| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866 |
- ############################################################
- # FlatCAM: 2D Post-processing for Manufacturing #
- # http://caram.cl/software/flatcam #
- # Author: Juan Pablo Caram (c) #
- # Date: 2/5/2014 #
- # MIT Licence #
- ############################################################
- from numpy import arctan2, Inf, array, sqrt, pi, ceil, sin, cos
- from matplotlib.figure import Figure
- import re
- # See: http://toblerity.org/shapely/manual.html
- from shapely.geometry import Polygon, LineString, Point, LinearRing
- from shapely.geometry import MultiPoint, MultiPolygon
- from shapely.geometry import box as shply_box
- from shapely.ops import cascaded_union
- import shapely.affinity as affinity
- from shapely.wkt import loads as sloads
- from shapely.wkt import dumps as sdumps
- from shapely.geometry.base import BaseGeometry
- # Used for solid polygons in Matplotlib
- from descartes.patch import PolygonPatch
- import simplejson as json
- # TODO: Commented for FlatCAM packaging with cx_freeze
- #from matplotlib.pyplot import plot
- class Geometry:
- def __init__(self):
- # Units (in or mm)
- self.units = 'in'
-
- # Final geometry: MultiPolygon
- self.solid_geometry = None
- # Attributes to be included in serialization
- self.ser_attrs = ['units', 'solid_geometry']
-
- def isolation_geometry(self, offset):
- """
- Creates contours around geometry at a given
- offset distance.
- :param offset: Offset distance.
- :type offset: float
- :return: The buffered geometry.
- :rtype: Shapely.MultiPolygon or Shapely.Polygon
- """
- return self.solid_geometry.buffer(offset)
-
- def bounds(self):
- """
- Returns coordinates of rectangular bounds
- of geometry: (xmin, ymin, xmax, ymax).
- """
- if self.solid_geometry is None:
- print "Warning: solid_geometry not computed yet."
- return (0, 0, 0, 0)
-
- if type(self.solid_geometry) == list:
- # TODO: This can be done faster. See comment from Shapely mailing lists.
- return cascaded_union(self.solid_geometry).bounds
- else:
- return self.solid_geometry.bounds
-
- def size(self):
- """
- Returns (width, height) of rectangular
- bounds of geometry.
- """
- if self.solid_geometry is None:
- print "Warning: solid_geometry not computed yet."
- return 0
- bounds = self.bounds()
- return (bounds[2]-bounds[0], bounds[3]-bounds[1])
-
- def get_empty_area(self, boundary=None):
- """
- Returns the complement of self.solid_geometry within
- the given boundary polygon. If not specified, it defaults to
- the rectangular bounding box of self.solid_geometry.
- """
- if boundary is None:
- boundary = self.solid_geometry.envelope
- return boundary.difference(self.solid_geometry)
-
- def clear_polygon(self, polygon, tooldia, overlap=0.15):
- """
- Creates geometry inside a polygon for a tool to cover
- the whole area.
- """
- poly_cuts = [polygon.buffer(-tooldia/2.0)]
- while True:
- polygon = poly_cuts[-1].buffer(-tooldia*(1-overlap))
- if polygon.area > 0:
- poly_cuts.append(polygon)
- else:
- break
- return poly_cuts
- def scale(self, factor):
- """
- Scales all of the object's geometry by a given factor. Override
- this method.
- :param factor: Number by which to scale.
- :type factor: float
- :return: None
- :rtype: None
- """
- return
- def offset(self, vect):
- """
- Offset the geometry by the given vector. Override this method.
- :param vect: (x, y) vector by which to offset the object.
- :type vect: tuple
- :return: None
- """
- return
- def convert_units(self, units):
- """
- Converts the units of the object to ``units`` by scaling all
- the geometry appropriately. This call ``scale()``. Don't call
- it again in descendents.
- :param units: "IN" or "MM"
- :type units: str
- :return: Scaling factor resulting from unit change.
- :rtype: float
- """
- print "Geometry.convert_units()"
- if units.upper() == self.units.upper():
- return 1.0
- if units.upper() == "MM":
- factor = 25.4
- elif units.upper() == "IN":
- factor = 1/25.4
- else:
- print "Unsupported units:", units
- return 1.0
- self.units = units
- self.scale(factor)
- return factor
- def to_dict(self):
- """
- Returns a respresentation of the object as a dictionary.
- Attributes to include are listed in ``self.ser_attrs``.
- :return: A dictionary-encoded copy of the object.
- :rtype: dict
- """
- d = {}
- for attr in self.ser_attrs:
- d[attr] = getattr(self, attr)
- return d
- def from_dict(self, d):
- """
- Sets object's attributes from a dictionary.
- Attributes to include are listed in ``self.ser_attrs``.
- This method will look only for only and all the
- attributes in ``self.ser_attrs``. They must all
- be present. Use only for deserializing saved
- objects.
- :param d: Dictionary of attributes to set in the object.
- :type d: dict
- :return: None
- """
- for attr in self.ser_attrs:
- setattr(self, attr, d[attr])
- class Gerber (Geometry):
- """
- **ATTRIBUTES**
- * ``apertures`` (dict): The keys are names/identifiers of each aperture.
- The values are dictionaries key/value pairs which describe the aperture. The
- type key is always present and the rest depend on the key:
- +-----------+-----------------------------------+
- | Key | Value |
- +===========+===================================+
- | type | (str) "C", "R", or "O" |
- +-----------+-----------------------------------+
- | others | Depend on ``type`` |
- +-----------+-----------------------------------+
- * ``paths`` (list): A path is described by a line an aperture that follows that
- line. Each paths[i] is a dictionary:
- +------------+------------------------------------------------+
- | Key | Value |
- +============+================================================+
- | linestring | (Shapely.LineString) The actual path. |
- +------------+------------------------------------------------+
- | aperture | (str) The key for an aperture in apertures. |
- +------------+------------------------------------------------+
- * ``flashes`` (list): Flashes are single-point strokes of an aperture. Each
- is a dictionary:
- +------------+------------------------------------------------+
- | Key | Value |
- +============+================================================+
- | loc | (list) [x (float), y (float)] coordinates. |
- +------------+------------------------------------------------+
- | aperture | (str) The key for an aperture in apertures. |
- +------------+------------------------------------------------+
- * ``regions`` (list): Are surfaces defined by a polygon (Shapely.Polygon),
- which have an exterior and zero or more interiors. An aperture is also
- associated with a region. Each is a dictionary:
- +------------+-----------------------------------------------------+
- | Key | Value |
- +============+=====================================================+
- | polygon | (Shapely.Polygon) The polygon defining the region. |
- +------------+-----------------------------------------------------+
- | aperture | (str) The key for an aperture in apertures. |
- +------------+-----------------------------------------------------+
- * ``flash_geometry`` (list): List of (Shapely) geometric object resulting
- from ``flashes``. These are generated from ``flashes`` in ``do_flashes()``.
- * ``buffered_paths`` (list): List of (Shapely) polygons resulting from
- *buffering* (or thickening) the ``paths`` with the aperture. These are
- generated from ``paths`` in ``buffer_paths()``.
- **USAGE**::
- g = Gerber()
- g.parse_file(filename)
- g.create_geometry()
- do_something(s.solid_geometry)
- """
- def __init__(self):
- """
- The constructor takes no parameters. Use ``gerber.parse_files()``
- or ``gerber.parse_lines()`` to populate the object from Gerber source.
- :return: Gerber object
- :rtype: Gerber
- """
- # Initialize parent
- Geometry.__init__(self)
-
- # Number format
- self.int_digits = 3
- """Number of integer digits in Gerber numbers. Used during parsing."""
- self.frac_digits = 4
- """Number of fraction digits in Gerber numbers. Used during parsing."""
-
- ## Gerber elements ##
- # Apertures {'id':{'type':chr,
- # ['size':float], ['width':float],
- # ['height':float]}, ...}
- self.apertures = {}
-
- # Paths [{'linestring':LineString, 'aperture':str}]
- self.paths = []
-
- # Buffered Paths [Polygon]
- # Paths transformed into Polygons by
- # offsetting the aperture size/2
- self.buffered_paths = []
-
- # Polygon regions [{'polygon':Polygon, 'aperture':str}]
- self.regions = []
-
- # Flashes [{'loc':[float,float], 'aperture':str}]
- self.flashes = []
-
- # Geometry from flashes
- self.flash_geometry = []
- # Attributes to be included in serialization
- # Always append to it because it carries contents
- # from Geometry.
- self.ser_attrs += ['int_digits', 'frac_digits', 'apertures', 'paths',
- 'buffered_paths', 'regions', 'flashes',
- 'flash_geometry']
- #### Parser patterns ####
- # FS - Format Specification
- # The format of X and Y must be the same!
- # L-omit leading zeros, T-omit trailing zeros
- # A-absolute notation, I-incremental notation
- self.fmt_re = re.compile(r'%FS([LT])([AI])X(\d)(\d)Y\d\d\*%$')
- # Mode (IN/MM)
- self.mode_re = re.compile(r'^%MO(IN|MM)\*%$')
- # Comment G04|G4
- self.comm_re = re.compile(r'^G0?4(.*)$')
- # AD - Aperture definition
- self.ad_re = re.compile(r'^%ADD(\d\d+)([a-zA-Z0-9]*),(.*)\*%$')
- # AM - Aperture Macro
- # Beginning of macro (Ends with *%):
- self.am_re = re.compile(r'^%AM([a-zA-Z0-9]*)\*')
- # Tool change
- # May begin with G54 but that is deprecated
- self.tool_re = re.compile(r'^(?:G54)?D(\d\d+)\*$')
- # G01 - Linear interpolation plus flashes
- # Operation code (D0x) missing is deprecated... oh well I will support it.
- self.lin_re = re.compile(r'^(?:G0?(1))?(?:X(-?\d+))?(?:Y(-?\d+))?(?:D0([123]))?\*$')
- self.setlin_re = re.compile(r'^(?:G0?1)\*')
- # G02/3 - Circular interpolation
- # 2-clockwise, 3-counterclockwise
- self.circ_re = re.compile(r'^(?:G0?([23]))?(?:X(-?\d+))?(?:Y(-?\d+))' +
- '?(?:I(-?\d+))?(?:J(-?\d+))?D0([12])\*$')
- # G01/2/3 Occurring without coordinates
- self.interp_re = re.compile(r'^(?:G0?([123]))\*')
- # Single D74 or multi D75 quadrant for circular interpolation
- self.quad_re = re.compile(r'^G7([45])\*$')
- # Region mode on
- # In region mode, D01 starts a region
- # and D02 ends it. A new region can be started again
- # with D01. All contours must be closed before
- # D02 or G37.
- self.regionon_re = re.compile(r'^G36\*$')
- # Region mode off
- # Will end a region and come off region mode.
- # All contours must be closed before D02 or G37.
- self.regionoff_re = re.compile(r'^G37\*$')
- # End of file
- self.eof_re = re.compile(r'^M02\*')
- # IP - Image polarity
- self.pol_re = re.compile(r'^%IP(POS|NEG)\*%$')
- # LP - Level polarity
- self.lpol_re = re.compile(r'^%LP([DC])\*%$')
- # TODO: This is bad.
- self.steps_per_circ = 40
- def scale(self, factor):
- """
- Scales the objects' geometry on the XY plane by a given factor.
- These are:
- * ``apertures``
- * ``paths``
- * ``regions``
- * ``flashes``
- Then ``buffered_paths``, ``flash_geometry`` and ``solid_geometry``
- are re-created with ``self.create_geometry()``.
- :param factor: Number by which to scale.
- :type factor: float
- :rtype : None
- """
- # Apertures
- #print "Scaling apertures..."
- #List of the non-dimension aperture parameters
- nonDimensions = ["type", "nVertices", "rotation"]
- for apid in self.apertures:
- for param in self.apertures[apid]:
- if param not in nonDimensions: # All others are dimensions.
- print "Tool:", apid, "Parameter:", param
- self.apertures[apid][param] *= factor
- # Paths
- #print "Scaling paths..."
- for path in self.paths:
- path['linestring'] = affinity.scale(path['linestring'],
- factor, factor, origin=(0, 0))
- # Flashes
- #print "Scaling flashes..."
- for fl in self.flashes:
- # TODO: Shouldn't 'loc' be a numpy.array()?
- fl['loc'][0] *= factor
- fl['loc'][1] *= factor
- # Regions
- #print "Scaling regions..."
- for reg in self.regions:
- reg['polygon'] = affinity.scale(reg['polygon'], factor, factor,
- origin=(0, 0))
- # Now buffered_paths, flash_geometry and solid_geometry
- self.create_geometry()
- def offset(self, vect):
- """
- Offsets the objects' geometry on the XY plane by a given vector.
- These are:
- * ``paths``
- * ``regions``
- * ``flashes``
- Then ``buffered_paths``, ``flash_geometry`` and ``solid_geometry``
- are re-created with ``self.create_geometry()``.
- :param vect: (x, y) offset vector.
- :type vect: tuple
- :return: None
- """
- dx, dy = vect
- # Paths
- #print "Shifting paths..."
- for path in self.paths:
- path['linestring'] = affinity.translate(path['linestring'],
- xoff=dx, yoff=dy)
- # Flashes
- #print "Shifting flashes..."
- for fl in self.flashes:
- # TODO: Shouldn't 'loc' be a numpy.array()?
- fl['loc'][0] += dx
- fl['loc'][1] += dy
- # Regions
- #print "Shifting regions..."
- for reg in self.regions:
- reg['polygon'] = affinity.translate(reg['polygon'],
- xoff=dx, yoff=dy)
- # Now buffered_paths, flash_geometry and solid_geometry
- self.create_geometry()
- def fix_regions(self):
- """
- Overwrites the region polygons with fixed
- versions if found to be invalid (according to Shapely).
- """
- for region in self.regions:
- if not region['polygon'].is_valid:
- region['polygon'] = region['polygon'].buffer(0)
-
- def buffer_paths(self):
- """
- This is part of the parsing process. "Thickens" the paths
- by their appertures. This will only work for circular appertures.
- :return: None
- """
- self.buffered_paths = []
- for path in self.paths:
- try:
- width = self.apertures[path["aperture"]]["size"]
- self.buffered_paths.append(path["linestring"].buffer(width/2))
- except KeyError:
- print "ERROR: Failed to buffer path: ", path
- print "Apertures: ", self.apertures
-
- def aperture_parse(self, apertureId, apertureType, apParameters):
- """
- Parse gerber aperture definition into dictionary of apertures.
- The following kinds and their attributes are supported:
- * *Circular (C)*: size (float)
- * *Rectangle (R)*: width (float), height (float)
- * *Obround (O)*: width (float), height (float).
- * *Polygon (P)*: diameter(float), vertices(int), [rotation(float)]
- :param apertureId: Id of the aperture being defined.
- :param apertureType: Type of the aperture.
- :param apParameters: Parameters of the aperture.
- :type apertureId: str
- :type apertureType: str
- :type apParameters: str
- :return: Identifier of the aperture.
- :rtype: str
- """
- # Found some Gerber with a leading zero in the aperture id and the
- # referenced it without the zero, so this is a hack to handle that.
- apid = str(int(apertureId))
- paramList = apParameters.split('X')
- if apertureType == "C" : # Circle, example: %ADD11C,0.1*%
- self.apertures[apid] = {"type": "C",
- "size": float(paramList[0])}
- return apid
-
- if apertureType == "R" : # Rectangle, example: %ADD15R,0.05X0.12*%
- self.apertures[apid] = {"type": "R",
- "width": float(paramList[0]),
- "height": float(paramList[1])}
- return apid
- if apertureType == "O" : # Obround
- self.apertures[apid] = {"type": "O",
- "width": float(paramList[0]),
- "height": float(paramList[1])}
- return apid
-
- if apertureType == "P" :
- self.apertures[apid] = {"type": "P",
- "diam": float(paramList[0]),
- "nVertices": int(paramList[1])}
- if len(paramList) >= 3 :
- self.apertures[apid]["rotation"] = float(paramList[2])
- return apid
- print "WARNING: Aperture not implemented:", apertureType
- return None
-
- def parse_file(self, filename):
- """
- Calls Gerber.parse_lines() with array of lines
- read from the given file.
- """
- gfile = open(filename, 'r')
- gstr = gfile.readlines()
- gfile.close()
- self.parse_lines(gstr)
-
- def parse_lines(self, glines):
- """
- Main Gerber parser. Reads Gerber and populates ``self.paths``, ``self.apertures``,
- ``self.flashes``, ``self.regions`` and ``self.units``.
- :param glines: Gerber code as list of strings, each element being
- one line of the source file.
- :type glines: list
- :return: None
- :rtype: None
- """
- path = [] # Coordinates of the current path, each is [x, y]
- last_path_aperture = None
- current_aperture = None
- # 1,2 or 3 from "G01", "G02" or "G03"
- current_interpolation_mode = None
- # 1 or 2 from "D01" or "D02"
- # Note this is to support deprecated Gerber not putting
- # an operation code at the end of every coordinate line.
- current_operation_code = None
- # Current coordinates
- current_x = None
- current_y = None
- # How to interprest circular interpolation: SINGLE or MULTI
- quadrant_mode = None
- line_num = 0
- for gline in glines:
- line_num += 1
- ## G01 - Linear interpolation plus flashes
- # Operation code (D0x) missing is deprecated... oh well I will support it.
- match = self.lin_re.search(gline)
- if match:
- # Dxx alone? Will ignore for now.
- if match.group(1) is None and match.group(2) is None and match.group(3) is None:
- try:
- current_operation_code = int(match.group(4))
- except:
- pass # A line with just * will match too.
- continue
- # Parse coordinates
- if match.group(2) is not None:
- current_x = parse_gerber_number(match.group(2), self.frac_digits)
- if match.group(3) is not None:
- current_y = parse_gerber_number(match.group(3), self.frac_digits)
- # Parse operation code
- if match.group(4) is not None:
- current_operation_code = int(match.group(4))
- # Pen down: add segment
- if current_operation_code == 1:
- path.append([current_x, current_y])
- last_path_aperture = current_aperture
- # Pen up: finish path
- elif current_operation_code == 2:
- if len(path) > 1:
- if last_path_aperture is None:
- print "Warning: No aperture defined for curent path. (%d)" % line_num
- self.paths.append({"linestring": LineString(path),
- "aperture": last_path_aperture})
- path = [[current_x, current_y]] # Start new path
- # Flash
- elif current_operation_code == 3:
- self.flashes.append({"loc": [current_x, current_y],
- "aperture": current_aperture})
- continue
- ## G02/3 - Circular interpolation
- # 2-clockwise, 3-counterclockwise
- match = self.circ_re.search(gline)
- if match:
- mode, x, y, i, j, d = match.groups()
- try:
- x = parse_gerber_number(x, self.frac_digits)
- except:
- x = current_x
- try:
- y = parse_gerber_number(y, self.frac_digits)
- except:
- y = current_y
- try:
- i = parse_gerber_number(i, self.frac_digits)
- except:
- i = 0
- try:
- j = parse_gerber_number(j, self.frac_digits)
- except:
- j = 0
- if quadrant_mode is None:
- print "ERROR: Found arc without preceding quadrant specification G74 or G75. (%d)" % line_num
- print gline
- continue
- if mode is None and current_interpolation_mode not in [2, 3]:
- print "ERROR: Found arc without circular interpolation mode defined. (%d)" % line_num
- print gline
- continue
- elif mode is not None:
- current_interpolation_mode = int(mode)
- # Set operation code if provided
- if d is not None:
- current_operation_code = int(d)
- # Nothing created! Pen Up.
- if current_operation_code == 2:
- print "Warning: Arc with D2. (%d)" % line_num
- if len(path) > 1:
- if last_path_aperture is None:
- print "Warning: No aperture defined for curent path. (%d)" % line_num
- self.paths.append({"linestring": LineString(path),
- "aperture": last_path_aperture})
- current_x = x
- current_y = y
- path = [[current_x, current_y]] # Start new path
- continue
- # Flash should not happen here
- if current_operation_code == 3:
- print "ERROR: Trying to flash within arc. (%d)" % line_num
- continue
- if quadrant_mode == 'MULTI':
- center = [i + current_x, j + current_y]
- radius = sqrt(i**2 + j**2)
- start = arctan2(-j, -i)
- stop = arctan2(-center[1] + y, -center[0] + x)
- arcdir = [None, None, "cw", "ccw"]
- this_arc = arc(center, radius, start, stop,
- arcdir[current_interpolation_mode],
- self.steps_per_circ)
- # Last point in path is current point
- current_x = this_arc[-1][0]
- current_y = this_arc[-1][1]
- # Append
- path += this_arc
- last_path_aperture = current_aperture
- continue
- if quadrant_mode == 'SINGLE':
- print "Warning: Single quadrant arc are not implemented yet. (%d)" % line_num
- ## G74/75* - Single or multiple quadrant arcs
- match = self.quad_re.search(gline)
- if match:
- if match.group(1) == '4':
- quadrant_mode = 'SINGLE'
- else:
- quadrant_mode = 'MULTI'
- continue
- ## G37* - End region
- if self.regionoff_re.search(gline):
- # Only one path defines region?
- if len(path) < 3:
- print "ERROR: Path contains less than 3 points:"
- print path
- print "Line (%d): " % line_num, gline
- path = []
- continue
- # For regions we may ignore an aperture that is None
- self.regions.append({"polygon": Polygon(path),
- "aperture": last_path_aperture})
- #path = []
- path = [[current_x, current_y]] # Start new path
- continue
-
- #Parse an aperture.
- match = self.ad_re.search(gline)
- if match:
- self.aperture_parse(match.group(1),match.group(2),match.group(3))
- continue
- ## G01/2/3* - Interpolation mode change
- # Can occur along with coordinates and operation code but
- # sometimes by itself (handled here).
- # Example: G01*
- match = self.interp_re.search(gline)
- if match:
- current_interpolation_mode = int(match.group(1))
- continue
- ## Tool/aperture change
- # Example: D12*
- match = self.tool_re.search(gline)
- if match:
- current_aperture = match.group(1)
- continue
- ## Number format
- # Example: %FSLAX24Y24*%
- # TODO: This is ignoring most of the format. Implement the rest.
- match = self.fmt_re.search(gline)
- if match:
- self.int_digits = int(match.group(3))
- self.frac_digits = int(match.group(4))
- continue
- ## Mode (IN/MM)
- # Example: %MOIN*%
- match = self.mode_re.search(gline)
- if match:
- self.units = match.group(1)
- continue
- print "WARNING: Line ignored (%d):" % line_num, gline
-
- if len(path) > 1:
- # EOF, create shapely LineString if something still in path
- self.paths.append({"linestring": LineString(path),
- "aperture": last_path_aperture})
- def do_flashes(self):
- """
- Creates geometry for Gerber flashes (aperture on a single point).
- """
- self.flash_geometry = []
- for flash in self.flashes:
- try:
- aperture = self.apertures[flash['aperture']]
- except KeyError:
- print "ERROR: Trying to flash with unknown aperture: ", flash['aperture']
- continue
- if aperture['type'] == 'C': # Circles
- circle = Point(flash['loc']).buffer(aperture['size']/2)
- self.flash_geometry.append(circle)
- continue
- if aperture['type'] == 'R': # Rectangles
- loc = flash['loc']
- width = aperture['width']
- height = aperture['height']
- minx = loc[0] - width/2
- maxx = loc[0] + width/2
- miny = loc[1] - height/2
- maxy = loc[1] + height/2
- rectangle = shply_box(minx, miny, maxx, maxy)
- self.flash_geometry.append(rectangle)
- continue
- if aperture['type'] == 'O': # Obround
- loc = flash['loc']
- width = aperture['width']
- height = aperture['height']
- if width > height:
- p1 = Point(loc[0] + 0.5*(width-height), loc[1])
- p2 = Point(loc[0] - 0.5*(width-height), loc[1])
- c1 = p1.buffer(height*0.5)
- c2 = p2.buffer(height*0.5)
- else:
- p1 = Point(loc[0], loc[1] + 0.5*(height-width))
- p2 = Point(loc[0], loc[1] - 0.5*(height-width))
- c1 = p1.buffer(width*0.5)
- c2 = p2.buffer(width*0.5)
- obround = cascaded_union([c1, c2]).convex_hull
- self.flash_geometry.append(obround)
- continue
- if aperture['type'] == 'P': #Regular polygon
- loc = flash['loc']
- diam = aperture['diam']
- nVertices = aperture['nVertices']
- points = []
- for i in range(0,nVertices):
- x = loc[0] + diam * (cos(2 * pi * i / nVertices))
- y = loc[1] + diam * (sin(2 * pi * i / nVertices))
- points.append((x,y))
- ply = Polygon(points)
- if 'rotation' in aperture:
- ply = affinity.rotate(ply, aperture['rotation'])
- self.flash_geometry.append(ply)
- continue
- print "WARNING: Aperture type %s not implemented" % (aperture['type'])
-
- def create_geometry(self):
- """
- Geometry from a Gerber file is made up entirely of polygons.
- Every stroke (linear or circular) has an aperture which gives
- it thickness. Additionally, aperture strokes have non-zero area,
- and regions naturally do as well.
- :rtype : None
- :return: None
- """
- self.buffer_paths()
- self.fix_regions()
- self.do_flashes()
- self.solid_geometry = cascaded_union(self.buffered_paths +
- [poly['polygon'] for poly in self.regions] +
- self.flash_geometry)
- def get_bounding_box(self, margin=0.0, rounded=False):
- """
- Creates and returns a rectangular polygon bounding at a distance of
- margin from the object's ``solid_geometry``. If margin > 0, the polygon
- can optionally have rounded corners of radius equal to margin.
- :param margin: Distance to enlarge the rectangular bounding
- box in both positive and negative, x and y axes.
- :type margin: float
- :param rounded: Wether or not to have rounded corners.
- :type rounded: bool
- :return: The bounding box.
- :rtype: Shapely.Polygon
- """
- bbox = self.solid_geometry.envelope.buffer(margin)
- if not rounded:
- bbox = bbox.envelope
- return bbox
- class Excellon(Geometry):
- """
- *ATTRIBUTES*
- * ``tools`` (dict): The key is the tool name and the value is
- the size (diameter).
- * ``drills`` (list): Each is a dictionary:
- ================ ====================================
- Key Value
- ================ ====================================
- point (Shapely.Point) Where to drill
- tool (str) A key in ``tools``
- ================ ====================================
- """
- def __init__(self):
- """
- The constructor takes no parameters.
- :return: Excellon object.
- :rtype: Excellon
- """
- Geometry.__init__(self)
-
- self.tools = {}
-
- self.drills = []
- # Trailing "T" or leading "L"
- self.zeros = ""
- # Attributes to be included in serialization
- # Always append to it because it carries contents
- # from Geometry.
- self.ser_attrs += ['tools', 'drills', 'zeros']
- #### Patterns ####
- # Regex basics:
- # ^ - beginning
- # $ - end
- # *: 0 or more, +: 1 or more, ?: 0 or 1
- # M48 - Beggining of Part Program Header
- self.hbegin_re = re.compile(r'^M48$')
- # M95 or % - End of Part Program Header
- # NOTE: % has different meaning in the body
- self.hend_re = re.compile(r'^(?:M95|%)$')
- # FMAT Excellon format
- self.fmat_re = re.compile(r'^FMAT,([12])$')
- # Number format and units
- # INCH uses 6 digits
- # METRIC uses 5/6
- self.units_re = re.compile(r'^(INCH|METRIC)(?:,([TL])Z)?$')
- # Tool definition/parameters (?= is look-ahead
- # NOTE: This might be an overkill!
- self.toolset_re = re.compile(r'^T(0?\d|\d\d)(?=.*C(\d*\.?\d*))?' +
- r'(?=.*F(\d*\.?\d*))?(?=.*S(\d*\.?\d*))?' +
- r'(?=.*B(\d*\.?\d*))?(?=.*H(\d*\.?\d*))?' +
- r'(?=.*Z(-?\d*\.?\d*))?[CFSBHT]')
- # Tool select
- # Can have additional data after tool number but
- # is ignored if present in the header.
- # Warning: This will match toolset_re too.
- self.toolsel_re = re.compile(r'^T((?:\d\d)|(?:\d))')
- # Comment
- self.comm_re = re.compile(r'^;(.*)$')
- # Absolute/Incremental G90/G91
- self.absinc_re = re.compile(r'^G9([01])$')
- # Modes of operation
- # 1-linear, 2-circCW, 3-cirCCW, 4-vardwell, 5-Drill
- self.modes_re = re.compile(r'^G0([012345])')
- # Measuring mode
- # 1-metric, 2-inch
- self.meas_re = re.compile(r'^M7([12])$')
- # Coordinates
- #self.xcoord_re = re.compile(r'^X(\d*\.?\d*)(?:Y\d*\.?\d*)?$')
- #self.ycoord_re = re.compile(r'^(?:X\d*\.?\d*)?Y(\d*\.?\d*)$')
- self.coordsperiod_re = re.compile(r'(?=.*X(\d*\.\d*))?(?=.*Y(\d*\.\d*))?[XY]')
- self.coordsnoperiod_re = re.compile(r'(?!.*\.)(?=.*X(\d*))?(?=.*Y(\d*))?[XY]')
- # R - Repeat hole (# times, X offset, Y offset)
- self.rep_re = re.compile(r'^R(\d+)(?=.*[XY])+(?:X(\d*\.?\d*))?(?:Y(\d*\.?\d*))?$')
- # Various stop/pause commands
- self.stop_re = re.compile(r'^((G04)|(M09)|(M06)|(M00)|(M30))')
-
- def parse_file(self, filename):
- """
- Reads the specified file as array of lines as
- passes it to ``parse_lines()``.
- :param filename: The file to be read and parsed.
- :type filename: str
- :return: None
- """
- efile = open(filename, 'r')
- estr = efile.readlines()
- efile.close()
- self.parse_lines(estr)
-
- def parse_lines(self, elines):
- """
- Main Excellon parser.
- :param elines: List of strings, each being a line of Excellon code.
- :type elines: list
- :return: None
- """
- # State variables
- current_tool = ""
- in_header = False
- current_x = None
- current_y = None
- i = 0 # Line number
- for eline in elines:
- i += 1
- ## Header Begin/End ##
- if self.hbegin_re.search(eline):
- in_header = True
- continue
- if self.hend_re.search(eline):
- in_header = False
- continue
- #### Body ####
- if not in_header:
- ## Tool change ##
- match = self.toolsel_re.search(eline)
- if match:
- current_tool = str(int(match.group(1)))
- continue
- ## Coordinates without period ##
- match = self.coordsnoperiod_re.search(eline)
- if match:
- try:
- x = float(match.group(1))/10000
- current_x = x
- except TypeError:
- x = current_x
- try:
- y = float(match.group(2))/10000
- current_y = y
- except TypeError:
- y = current_y
- if x is None or y is None:
- print "ERROR: Missing coordinates"
- continue
- self.drills.append({'point': Point((x, y)), 'tool': current_tool})
- continue
- ## Coordinates with period ##
- match = self.coordsperiod_re.search(eline)
- if match:
- try:
- x = float(match.group(1))
- current_x = x
- except TypeError:
- x = current_x
- try:
- y = float(match.group(2))
- current_y = y
- except TypeError:
- y = current_y
- if x is None or y is None:
- print "ERROR: Missing coordinates"
- continue
- self.drills.append({'point': Point((x, y)), 'tool': current_tool})
- continue
- #### Header ####
- if in_header:
- ## Tool definitions ##
- match = self.toolset_re.search(eline)
- if match:
- name = str(int(match.group(1)))
- spec = {
- "C": float(match.group(2)),
- # "F": float(match.group(3)),
- # "S": float(match.group(4)),
- # "B": float(match.group(5)),
- # "H": float(match.group(6)),
- # "Z": float(match.group(7))
- }
- self.tools[name] = spec
- continue
- ## Units and number format ##
- match = self.units_re.match(eline)
- if match:
- self.zeros = match.group(2) # "T" or "L"
- self.units = {"INCH": "IN", "METRIC": "MM"}[match.group(1)]
- continue
- print "WARNING: Line ignored:", eline
-
- def create_geometry(self):
- self.solid_geometry = []
- for drill in self.drills:
- poly = Point(drill['point']).buffer(self.tools[drill['tool']]["C"]/2.0)
- self.solid_geometry.append(poly)
- #self.solid_geometry = cascaded_union(self.solid_geometry)
- def scale(self, factor):
- """
- Scales geometry on the XY plane in the object by a given factor.
- Tool sizes, feedrates an Z-plane dimensions are untouched.
- :param factor: Number by which to scale the object.
- :type factor: float
- :return: None
- :rtype: NOne
- """
- # Drills
- for drill in self.drills:
- drill['point'] = affinity.scale(drill['point'], factor, factor, origin=(0, 0))
- self.create_geometry()
- def offset(self, vect):
- """
- Offsets geometry on the XY plane in the object by a given vector.
- :param vect: (x, y) offset vector.
- :type vect: tuple
- :return: None
- """
- dx, dy = vect
- # Drills
- for drill in self.drills:
- drill['point'] = affinity.translate(drill['point'], xoff=dx, yoff=dy)
- self.create_geometry()
- def convert_units(self, units):
- factor = Geometry.convert_units(self, units)
- # Tools
- for tname in self.tools:
- self.tools[tname]["C"] *= factor
- self.create_geometry()
- return factor
- class CNCjob(Geometry):
- """
- Represents work to be done by a CNC machine.
- *ATTRIBUTES*
- * ``gcode_parsed`` (list): Each is a dictionary:
- ===================== =========================================
- Key Value
- ===================== =========================================
- geom (Shapely.LineString) Tool path (XY plane)
- kind (string) "AB", A is "T" (travel) or
- "C" (cut). B is "F" (fast) or "S" (slow).
- ===================== =========================================
- """
- def __init__(self, units="in", kind="generic", z_move=0.1,
- feedrate=3.0, z_cut=-0.002, tooldia=0.0):
- Geometry.__init__(self)
- self.kind = kind
- self.units = units
- self.z_cut = z_cut
- self.z_move = z_move
- self.feedrate = feedrate
- self.tooldia = tooldia
- self.unitcode = {"IN": "G20", "MM": "G21"}
- self.pausecode = "G04 P1"
- self.feedminutecode = "G94"
- self.absolutecode = "G90"
- self.gcode = ""
- self.input_geometry_bounds = None
- self.gcode_parsed = None
- self.steps_per_circ = 20 # Used when parsing G-code arcs
- # Attributes to be included in serialization
- # Always append to it because it carries contents
- # from Geometry.
- self.ser_attrs += ['kind', 'z_cut', 'z_move', 'feedrate', 'tooldia',
- 'gcode', 'input_geometry_bounds', 'gcode_parsed',
- 'steps_per_circ']
- def convert_units(self, units):
- factor = Geometry.convert_units(self, units)
- print "CNCjob.convert_units()"
- self.z_cut *= factor
- self.z_move *= factor
- self.feedrate *= factor
- self.tooldia *= factor
- return factor
- def generate_from_excellon(self, exobj):
- """
- Generates G-code for drilling from Excellon object.
- self.gcode becomes a list, each element is a
- different job for each tool in the excellon code.
- """
- self.kind = "drill"
- self.gcode = []
-
- t = "G00 X%.4fY%.4f\n"
- down = "G01 Z%.4f\n" % self.z_cut
- up = "G01 Z%.4f\n" % self.z_move
- for tool in exobj.tools:
-
- points = []
-
- for drill in exobj.drill:
- if drill['tool'] == tool:
- points.append(drill['point'])
-
- gcode = self.unitcode[self.units.upper()] + "\n"
- gcode += self.absolutecode + "\n"
- gcode += self.feedminutecode + "\n"
- gcode += "F%.2f\n" % self.feedrate
- gcode += "G00 Z%.4f\n" % self.z_move # Move to travel height
- gcode += "M03\n" # Spindle start
- gcode += self.pausecode + "\n"
-
- for point in points:
- gcode += t % point
- gcode += down + up
-
- gcode += t % (0, 0)
- gcode += "M05\n" # Spindle stop
-
- self.gcode.append(gcode)
- def generate_from_excellon_by_tool(self, exobj, tools="all"):
- """
- Creates gcode for this object from an Excellon object
- for the specified tools.
- :param exobj: Excellon object to process
- :type exobj: Excellon
- :param tools: Comma separated tool names
- :type: tools: str
- :return: None
- :rtype: None
- """
- print "Creating CNC Job from Excellon..."
- if tools == "all":
- tools = [tool for tool in exobj.tools]
- else:
- tools = [x.strip() for x in tools.split(",")]
- tools = filter(lambda y: y in exobj.tools, tools)
- print "Tools are:", tools
- points = []
- for drill in exobj.drills:
- if drill['tool'] in tools:
- points.append(drill['point'])
- print "Found %d drills." % len(points)
- #self.kind = "drill"
- self.gcode = []
- t = "G00 X%.4fY%.4f\n"
- down = "G01 Z%.4f\n" % self.z_cut
- up = "G01 Z%.4f\n" % self.z_move
- gcode = self.unitcode[self.units.upper()] + "\n"
- gcode += self.absolutecode + "\n"
- gcode += self.feedminutecode + "\n"
- gcode += "F%.2f\n" % self.feedrate
- gcode += "G00 Z%.4f\n" % self.z_move # Move to travel height
- gcode += "M03\n" # Spindle start
- gcode += self.pausecode + "\n"
- for point in points:
- x, y = point.coords.xy
- gcode += t % (x[0], y[0])
- gcode += down + up
- gcode += t % (0, 0)
- gcode += "M05\n" # Spindle stop
- self.gcode = gcode
- def generate_from_geometry(self, geometry, append=True, tooldia=None, tolerance=0):
- """
- Generates G-Code from a Geometry object. Stores in ``self.gcode``.
- :param geometry: Geometry defining the toolpath
- :type geometry: Geometry
- :param append: Wether to append to self.gcode or re-write it.
- :type append: bool
- :param tooldia: If given, sets the tooldia property but does
- not affect the process in any other way.
- :type tooldia: bool
- :param tolerance: All points in the simplified object will be within the
- tolerance distance of the original geometry.
- :return: None
- :rtype: None
- """
- if tooldia is not None:
- self.tooldia = tooldia
-
- self.input_geometry_bounds = geometry.bounds()
-
- if not append:
- self.gcode = ""
- self.gcode = self.unitcode[self.units.upper()] + "\n"
- self.gcode += self.absolutecode + "\n"
- self.gcode += self.feedminutecode + "\n"
- self.gcode += "F%.2f\n" % self.feedrate
- self.gcode += "G00 Z%.4f\n" % self.z_move # Move to travel height
- self.gcode += "M03\n" # Spindle start
- self.gcode += self.pausecode + "\n"
-
- for geo in geometry.solid_geometry:
-
- if type(geo) == Polygon:
- self.gcode += self.polygon2gcode(geo, tolerance=tolerance)
- continue
-
- if type(geo) == LineString or type(geo) == LinearRing:
- self.gcode += self.linear2gcode(geo, tolerance=tolerance)
- continue
-
- if type(geo) == Point:
- self.gcode += self.point2gcode(geo)
- continue
- if type(geo) == MultiPolygon:
- for poly in geo:
- self.gcode += self.polygon2gcode(poly, tolerance=tolerance)
- continue
- print "WARNING: G-code generation not implemented for %s" % (str(type(geo)))
-
- self.gcode += "G00 Z%.4f\n" % self.z_move # Stop cutting
- self.gcode += "G00 X0Y0\n"
- self.gcode += "M05\n" # Spindle stop
- def pre_parse(self, gtext):
- """
- Separates parts of the G-Code text into a list of dictionaries.
- Used by ``self.gcode_parse()``.
- :param gtext: A single string with g-code
- """
- # Units: G20-inches, G21-mm
- units_re = re.compile(r'^G2([01])')
- # TODO: This has to be re-done
- gcmds = []
- lines = gtext.split("\n") # TODO: This is probably a lot of work!
- for line in lines:
- # Clean up
- line = line.strip()
- # Remove comments
- # NOTE: Limited to 1 bracket pair
- op = line.find("(")
- cl = line.find(")")
- if op > -1 and cl > op:
- #comment = line[op+1:cl]
- line = line[:op] + line[(cl+1):]
- # Units
- match = units_re.match(line)
- if match:
- self.units = {'0': "IN", '1': "MM"}[match.group(1)]
- # Parse GCode
- # 0 4 12
- # G01 X-0.007 Y-0.057
- # --> codes_idx = [0, 4, 12]
- codes = "NMGXYZIJFP"
- codes_idx = []
- i = 0
- for ch in line:
- if ch in codes:
- codes_idx.append(i)
- i += 1
- n_codes = len(codes_idx)
- if n_codes == 0:
- continue
- # Separate codes in line
- parts = []
- for p in range(n_codes-1):
- parts.append(line[codes_idx[p]:codes_idx[p+1]].strip())
- parts.append(line[codes_idx[-1]:].strip())
- # Separate codes from values
- cmds = {}
- for part in parts:
- cmds[part[0]] = float(part[1:])
- gcmds.append(cmds)
- return gcmds
- def gcode_parse(self):
- """
- G-Code parser (from self.gcode). Generates dictionary with
- single-segment LineString's and "kind" indicating cut or travel,
- fast or feedrate speed.
- """
- kind = ["C", "F"] # T=travel, C=cut, F=fast, S=slow
- # Results go here
- geometry = []
-
- # TODO: Merge into single parser?
- gobjs = self.pre_parse(self.gcode)
-
- # Last known instruction
- current = {'X': 0.0, 'Y': 0.0, 'Z': 0.0, 'G': 0}
- # Current path: temporary storage until tool is
- # lifted or lowered.
- path = []
- # Process every instruction
- for gobj in gobjs:
- # Changing height:
- if 'Z' in gobj:
- if ('X' in gobj or 'Y' in gobj) and gobj['Z'] != current['Z']:
- print "WARNING: Non-orthogonal motion: From", current
- print " To:", gobj
- current['Z'] = gobj['Z']
- # Store the path into geometry and reset path
- if len(path) > 1:
- geometry.append({"geom": LineString(path),
- "kind": kind})
- path = [path[-1]] # Start with the last point of last path.
- if 'G' in gobj:
- current['G'] = int(gobj['G'])
-
- if 'X' in gobj or 'Y' in gobj:
-
- if 'X' in gobj:
- x = gobj['X']
- else:
- x = current['X']
-
- if 'Y' in gobj:
- y = gobj['Y']
- else:
- y = current['Y']
- kind = ["C", "F"] # T=travel, C=cut, F=fast, S=slow
- if current['Z'] > 0:
- kind[0] = 'T'
- if current['G'] > 0:
- kind[1] = 'S'
-
- arcdir = [None, None, "cw", "ccw"]
- if current['G'] in [0, 1]: # line
- path.append((x, y))
- if current['G'] in [2, 3]: # arc
- center = [gobj['I'] + current['X'], gobj['J'] + current['Y']]
- radius = sqrt(gobj['I']**2 + gobj['J']**2)
- start = arctan2(-gobj['J'], -gobj['I'])
- stop = arctan2(-center[1]+y, -center[0]+x)
- path += arc(center, radius, start, stop,
- arcdir[current['G']],
- self.steps_per_circ)
- # Update current instruction
- for code in gobj:
- current[code] = gobj[code]
- self.gcode_parsed = geometry
- return geometry
-
- # def plot(self, tooldia=None, dpi=75, margin=0.1,
- # color={"T": ["#F0E24D", "#B5AB3A"], "C": ["#5E6CFF", "#4650BD"]},
- # alpha={"T": 0.3, "C": 1.0}):
- # """
- # Creates a Matplotlib figure with a plot of the
- # G-code job.
- # """
- # if tooldia is None:
- # tooldia = self.tooldia
- #
- # fig = Figure(dpi=dpi)
- # ax = fig.add_subplot(111)
- # ax.set_aspect(1)
- # xmin, ymin, xmax, ymax = self.input_geometry_bounds
- # ax.set_xlim(xmin-margin, xmax+margin)
- # ax.set_ylim(ymin-margin, ymax+margin)
- #
- # if tooldia == 0:
- # for geo in self.gcode_parsed:
- # linespec = '--'
- # linecolor = color[geo['kind'][0]][1]
- # if geo['kind'][0] == 'C':
- # linespec = 'k-'
- # x, y = geo['geom'].coords.xy
- # ax.plot(x, y, linespec, color=linecolor)
- # else:
- # for geo in self.gcode_parsed:
- # poly = geo['geom'].buffer(tooldia/2.0)
- # patch = PolygonPatch(poly, facecolor=color[geo['kind'][0]][0],
- # edgecolor=color[geo['kind'][0]][1],
- # alpha=alpha[geo['kind'][0]], zorder=2)
- # ax.add_patch(patch)
- #
- # return fig
-
- def plot2(self, axes, tooldia=None, dpi=75, margin=0.1,
- color={"T": ["#F0E24D", "#B5AB3A"], "C": ["#5E6CFF", "#4650BD"]},
- alpha={"T": 0.3, "C": 1.0}, tool_tolerance=0.0005):
- """
- Plots the G-code job onto the given axes.
- :param axes: Matplotlib axes on which to plot.
- :param tooldia: Tool diameter.
- :param dpi: Not used!
- :param margin: Not used!
- :param color: Color specification.
- :param alpha: Transparency specification.
- :param tool_tolerance: Tolerance when drawing the toolshape.
- :return: None
- """
- if tooldia is None:
- tooldia = self.tooldia
-
- if tooldia == 0:
- for geo in self.gcode_parsed:
- linespec = '--'
- linecolor = color[geo['kind'][0]][1]
- if geo['kind'][0] == 'C':
- linespec = 'k-'
- x, y = geo['geom'].coords.xy
- axes.plot(x, y, linespec, color=linecolor)
- else:
- for geo in self.gcode_parsed:
- poly = geo['geom'].buffer(tooldia/2.0).simplify(tool_tolerance)
- patch = PolygonPatch(poly, facecolor=color[geo['kind'][0]][0],
- edgecolor=color[geo['kind'][0]][1],
- alpha=alpha[geo['kind'][0]], zorder=2)
- axes.add_patch(patch)
-
- def create_geometry(self):
- # TODO: This takes forever. Too much data?
- self.solid_geometry = cascaded_union([geo['geom'] for geo in self.gcode_parsed])
- def polygon2gcode(self, polygon, tolerance=0):
- """
- Creates G-Code for the exterior and all interior paths
- of a polygon.
- :param polygon: A Shapely.Polygon
- :type polygon: Shapely.Polygon
- :param tolerance: All points in the simplified object will be within the
- tolerance distance of the original geometry.
- :type tolerance: float
- :return: G-code to cut along polygon.
- :rtype: str
- """
- if tolerance > 0:
- target_polygon = polygon.simplify(tolerance)
- else:
- target_polygon = polygon
- gcode = ""
- t = "G0%d X%.4fY%.4f\n"
- path = list(target_polygon.exterior.coords) # Polygon exterior
- gcode += t % (0, path[0][0], path[0][1]) # Move to first point
- gcode += "G01 Z%.4f\n" % self.z_cut # Start cutting
- for pt in path[1:]:
- gcode += t % (1, pt[0], pt[1]) # Linear motion to point
- gcode += "G00 Z%.4f\n" % self.z_move # Stop cutting
- for ints in target_polygon.interiors: # Polygon interiors
- path = list(ints.coords)
- gcode += t % (0, path[0][0], path[0][1]) # Move to first point
- gcode += "G01 Z%.4f\n" % self.z_cut # Start cutting
- for pt in path[1:]:
- gcode += t % (1, pt[0], pt[1]) # Linear motion to point
- gcode += "G00 Z%.4f\n" % self.z_move # Stop cutting
- return gcode
- def linear2gcode(self, linear, tolerance=0):
- """
- Generates G-code to cut along the linear feature.
- :param linear: The path to cut along.
- :type: Shapely.LinearRing or Shapely.Linear String
- :param tolerance: All points in the simplified object will be within the
- tolerance distance of the original geometry.
- :type tolerance: float
- :return: G-code to cut alon the linear feature.
- :rtype: str
- """
- if tolerance > 0:
- target_linear = linear.simplify(tolerance)
- else:
- target_linear = linear
- gcode = ""
- t = "G0%d X%.4fY%.4f\n"
- path = list(target_linear.coords)
- gcode += t % (0, path[0][0], path[0][1]) # Move to first point
- gcode += "G01 Z%.4f\n" % self.z_cut # Start cutting
- for pt in path[1:]:
- gcode += t % (1, pt[0], pt[1]) # Linear motion to point
- gcode += "G00 Z%.4f\n" % self.z_move # Stop cutting
- return gcode
- def point2gcode(self, point):
- # TODO: This is not doing anything.
- gcode = ""
- t = "G0%d X%.4fY%.4f\n"
- path = list(point.coords)
- gcode += t % (0, path[0][0], path[0][1]) # Move to first point
- gcode += "G01 Z%.4f\n" % self.z_cut # Start cutting
- gcode += "G00 Z%.4f\n" % self.z_move # Stop cutting
- def scale(self, factor):
- """
- Scales all the geometry on the XY plane in the object by the
- given factor. Tool sizes, feedrates, or Z-axis dimensions are
- not altered.
- :param factor: Number by which to scale the object.
- :type factor: float
- :return: None
- :rtype: None
- """
- for g in self.gcode_parsed:
- g['geom'] = affinity.scale(g['geom'], factor, factor, origin=(0, 0))
- self.create_geometry()
- def offset(self, vect):
- """
- Offsets all the geometry on the XY plane in the object by the
- given vector.
- :param vect: (x, y) offset vector.
- :type vect: tuple
- :return: None
- """
- dx, dy = vect
- for g in self.gcode_parsed:
- g['geom'] = affinity.translate(g['geom'], xoff=dx, yoff=dy)
- self.create_geometry()
- def get_bounds(geometry_set):
- xmin = Inf
- ymin = Inf
- xmax = -Inf
- ymax = -Inf
- #print "Getting bounds of:", str(geometry_set)
- for gs in geometry_set:
- try:
- gxmin, gymin, gxmax, gymax = geometry_set[gs].bounds()
- xmin = min([xmin, gxmin])
- ymin = min([ymin, gymin])
- xmax = max([xmax, gxmax])
- ymax = max([ymax, gymax])
- except:
- print "DEV WARNING: Tried to get bounds of empty geometry."
- return [xmin, ymin, xmax, ymax]
- def arc(center, radius, start, stop, direction, steps_per_circ):
- """
- Creates a list of point along the specified arc.
- :param center: Coordinates of the center [x, y]
- :type center: list
- :param radius: Radius of the arc.
- :type radius: float
- :param start: Starting angle in radians
- :type start: float
- :param stop: End angle in radians
- :type stop: float
- :param direction: Orientation of the arc, "CW" or "CCW"
- :type direction: string
- :param steps_per_circ: Number of straight line segments to
- represent a circle.
- :type steps_per_circ: int
- :return: The desired arc, as list of tuples
- :rtype: list
- """
- # TODO: Resolution should be established by fraction of total length, not angle.
- da_sign = {"cw": -1.0, "ccw": 1.0}
- points = []
- if direction == "ccw" and stop <= start:
- stop += 2*pi
- if direction == "cw" and stop >= start:
- stop -= 2*pi
-
- angle = abs(stop - start)
-
- #angle = stop-start
- steps = max([int(ceil(angle/(2*pi)*steps_per_circ)), 2])
- delta_angle = da_sign[direction]*angle*1.0/steps
- for i in range(steps+1):
- theta = start + delta_angle*i
- points.append((center[0]+radius*cos(theta), center[1]+radius*sin(theta)))
- return points
- def clear_poly(poly, tooldia, overlap=0.1):
- """
- Creates a list of Shapely geometry objects covering the inside
- of a Shapely.Polygon. Use for removing all the copper in a region
- or bed flattening.
- :param poly: Target polygon
- :type poly: Shapely.Polygon
- :param tooldia: Diameter of the tool
- :type tooldia: float
- :param overlap: Fraction of the tool diameter to overlap
- in each pass.
- :type overlap: float
- :return: list of Shapely.Polygon
- :rtype: list
- """
- poly_cuts = [poly.buffer(-tooldia/2.0)]
- while True:
- poly = poly_cuts[-1].buffer(-tooldia*(1-overlap))
- if poly.area > 0:
- poly_cuts.append(poly)
- else:
- break
- return poly_cuts
- def find_polygon(poly_set, point):
- """
- Return the first polygon in the list of polygons poly_set
- that contains the given point.
- """
- p = Point(point)
- for poly in poly_set:
- if poly.contains(p):
- return poly
- return None
- def to_dict(geo):
- output = ''
- if isinstance(geo, BaseGeometry):
- return {
- "__class__": "Shply",
- "__inst__": sdumps(geo)
- }
- return geo
- def dict2obj(d):
- if '__class__' in d and '__inst__' in d:
- # For now assume all classes are Shapely geometry.
- return sloads(d['__inst__'])
- else:
- return d
- def plotg(geo):
- try:
- _ = iter(geo)
- except:
- geo = [geo]
- for g in geo:
- if type(g) == Polygon:
- x, y = g.exterior.coords.xy
- plot(x, y)
- for ints in g.interiors:
- x, y = ints.coords.xy
- plot(x, y)
- continue
- if type(g) == LineString or type(g) == LinearRing:
- x, y = g.coords.xy
- plot(x, y)
- continue
- if type(g) == Point:
- x, y = g.coords.xy
- plot(x, y, 'o')
- continue
- try:
- _ = iter(g)
- plotg(g)
- except:
- print "Cannot plot:", str(type(g))
- continue
- def parse_gerber_number(strnumber, frac_digits):
- """
- Parse a single number of Gerber coordinates.
- :param strnumber: String containing a number in decimal digits
- from a coordinate data block, possibly with a leading sign.
- :type strnumber: str
- :param frac_digits: Number of digits used for the fractional
- part of the number
- :type frac_digits: int
- :return: The number in floating point.
- :rtype: float
- """
- return int(strnumber)*(10**(-frac_digits))
- def parse_gerber_coords(gstr, int_digits, frac_digits):
- """
- Parse Gerber coordinates
- :param gstr: Line of G-Code containing coordinates.
- :type gstr: str
- :param int_digits: Number of digits in integer part of a number.
- :type int_digits: int
- :param frac_digits: Number of digits in frac_digits part of a number.
- :type frac_digits: int
- :return: [x, y] coordinates.
- :rtype: list
- """
- global gerbx, gerby
- xindex = gstr.find("X")
- yindex = gstr.find("Y")
- index = gstr.find("D")
- if xindex == -1:
- x = gerbx
- y = int(gstr[(yindex+1):index])*(10**(-frac_digits))
- elif yindex == -1:
- y = gerby
- x = int(gstr[(xindex+1):index])*(10**(-frac_digits))
- else:
- x = int(gstr[(xindex+1):yindex])*(10**(-frac_digits))
- y = int(gstr[(yindex+1):index])*(10**(-frac_digits))
- gerbx = x
- gerby = y
- return [x, y]
|