| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080 |
- # ##########################################################
- # FlatCAM: 2D Post-processing for Manufacturing #
- # File Author: Marius Adrian Stanciu (c) #
- # Date: 4/23/2019 #
- # MIT Licence #
- # ##########################################################
- from PyQt5 import QtCore
- from Common import GracefulException as grace
- from shapely.geometry import Polygon, LineString, MultiPolygon
- from copy import copy, deepcopy
- import numpy as np
- import re
- import logging
- log = logging.getLogger('base')
- class PdfParser(QtCore.QObject):
- def __init__(self, app):
- super().__init__()
- self.app = app
- self.step_per_circles = self.app.defaults["gerber_circle_steps"]
- # detect stroke color change; it means a new object to be created
- self.stroke_color_re = re.compile(r'^\s*(\d+\.?\d*) (\d+\.?\d*) (\d+\.?\d*)\s*RG$')
- # detect fill color change; we check here for white color (transparent geometry);
- # if detected we create an Excellon from it
- self.fill_color_re = re.compile(r'^\s*(\d+\.?\d*) (\d+\.?\d*) (\d+\.?\d*)\s*rg$')
- # detect 're' command
- self.rect_re = re.compile(r'^(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s*re$')
- # detect 'm' command
- self.start_subpath_re = re.compile(r'^(-?\d+\.?\d*)\s(-?\d+\.?\d*)\sm$')
- # detect 'l' command
- self.draw_line_re = re.compile(r'^(-?\d+\.?\d*)\s(-?\d+\.?\d*)\sl')
- # detect 'c' command
- self.draw_arc_3pt_re = re.compile(r'^(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s(-?\d+\.?\d*)'
- r'\s(-?\d+\.?\d*)\s*c$')
- # detect 'v' command
- self.draw_arc_2pt_c1start_re = re.compile(r'^(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s*v$')
- # detect 'y' command
- self.draw_arc_2pt_c2stop_re = re.compile(r'^(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s*y$')
- # detect 'h' command
- self.end_subpath_re = re.compile(r'^h$')
- # detect 'w' command
- self.strokewidth_re = re.compile(r'^(\d+\.?\d*)\s*w$')
- # detect 'S' command
- self.stroke_path__re = re.compile(r'^S\s?[Q]?$')
- # detect 's' command
- self.close_stroke_path__re = re.compile(r'^s$')
- # detect 'f' or 'f*' command
- self.fill_path_re = re.compile(r'^[f|F][*]?$')
- # detect 'B' or 'B*' command
- self.fill_stroke_path_re = re.compile(r'^B[*]?$')
- # detect 'b' or 'b*' command
- self.close_fill_stroke_path_re = re.compile(r'^b[*]?$')
- # detect 'n'
- self.no_op_re = re.compile(r'^n$')
- # detect offset transformation. Pattern: (1) (0) (0) (1) (x) (y)
- # self.offset_re = re.compile(r'^1\.?0*\s0?\.?0*\s0?\.?0*\s1\.?0*\s(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s*cm$')
- # detect scale transformation. Pattern: (factor_x) (0) (0) (factor_y) (0) (0)
- # self.scale_re = re.compile(r'^q? (-?\d+\.?\d*) 0\.?0* 0\.?0* (-?\d+\.?\d*) 0\.?0* 0\.?0*\s+cm$')
- # detect combined transformation. Should always be the last
- self.combined_transform_re = re.compile(r'^(q)?\s*(-?\d+\.?\d*) (-?\d+\.?\d*) (-?\d+\.?\d*) (-?\d+\.?\d*) '
- r'(-?\d+\.?\d*) (-?\d+\.?\d*)\s+cm$')
- # detect clipping path
- self.clip_path_re = re.compile(r'^W[*]? n?$')
- # detect save graphic state in graphic stack
- self.save_gs_re = re.compile(r'^q.*?$')
- # detect restore graphic state from graphic stack
- self.restore_gs_re = re.compile(r'^.*Q.*$')
- # graphic stack where we save parameters like transformation, line_width
- self.gs = {}
- # each element is a list composed of sublist elements
- # (each sublist has 2 lists each having 2 elements: first is offset like:
- # offset_geo = [off_x, off_y], second element is scale list with 2 elements, like: scale_geo = [sc_x, sc_yy])
- self.gs['transform'] = []
- self.gs['line_width'] = [] # each element is a float
- # conversion factor to INCH
- self.point_to_unit_factor = 0.01388888888
- def parse_pdf(self, pdf_content):
- # the UNITS in PDF files are points and here we set the factor to convert them to real units (either MM or INCH)
- if self.app.defaults['units'].upper() == 'MM':
- # 1 inch = 72 points => 1 point = 1 / 72 = 0.01388888888 inch = 0.01388888888 inch * 25.4 = 0.35277777778 mm
- self.point_to_unit_factor = 25.4 / 72
- else:
- # 1 inch = 72 points => 1 point = 1 / 72 = 0.01388888888 inch
- self.point_to_unit_factor = 1 / 72
- path = {}
- path['lines'] = [] # it's a list of lines subpaths
- path['bezier'] = [] # it's a list of bezier arcs subpaths
- path['rectangle'] = [] # it's a list of rectangle subpaths
- subpath = {}
- subpath['lines'] = [] # it's a list of points
- subpath['bezier'] = [] # it's a list of sublists each like this [start, c1, c2, stop]
- subpath['rectangle'] = [] # it's a list of sublists of points
- # store the start point (when 'm' command is encountered)
- current_subpath = None
- # set True when 'h' command is encountered (close subpath)
- close_subpath = False
- start_point = None
- current_point = None
- size = 0
- # initial values for the transformations, in case they are not encountered in the PDF file
- offset_geo = [0, 0]
- scale_geo = [1, 1]
- # store the objects to be transformed into Gerbers
- object_dict = {}
- # will serve as key in the object_dict
- layer_nr = 1
- # create first object
- object_dict[layer_nr] = {}
- # store the apertures here
- apertures_dict = {}
- # initial aperture
- aperture = 10
- # store the apertures with clear geometry here
- # we are interested only in the circular geometry (drill holes) therefore we target only Bezier subpaths
- clear_apertures_dict = {}
- # everything will be stored in the '0' aperture since we are dealing with clear polygons not strokes
- clear_apertures_dict['0'] = {}
- clear_apertures_dict['0']['size'] = 0.0
- clear_apertures_dict['0']['type'] = 'C'
- clear_apertures_dict['0']['geometry'] = []
- # on stroke color change we create a new apertures dictionary and store the old one in a storage from where
- # it will be transformed into Gerber object
- old_color = [None, None, None]
- # signal that we have clear geometry and the geometry will be added to a special layer_nr = 0
- flag_clear_geo = False
- line_nr = 0
- lines = pdf_content.splitlines()
- for pline in lines:
- if self.app.abort_flag:
- # graceful abort requested by the user
- raise grace
- line_nr += 1
- log.debug("line %d: %s" % (line_nr, pline))
- # COLOR DETECTION / OBJECT DETECTION
- match = self.stroke_color_re.search(pline)
- if match:
- color = [float(match.group(1)), float(match.group(2)), float(match.group(3))]
- log.debug(
- "ToolPDF.parse_pdf() --> STROKE Color change on line: %s --> RED=%f GREEN=%f BLUE=%f" %
- (line_nr, color[0], color[1], color[2]))
- if color[0] == old_color[0] and color[1] == old_color[1] and color[2] == old_color[2]:
- # same color, do nothing
- continue
- else:
- if apertures_dict:
- object_dict[layer_nr] = deepcopy(apertures_dict)
- apertures_dict.clear()
- layer_nr += 1
- object_dict[layer_nr] = {}
- old_color = copy(color)
- # we make sure that the following geometry is added to the right storage
- flag_clear_geo = False
- continue
- # CLEAR GEOMETRY detection
- match = self.fill_color_re.search(pline)
- if match:
- fill_color = [float(match.group(1)), float(match.group(2)), float(match.group(3))]
- log.debug(
- "ToolPDF.parse_pdf() --> FILL Color change on line: %s --> RED=%f GREEN=%f BLUE=%f" %
- (line_nr, fill_color[0], fill_color[1], fill_color[2]))
- # if the color is white we are seeing 'clear_geometry' that can't be seen. It may be that those
- # geometries are actually holes from which we can make an Excellon file
- if fill_color[0] == 1 and fill_color[1] == 1 and fill_color[2] == 1:
- flag_clear_geo = True
- else:
- flag_clear_geo = False
- continue
- # TRANSFORMATIONS DETECTION #
- # Detect combined transformation.
- match = self.combined_transform_re.search(pline)
- if match:
- # detect save graphic stack event
- # sometimes they combine save_to_graphics_stack with the transformation on the same line
- if match.group(1) == 'q':
- log.debug(
- "ToolPDF.parse_pdf() --> Save to GS found on line: %s --> offset=[%f, %f] ||| scale=[%f, %f]" %
- (line_nr, offset_geo[0], offset_geo[1], scale_geo[0], scale_geo[1]))
- self.gs['transform'].append(deepcopy([offset_geo, scale_geo]))
- self.gs['line_width'].append(deepcopy(size))
- # transformation = TRANSLATION (OFFSET)
- if (float(match.group(3)) == 0 and float(match.group(4)) == 0) and \
- (float(match.group(6)) != 0 or float(match.group(7)) != 0):
- log.debug(
- "ToolPDF.parse_pdf() --> OFFSET transformation found on line: %s --> %s" % (line_nr, pline))
- offset_geo[0] += float(match.group(6))
- offset_geo[1] += float(match.group(7))
- # log.debug("Offset= [%f, %f]" % (offset_geo[0], offset_geo[1]))
- # transformation = SCALING
- if float(match.group(2)) != 1 and float(match.group(5)) != 1:
- log.debug(
- "ToolPDF.parse_pdf() --> SCALE transformation found on line: %s --> %s" % (line_nr, pline))
- scale_geo[0] *= float(match.group(2))
- scale_geo[1] *= float(match.group(5))
- # log.debug("Scale= [%f, %f]" % (scale_geo[0], scale_geo[1]))
- continue
- # detect save graphic stack event
- match = self.save_gs_re.search(pline)
- if match:
- log.debug(
- "ToolPDF.parse_pdf() --> Save to GS found on line: %s --> offset=[%f, %f] ||| scale=[%f, %f]" %
- (line_nr, offset_geo[0], offset_geo[1], scale_geo[0], scale_geo[1]))
- self.gs['transform'].append(deepcopy([offset_geo, scale_geo]))
- self.gs['line_width'].append(deepcopy(size))
- # detect restore from graphic stack event
- match = self.restore_gs_re.search(pline)
- if match:
- try:
- restored_transform = self.gs['transform'].pop(-1)
- offset_geo = restored_transform[0]
- scale_geo = restored_transform[1]
- except IndexError:
- # nothing to remove
- log.debug("ToolPDF.parse_pdf() --> Nothing to restore")
- pass
- try:
- size = self.gs['line_width'].pop(-1)
- except IndexError:
- log.debug("ToolPDF.parse_pdf() --> Nothing to restore")
- # nothing to remove
- pass
- log.debug(
- "ToolPDF.parse_pdf() --> Restore from GS found on line: %s --> "
- "restored_offset=[%f, %f] ||| restored_scale=[%f, %f]" %
- (line_nr, offset_geo[0], offset_geo[1], scale_geo[0], scale_geo[1]))
- # log.debug("Restored Offset= [%f, %f]" % (offset_geo[0], offset_geo[1]))
- # log.debug("Restored Scale= [%f, %f]" % (scale_geo[0], scale_geo[1]))
- # PATH CONSTRUCTION #
- # Start SUBPATH
- match = self.start_subpath_re.search(pline)
- if match:
- # we just started a subpath so we mark it as not closed yet
- close_subpath = False
- # init subpaths
- subpath['lines'] = []
- subpath['bezier'] = []
- subpath['rectangle'] = []
- # detect start point to move to
- x = float(match.group(1)) + offset_geo[0]
- y = float(match.group(2)) + offset_geo[1]
- pt = (x * self.point_to_unit_factor * scale_geo[0],
- y * self.point_to_unit_factor * scale_geo[1])
- start_point = pt
- # add the start point to subpaths
- subpath['lines'].append(start_point)
- # subpath['bezier'].append(start_point)
- # subpath['rectangle'].append(start_point)
- current_point = start_point
- continue
- # Draw Line
- match = self.draw_line_re.search(pline)
- if match:
- current_subpath = 'lines'
- x = float(match.group(1)) + offset_geo[0]
- y = float(match.group(2)) + offset_geo[1]
- pt = (x * self.point_to_unit_factor * scale_geo[0],
- y * self.point_to_unit_factor * scale_geo[1])
- subpath['lines'].append(pt)
- current_point = pt
- continue
- # Draw Bezier 'c'
- match = self.draw_arc_3pt_re.search(pline)
- if match:
- current_subpath = 'bezier'
- start = current_point
- x = float(match.group(1)) + offset_geo[0]
- y = float(match.group(2)) + offset_geo[1]
- c1 = (x * self.point_to_unit_factor * scale_geo[0],
- y * self.point_to_unit_factor * scale_geo[1])
- x = float(match.group(3)) + offset_geo[0]
- y = float(match.group(4)) + offset_geo[1]
- c2 = (x * self.point_to_unit_factor * scale_geo[0],
- y * self.point_to_unit_factor * scale_geo[1])
- x = float(match.group(5)) + offset_geo[0]
- y = float(match.group(6)) + offset_geo[1]
- stop = (x * self.point_to_unit_factor * scale_geo[0],
- y * self.point_to_unit_factor * scale_geo[1])
- subpath['bezier'].append([start, c1, c2, stop])
- current_point = stop
- continue
- # Draw Bezier 'v'
- match = self.draw_arc_2pt_c1start_re.search(pline)
- if match:
- current_subpath = 'bezier'
- start = current_point
- x = float(match.group(1)) + offset_geo[0]
- y = float(match.group(2)) + offset_geo[1]
- c2 = (x * self.point_to_unit_factor * scale_geo[0],
- y * self.point_to_unit_factor * scale_geo[1])
- x = float(match.group(3)) + offset_geo[0]
- y = float(match.group(4)) + offset_geo[1]
- stop = (x * self.point_to_unit_factor * scale_geo[0],
- y * self.point_to_unit_factor * scale_geo[1])
- subpath['bezier'].append([start, start, c2, stop])
- current_point = stop
- continue
- # Draw Bezier 'y'
- match = self.draw_arc_2pt_c2stop_re.search(pline)
- if match:
- start = current_point
- x = float(match.group(1)) + offset_geo[0]
- y = float(match.group(2)) + offset_geo[1]
- c1 = (x * self.point_to_unit_factor * scale_geo[0],
- y * self.point_to_unit_factor * scale_geo[1])
- x = float(match.group(3)) + offset_geo[0]
- y = float(match.group(4)) + offset_geo[1]
- stop = (x * self.point_to_unit_factor * scale_geo[0],
- y * self.point_to_unit_factor * scale_geo[1])
- subpath['bezier'].append([start, c1, stop, stop])
- current_point = stop
- continue
- # Draw Rectangle 're'
- match = self.rect_re.search(pline)
- if match:
- current_subpath = 'rectangle'
- x = (float(match.group(1)) + offset_geo[0]) * self.point_to_unit_factor * scale_geo[0]
- y = (float(match.group(2)) + offset_geo[1]) * self.point_to_unit_factor * scale_geo[1]
- width = (float(match.group(3)) + offset_geo[0]) * self.point_to_unit_factor * scale_geo[0]
- height = (float(match.group(4)) + offset_geo[1]) * self.point_to_unit_factor * scale_geo[1]
- pt1 = (x, y)
- pt2 = (x + width, y)
- pt3 = (x + width, y + height)
- pt4 = (x, y + height)
- subpath['rectangle'] += [pt1, pt2, pt3, pt4, pt1]
- current_point = pt1
- continue
- # Detect clipping path set
- # ignore this and delete the current subpath
- match = self.clip_path_re.search(pline)
- if match:
- subpath['lines'] = []
- subpath['bezier'] = []
- subpath['rectangle'] = []
- # it means that we've already added the subpath to path and we need to delete it
- # clipping path is usually either rectangle or lines
- if close_subpath is True:
- close_subpath = False
- if current_subpath == 'lines':
- path['lines'].pop(-1)
- if current_subpath == 'rectangle':
- path['rectangle'].pop(-1)
- continue
- # Close SUBPATH
- match = self.end_subpath_re.search(pline)
- if match:
- close_subpath = True
- if current_subpath == 'lines':
- subpath['lines'].append(start_point)
- # since we are closing the subpath add it to the path, a path may have chained subpaths
- path['lines'].append(copy(subpath['lines']))
- subpath['lines'] = []
- elif current_subpath == 'bezier':
- # subpath['bezier'].append(start_point)
- # since we are closing the subpath add it to the path, a path may have chained subpaths
- path['bezier'].append(copy(subpath['bezier']))
- subpath['bezier'] = []
- elif current_subpath == 'rectangle':
- # subpath['rectangle'].append(start_point)
- # since we are closing the subpath add it to the path, a path may have chained subpaths
- path['rectangle'].append(copy(subpath['rectangle']))
- subpath['rectangle'] = []
- continue
- # PATH PAINTING #
- # Detect Stroke width / aperture
- match = self.strokewidth_re.search(pline)
- if match:
- size = float(match.group(1))
- continue
- # Detect No_Op command, ignore the current subpath
- match = self.no_op_re.search(pline)
- if match:
- subpath['lines'] = []
- subpath['bezier'] = []
- subpath['rectangle'] = []
- continue
- # Stroke the path
- match = self.stroke_path__re.search(pline)
- if match:
- # scale the size here; some PDF printers apply transformation after the size is declared
- applied_size = size * scale_geo[0] * self.point_to_unit_factor
- path_geo = []
- if current_subpath == 'lines':
- if path['lines']:
- for subp in path['lines']:
- geo = copy(subp)
- try:
- geo = LineString(geo).buffer((float(applied_size) / 2),
- resolution=self.step_per_circles)
- path_geo.append(geo)
- except ValueError:
- pass
- # the path was painted therefore initialize it
- path['lines'] = []
- else:
- geo = copy(subpath['lines'])
- try:
- geo = LineString(geo).buffer((float(applied_size) / 2), resolution=self.step_per_circles)
- path_geo.append(geo)
- except ValueError:
- pass
- subpath['lines'] = []
- if current_subpath == 'bezier':
- if path['bezier']:
- for subp in path['bezier']:
- geo = []
- for b in subp:
- geo += self.bezier_to_points(start=b[0], c1=b[1], c2=b[2], stop=b[3])
- try:
- geo = LineString(geo).buffer((float(applied_size) / 2),
- resolution=self.step_per_circles)
- path_geo.append(geo)
- except ValueError:
- pass
- # the path was painted therefore initialize it
- path['bezier'] = []
- else:
- geo = []
- for b in subpath['bezier']:
- geo += self.bezier_to_points(start=b[0], c1=b[1], c2=b[2], stop=b[3])
- try:
- geo = LineString(geo).buffer((float(applied_size) / 2), resolution=self.step_per_circles)
- path_geo.append(geo)
- except ValueError:
- pass
- subpath['bezier'] = []
- if current_subpath == 'rectangle':
- if path['rectangle']:
- for subp in path['rectangle']:
- geo = copy(subp)
- try:
- geo = LineString(geo).buffer((float(applied_size) / 2),
- resolution=self.step_per_circles)
- path_geo.append(geo)
- except ValueError:
- pass
- # the path was painted therefore initialize it
- path['rectangle'] = []
- else:
- geo = copy(subpath['rectangle'])
- try:
- geo = LineString(geo).buffer((float(applied_size) / 2), resolution=self.step_per_circles)
- path_geo.append(geo)
- except ValueError:
- pass
- subpath['rectangle'] = []
- # store the found geometry
- found_aperture = None
- if apertures_dict:
- for apid in apertures_dict:
- # if we already have an aperture with the current size (rounded to 5 decimals)
- if apertures_dict[apid]['size'] == round(applied_size, 5):
- found_aperture = apid
- break
- if found_aperture:
- for pdf_geo in path_geo:
- if isinstance(pdf_geo, MultiPolygon):
- for poly in pdf_geo:
- new_el = {}
- new_el['solid'] = poly
- new_el['follow'] = poly.exterior
- apertures_dict[copy(found_aperture)]['geometry'].append(deepcopy(new_el))
- else:
- new_el = {}
- new_el['solid'] = pdf_geo
- new_el['follow'] = pdf_geo.exterior
- apertures_dict[copy(found_aperture)]['geometry'].append(deepcopy(new_el))
- else:
- if str(aperture) in apertures_dict.keys():
- aperture += 1
- apertures_dict[str(aperture)] = {}
- apertures_dict[str(aperture)]['size'] = round(applied_size, 5)
- apertures_dict[str(aperture)]['type'] = 'C'
- apertures_dict[str(aperture)]['geometry'] = []
- for pdf_geo in path_geo:
- if isinstance(pdf_geo, MultiPolygon):
- for poly in pdf_geo:
- new_el = {}
- new_el['solid'] = poly
- new_el['follow'] = poly.exterior
- apertures_dict[str(aperture)]['geometry'].append(deepcopy(new_el))
- else:
- new_el = {}
- new_el['solid'] = pdf_geo
- new_el['follow'] = pdf_geo.exterior
- apertures_dict[str(aperture)]['geometry'].append(deepcopy(new_el))
- else:
- apertures_dict[str(aperture)] = {}
- apertures_dict[str(aperture)]['size'] = round(applied_size, 5)
- apertures_dict[str(aperture)]['type'] = 'C'
- apertures_dict[str(aperture)]['geometry'] = []
- for pdf_geo in path_geo:
- if isinstance(pdf_geo, MultiPolygon):
- for poly in pdf_geo:
- new_el = {}
- new_el['solid'] = poly
- new_el['follow'] = poly.exterior
- apertures_dict[str(aperture)]['geometry'].append(deepcopy(new_el))
- else:
- new_el = {}
- new_el['solid'] = pdf_geo
- new_el['follow'] = pdf_geo.exterior
- apertures_dict[str(aperture)]['geometry'].append(deepcopy(new_el))
- continue
- # Fill the path
- match = self.fill_path_re.search(pline)
- if match:
- # scale the size here; some PDF printers apply transformation after the size is declared
- applied_size = size * scale_geo[0] * self.point_to_unit_factor
- path_geo = []
- if current_subpath == 'lines':
- if path['lines']:
- for subp in path['lines']:
- geo = copy(subp)
- # close the subpath if it was not closed already
- if close_subpath is False:
- geo.append(geo[0])
- try:
- geo_el = Polygon(geo).buffer(0.0000001, resolution=self.step_per_circles)
- path_geo.append(geo_el)
- except ValueError:
- pass
- # the path was painted therefore initialize it
- path['lines'] = []
- else:
- geo = copy(subpath['lines'])
- # close the subpath if it was not closed already
- if close_subpath is False:
- geo.append(start_point)
- try:
- geo_el = Polygon(geo).buffer(0.0000001, resolution=self.step_per_circles)
- path_geo.append(geo_el)
- except ValueError:
- pass
- subpath['lines'] = []
- if current_subpath == 'bezier':
- geo = []
- if path['bezier']:
- for subp in path['bezier']:
- for b in subp:
- geo += self.bezier_to_points(start=b[0], c1=b[1], c2=b[2], stop=b[3])
- # close the subpath if it was not closed already
- if close_subpath is False:
- new_g = geo[0]
- geo.append(new_g)
- try:
- geo_el = Polygon(geo).buffer(0.0000001, resolution=self.step_per_circles)
- path_geo.append(geo_el)
- except ValueError:
- pass
- # the path was painted therefore initialize it
- path['bezier'] = []
- else:
- for b in subpath['bezier']:
- geo += self.bezier_to_points(start=b[0], c1=b[1], c2=b[2], stop=b[3])
- if close_subpath is False:
- geo.append(start_point)
- try:
- geo_el = Polygon(geo).buffer(0.0000001, resolution=self.step_per_circles)
- path_geo.append(geo_el)
- except ValueError:
- pass
- subpath['bezier'] = []
- if current_subpath == 'rectangle':
- if path['rectangle']:
- for subp in path['rectangle']:
- geo = copy(subp)
- # # close the subpath if it was not closed already
- # if close_subpath is False and start_point is not None:
- # geo.append(start_point)
- try:
- geo_el = Polygon(geo).buffer(0.0000001, resolution=self.step_per_circles)
- path_geo.append(geo_el)
- except ValueError:
- pass
- # the path was painted therefore initialize it
- path['rectangle'] = []
- else:
- geo = copy(subpath['rectangle'])
- # # close the subpath if it was not closed already
- # if close_subpath is False and start_point is not None:
- # geo.append(start_point)
- try:
- geo_el = Polygon(geo).buffer(0.0000001, resolution=self.step_per_circles)
- path_geo.append(geo_el)
- except ValueError:
- pass
- subpath['rectangle'] = []
- # we finished painting and also closed the path if it was the case
- close_subpath = True
- # in case that a color change to white (transparent) occurred
- if flag_clear_geo is True:
- # if there was a fill color change we look for circular geometries from which we can make
- # drill holes for the Excellon file
- if current_subpath == 'bezier':
- # if there are geometries in the list
- if path_geo:
- try:
- for g in path_geo:
- new_el = {}
- new_el['clear'] = g
- clear_apertures_dict['0']['geometry'].append(new_el)
- except TypeError:
- new_el = {}
- new_el['clear'] = path_geo
- clear_apertures_dict['0']['geometry'].append(new_el)
- # now that we finished searching for drill holes (this is not very precise because holes in the
- # polygon pours may appear as drill too, but .. hey you can't have it all ...) we add
- # clear_geometry
- try:
- for pdf_geo in path_geo:
- if isinstance(pdf_geo, MultiPolygon):
- for poly in pdf_geo:
- new_el = {}
- new_el['clear'] = poly
- apertures_dict['0']['geometry'].append(deepcopy(new_el))
- else:
- new_el = {}
- new_el['clear'] = pdf_geo
- apertures_dict['0']['geometry'].append(deepcopy(new_el))
- except KeyError:
- # in case there is no stroke width yet therefore no aperture
- apertures_dict['0'] = {}
- apertures_dict['0']['size'] = applied_size
- apertures_dict['0']['type'] = 'C'
- apertures_dict['0']['geometry'] = []
- for pdf_geo in path_geo:
- if isinstance(pdf_geo, MultiPolygon):
- for poly in pdf_geo:
- new_el = {}
- new_el['clear'] = poly
- apertures_dict['0']['geometry'].append(deepcopy(new_el))
- else:
- new_el = {}
- new_el['clear'] = pdf_geo
- apertures_dict['0']['geometry'].append(deepcopy(new_el))
- else:
- # else, add the geometry as usual
- try:
- for pdf_geo in path_geo:
- if isinstance(pdf_geo, MultiPolygon):
- for poly in pdf_geo:
- new_el = {}
- new_el['solid'] = poly
- new_el['follow'] = poly.exterior
- apertures_dict['0']['geometry'].append(deepcopy(new_el))
- else:
- new_el = {}
- new_el['solid'] = pdf_geo
- new_el['follow'] = pdf_geo.exterior
- apertures_dict['0']['geometry'].append(deepcopy(new_el))
- except KeyError:
- # in case there is no stroke width yet therefore no aperture
- apertures_dict['0'] = {}
- apertures_dict['0']['size'] = applied_size
- apertures_dict['0']['type'] = 'C'
- apertures_dict['0']['geometry'] = []
- for pdf_geo in path_geo:
- if isinstance(pdf_geo, MultiPolygon):
- for poly in pdf_geo:
- new_el = {}
- new_el['solid'] = poly
- new_el['follow'] = poly.exterior
- apertures_dict['0']['geometry'].append(deepcopy(new_el))
- else:
- new_el = {}
- new_el['solid'] = pdf_geo
- new_el['follow'] = pdf_geo.exterior
- apertures_dict['0']['geometry'].append(deepcopy(new_el))
- continue
- # Fill and Stroke the path
- match = self.fill_stroke_path_re.search(pline)
- if match:
- # scale the size here; some PDF printers apply transformation after the size is declared
- applied_size = size * scale_geo[0] * self.point_to_unit_factor
- path_geo = []
- fill_geo = []
- if current_subpath == 'lines':
- if path['lines']:
- # fill
- for subp in path['lines']:
- geo = copy(subp)
- # close the subpath if it was not closed already
- if close_subpath is False:
- geo.append(geo[0])
- try:
- geo_el = Polygon(geo).buffer(0.0000001, resolution=self.step_per_circles)
- fill_geo.append(geo_el)
- except ValueError:
- pass
- # stroke
- for subp in path['lines']:
- geo = copy(subp)
- geo = LineString(geo).buffer((float(applied_size) / 2), resolution=self.step_per_circles)
- path_geo.append(geo)
- # the path was painted therefore initialize it
- path['lines'] = []
- else:
- # fill
- geo = copy(subpath['lines'])
- # close the subpath if it was not closed already
- if close_subpath is False:
- geo.append(start_point)
- try:
- geo_el = Polygon(geo).buffer(0.0000001, resolution=self.step_per_circles)
- fill_geo.append(geo_el)
- except ValueError:
- pass
- # stroke
- geo = copy(subpath['lines'])
- geo = LineString(geo).buffer((float(applied_size) / 2), resolution=self.step_per_circles)
- path_geo.append(geo)
- subpath['lines'] = []
- subpath['lines'] = []
- if current_subpath == 'bezier':
- geo = []
- if path['bezier']:
- # fill
- for subp in path['bezier']:
- for b in subp:
- geo += self.bezier_to_points(start=b[0], c1=b[1], c2=b[2], stop=b[3])
- # close the subpath if it was not closed already
- if close_subpath is False:
- geo.append(geo[0])
- try:
- geo_el = Polygon(geo).buffer(0.0000001, resolution=self.step_per_circles)
- fill_geo.append(geo_el)
- except ValueError:
- pass
- # stroke
- for subp in path['bezier']:
- geo = []
- for b in subp:
- geo += self.bezier_to_points(start=b[0], c1=b[1], c2=b[2], stop=b[3])
- geo = LineString(geo).buffer((float(applied_size) / 2), resolution=self.step_per_circles)
- path_geo.append(geo)
- # the path was painted therefore initialize it
- path['bezier'] = []
- else:
- # fill
- for b in subpath['bezier']:
- geo += self.bezier_to_points(start=b[0], c1=b[1], c2=b[2], stop=b[3])
- if close_subpath is False:
- geo.append(start_point)
- try:
- geo_el = Polygon(geo).buffer(0.0000001, resolution=self.step_per_circles)
- fill_geo.append(geo_el)
- except ValueError:
- pass
- # stroke
- geo = []
- for b in subpath['bezier']:
- geo += self.bezier_to_points(start=b[0], c1=b[1], c2=b[2], stop=b[3])
- geo = LineString(geo).buffer((float(applied_size) / 2), resolution=self.step_per_circles)
- path_geo.append(geo)
- subpath['bezier'] = []
- if current_subpath == 'rectangle':
- if path['rectangle']:
- # fill
- for subp in path['rectangle']:
- geo = copy(subp)
- # # close the subpath if it was not closed already
- # if close_subpath is False:
- # geo.append(geo[0])
- try:
- geo_el = Polygon(geo).buffer(0.0000001, resolution=self.step_per_circles)
- fill_geo.append(geo_el)
- except ValueError:
- pass
- # stroke
- for subp in path['rectangle']:
- geo = copy(subp)
- geo = LineString(geo).buffer((float(applied_size) / 2), resolution=self.step_per_circles)
- path_geo.append(geo)
- # the path was painted therefore initialize it
- path['rectangle'] = []
- else:
- # fill
- geo = copy(subpath['rectangle'])
- # # close the subpath if it was not closed already
- # if close_subpath is False:
- # geo.append(start_point)
- try:
- geo_el = Polygon(geo).buffer(0.0000001, resolution=self.step_per_circles)
- fill_geo.append(geo_el)
- except ValueError:
- pass
- # stroke
- geo = copy(subpath['rectangle'])
- geo = LineString(geo).buffer((float(applied_size) / 2), resolution=self.step_per_circles)
- path_geo.append(geo)
- subpath['rectangle'] = []
- # we finished painting and also closed the path if it was the case
- close_subpath = True
- # store the found geometry for stroking the path
- found_aperture = None
- if apertures_dict:
- for apid in apertures_dict:
- # if we already have an aperture with the current size (rounded to 5 decimals)
- if apertures_dict[apid]['size'] == round(applied_size, 5):
- found_aperture = apid
- break
- if found_aperture:
- for pdf_geo in path_geo:
- if isinstance(pdf_geo, MultiPolygon):
- for poly in pdf_geo:
- new_el = {}
- new_el['solid'] = poly
- new_el['follow'] = poly.exterior
- apertures_dict[copy(found_aperture)]['geometry'].append(deepcopy(new_el))
- else:
- new_el = {}
- new_el['solid'] = pdf_geo
- new_el['follow'] = pdf_geo.exterior
- apertures_dict[copy(found_aperture)]['geometry'].append(deepcopy(new_el))
- else:
- if str(aperture) in apertures_dict.keys():
- aperture += 1
- apertures_dict[str(aperture)] = {}
- apertures_dict[str(aperture)]['size'] = round(applied_size, 5)
- apertures_dict[str(aperture)]['type'] = 'C'
- apertures_dict[str(aperture)]['geometry'] = []
- for pdf_geo in path_geo:
- if isinstance(pdf_geo, MultiPolygon):
- for poly in pdf_geo:
- new_el = {}
- new_el['solid'] = poly
- new_el['follow'] = poly.exterior
- apertures_dict[str(aperture)]['geometry'].append(deepcopy(new_el))
- else:
- new_el = {}
- new_el['solid'] = pdf_geo
- new_el['follow'] = pdf_geo.exterior
- apertures_dict[str(aperture)]['geometry'].append(deepcopy(new_el))
- else:
- apertures_dict[str(aperture)] = {}
- apertures_dict[str(aperture)]['size'] = round(applied_size, 5)
- apertures_dict[str(aperture)]['type'] = 'C'
- apertures_dict[str(aperture)]['geometry'] = []
- for pdf_geo in path_geo:
- if isinstance(pdf_geo, MultiPolygon):
- for poly in pdf_geo:
- new_el = {}
- new_el['solid'] = poly
- new_el['follow'] = poly.exterior
- apertures_dict[str(aperture)]['geometry'].append(deepcopy(new_el))
- else:
- new_el = {}
- new_el['solid'] = pdf_geo
- new_el['follow'] = pdf_geo.exterior
- apertures_dict[str(aperture)]['geometry'].append(deepcopy(new_el))
- # ############################################# ##
- # store the found geometry for filling the path #
- # ############################################# ##
- # in case that a color change to white (transparent) occurred
- if flag_clear_geo is True:
- try:
- for pdf_geo in path_geo:
- if isinstance(pdf_geo, MultiPolygon):
- for poly in fill_geo:
- new_el = {}
- new_el['clear'] = poly
- apertures_dict['0']['geometry'].append(deepcopy(new_el))
- else:
- new_el = {}
- new_el['clear'] = pdf_geo
- apertures_dict['0']['geometry'].append(deepcopy(new_el))
- except KeyError:
- # in case there is no stroke width yet therefore no aperture
- apertures_dict['0'] = {}
- apertures_dict['0']['size'] = round(applied_size, 5)
- apertures_dict['0']['type'] = 'C'
- apertures_dict['0']['geometry'] = []
- for pdf_geo in fill_geo:
- if isinstance(pdf_geo, MultiPolygon):
- for poly in pdf_geo:
- new_el = {}
- new_el['clear'] = poly
- apertures_dict['0']['geometry'].append(deepcopy(new_el))
- else:
- new_el = {}
- new_el['clear'] = pdf_geo
- apertures_dict['0']['geometry'].append(deepcopy(new_el))
- else:
- try:
- for pdf_geo in path_geo:
- if isinstance(pdf_geo, MultiPolygon):
- for poly in fill_geo:
- new_el = {}
- new_el['solid'] = poly
- new_el['follow'] = poly.exterior
- apertures_dict['0']['geometry'].append(deepcopy(new_el))
- else:
- new_el = {}
- new_el['solid'] = pdf_geo
- new_el['follow'] = pdf_geo.exterior
- apertures_dict['0']['geometry'].append(deepcopy(new_el))
- except KeyError:
- # in case there is no stroke width yet therefore no aperture
- apertures_dict['0'] = {}
- apertures_dict['0']['size'] = round(applied_size, 5)
- apertures_dict['0']['type'] = 'C'
- apertures_dict['0']['geometry'] = []
- for pdf_geo in fill_geo:
- if isinstance(pdf_geo, MultiPolygon):
- for poly in pdf_geo:
- new_el = {}
- new_el['solid'] = poly
- new_el['follow'] = poly.exterior
- apertures_dict['0']['geometry'].append(deepcopy(new_el))
- else:
- new_el = {}
- new_el['solid'] = pdf_geo
- new_el['follow'] = pdf_geo.exterior
- apertures_dict['0']['geometry'].append(deepcopy(new_el))
- continue
- # tidy up. copy the current aperture dict to the object dict but only if it is not empty
- if apertures_dict:
- object_dict[layer_nr] = deepcopy(apertures_dict)
- if clear_apertures_dict['0']['geometry']:
- object_dict[0] = deepcopy(clear_apertures_dict)
- # delete keys (layers) with empty values
- empty_layers = []
- for layer in object_dict:
- if not object_dict[layer]:
- empty_layers.append(layer)
- for x in empty_layers:
- if x in object_dict:
- object_dict.pop(x)
- if self.app.abort_flag:
- # graceful abort requested by the user
- raise grace
- return object_dict
- def bezier_to_points(self, start, c1, c2, stop):
- """
- # Equation Bezier, page 184 PDF 1.4 reference
- # https://www.adobe.com/content/dam/acom/en/devnet/pdf/pdfs/pdf_reference_archives/PDFReference.pdf
- # Given the coordinates of the four points, the curve is generated by varying the parameter t from 0.0 to 1.0
- # in the following equation:
- # R(t) = P0*(1 - t) ** 3 + P1*3*t*(1 - t) ** 2 + P2 * 3*(1 - t) * t ** 2 + P3*t ** 3
- # When t = 0.0, the value from the function coincides with the current point P0; when t = 1.0, R(t) coincides
- # with the final point P3. Intermediate values of t generate intermediate points along the curve.
- # The curve does not, in general, pass through the two control points P1 and P2
- :return: A list of point coordinates tuples (x, y)
- """
- # here we store the geometric points
- points = []
- nr_points = np.arange(0.0, 1.0, (1 / self.step_per_circles))
- for t in nr_points:
- term_p0 = (1 - t) ** 3
- term_p1 = 3 * t * (1 - t) ** 2
- term_p2 = 3 * (1 - t) * t ** 2
- term_p3 = t ** 3
- x = start[0] * term_p0 + c1[0] * term_p1 + c2[0] * term_p2 + stop[0] * term_p3
- y = start[1] * term_p0 + c1[1] * term_p1 + c2[1] * term_p2 + stop[1] * term_p3
- points.append([x, y])
- return points
- # def bezier_to_circle(self, path):
- # lst = []
- # for el in range(len(path)):
- # if type(path) is list:
- # for coord in path[el]:
- # lst.append(coord)
- # else:
- # lst.append(el)
- #
- # if lst:
- # minx = min(lst, key=lambda t: t[0])[0]
- # miny = min(lst, key=lambda t: t[1])[1]
- # maxx = max(lst, key=lambda t: t[0])[0]
- # maxy = max(lst, key=lambda t: t[1])[1]
- # center = (maxx-minx, maxy-miny)
- # radius = (maxx-minx) / 2
- # return [center, radius]
- #
- # def circle_to_points(self, center, radius):
- # geo = Point(center).buffer(radius, resolution=self.step_per_circles)
- # return LineString(list(geo.exterior.coords))
- #
|