1], [1, 0]], dtype=np.float32))
  4757. b2 = np.dot((p3 - p2), np.array([[0, 1], [-1, 0]], dtype=np.float32))
  4758. # Params
  4759. try:
  4760. T = solve(np.transpose(np.array([-b1, b2])), a1 - a2)
  4761. except Exception as e:
  4762. log.debug("camlib.three_point_circle() --> %s" % str(e))
  4763. return
  4764. # Center
  4765. center = a1 + b1 * T[0]
  4766. # Radius
  4767. radius = np.linalg.norm(center - p1)
  4768. return center, radius, T[0]
  4769. def distance(pt1, pt2):
  4770. return np.sqrt((pt1[0] - pt2[0]) ** 2 + (pt1[1] - pt2[1]) ** 2)
  4771. def distance_euclidian(x1, y1, x2, y2):
  4772. return np.sqrt((x1 - x2) ** 2 + (y1 - y2) ** 2)
  4773. class FlatCAMRTree(object):
  4774. """
  4775. Indexes geometry (Any object with "cooords" property containing
  4776. a list of tuples with x, y values). Objects are indexed by
  4777. all their points by default. To index by arbitrary points,
  4778. override self.points2obj.
  4779. """
  4780. def __init__(self):
  4781. # Python RTree Index
  4782. self.rti = rtindex.Index()
  4783. # ## Track object-point relationship
  4784. # Each is list of points in object.
  4785. self.obj2points = []
  4786. # Index is index in rtree, value is index of
  4787. # object in obj2points.
  4788. self.points2obj = []
  4789. self.get_points = lambda go: go.coords
  4790. def grow_obj2points(self, idx):
  4791. """
  4792. Increases the size of self.obj2points to fit
  4793. idx + 1 items.
  4794. :param idx: Index to fit into list.
  4795. :return: None
  4796. """
  4797. if len(self.obj2points) > idx:
  4798. # len == 2, idx == 1, ok.
  4799. return
  4800. else:
  4801. # len == 2, idx == 2, need 1 more.
  4802. # range(2, 3)
  4803. for i in range(len(self.obj2points), idx + 1):
  4804. self.obj2points.append([])
  4805. def insert(self, objid, obj):
  4806. self.grow_obj2points(objid)
  4807. self.obj2points[objid] = []
  4808. for pt in self.get_points(obj):
  4809. self.rti.insert(len(self.points2obj), (pt[0], pt[1], pt[0], pt[1]), obj=objid)
  4810. self.obj2points[objid].append(len(self.points2obj))
  4811. self.points2obj.append(objid)
  4812. def remove_obj(self, objid, obj):
  4813. # Use all ptids to delete from index
  4814. for i, pt in enumerate(self.get_points(obj)):
  4815. try:
  4816. self.rti.delete(self.obj2points[objid][i], (pt[0], pt[1], pt[0], pt[1]))
  4817. except IndexError:
  4818. pass
  4819. def nearest(self, pt):
  4820. """
  4821. Will raise StopIteration if no items are found.
  4822. :param pt:
  4823. :return:
  4824. """
  4825. return next(self.rti.nearest(pt, objects=True))
  4826. class FlatCAMRTreeStorage(FlatCAMRTree):
  4827. """
  4828. Just like FlatCAMRTree it indexes geometry, but also serves
  4829. as storage for the geometry.
  4830. """
  4831. def __init__(self):
  4832. # super(FlatCAMRTreeStorage, self).__init__()
  4833. super().__init__()
  4834. self.objects = []
  4835. # Optimization attempt!
  4836. self.indexes = {}
  4837. def insert(self, obj):
  4838. self.objects.append(obj)
  4839. idx = len(self.objects) - 1
  4840. # Note: Shapely objects are not hashable any more, althought
  4841. # there seem to be plans to re-introduce the feature in
  4842. # version 2.0. For now, we will index using the object's id,
  4843. # but it's important to remember that shapely geometry is
  4844. # mutable, ie. it can be modified to a totally different shape
  4845. # and continue to have the same id.
  4846. # self.indexes[obj] = idx
  4847. self.indexes[id(obj)] = idx
  4848. # super(FlatCAMRTreeStorage, self).insert(idx, obj)
  4849. super().insert(idx, obj)
  4850. # @profile
  4851. def remove(self, obj):
  4852. # See note about self.indexes in insert().
  4853. # objidx = self.indexes[obj]
  4854. objidx = self.indexes[id(obj)]
  4855. # Remove from list
  4856. self.objects[objidx] = None
  4857. # Remove from index
  4858. self.remove_obj(objidx, obj)
  4859. def get_objects(self):
  4860. return (o for o in self.objects if o is not None)
  4861. def nearest(self, pt):
  4862. """
  4863. Returns the nearest matching points and the object
  4864. it belongs to.
  4865. :param pt: Query point.
  4866. :return: (match_x, match_y), Object owner of
  4867. matching point.
  4868. :rtype: tuple
  4869. """
  4870. tidx = super(FlatCAMRTreeStorage, self).nearest(pt)
  4871. return (tidx.bbox[0], tidx.bbox[1]), self.objects[tidx.object]
  4872. # class myO:
  4873. # def __init__(self, coords):
  4874. # self.coords = coords
  4875. #
  4876. #
  4877. # def test_rti():
  4878. #
  4879. # o1 = myO([(0, 0), (0, 1), (1, 1)])
  4880. # o2 = myO([(2, 0), (2, 1), (2, 1)])
  4881. # o3 = myO([(2, 0), (2, 1), (3, 1)])
  4882. #
  4883. # os = [o1, o2]
  4884. #
  4885. # idx = FlatCAMRTree()
  4886. #
  4887. # for o in range(len(os)):
  4888. # idx.insert(o, os[o])
  4889. #
  4890. # print [x.bbox for x in idx.rti.nearest((0, 0), num_results=20, objects=True)]
  4891. #
  4892. # idx.remove_obj(0, o1)
  4893. #
  4894. # print [x.bbox for x in idx.rti.nearest((0, 0), num_results=20, objects=True)]
  4895. #
  4896. # idx.remove_obj(1, o2)
  4897. #
  4898. # print [x.bbox for x in idx.rti.nearest((0, 0), num_results=20, objects=True)]
  4899. #
  4900. #
  4901. # def test_rtis():
  4902. #
  4903. # o1 = myO([(0, 0), (0, 1), (1, 1)])
  4904. # o2 = myO([(2, 0), (2, 1), (2, 1)])
  4905. # o3 = myO([(2, 0), (2, 1), (3, 1)])
  4906. #
  4907. # os = [o1, o2]
  4908. #
  4909. # idx = FlatCAMRTreeStorage()
  4910. #
  4911. # for o in range(len(os)):
  4912. # idx.insert(os[o])
  4913. #
  4914. # #os = None
  4915. # #o1 = None
  4916. # #o2 = None
  4917. #
  4918. # print [x.bbox for x in idx.rti.nearest((0, 0), num_results=20, objects=True)]
  4919. #
  4920. # idx.remove(idx.nearest((2,0))[1])
  4921. #
  4922. # print [x.bbox for x in idx.rti.nearest((0, 0), num_results=20, objects=True)]
  4923. #
  4924. # idx.remove(idx.nearest((0,0))[1])
  4925. #
  4926. # print [x.bbox for x in idx.rti.nearest((0, 0), num_results=20, objects=True)]