| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540 |
- from PyQt5 import QtWidgets
- from camlib import Geometry, arc, arc_angle, ApertureMacro, grace
- import numpy as np
- # import re
- # import logging
- import traceback
- from copy import deepcopy
- # import sys
- from shapely.ops import unary_union, linemerge
- # from shapely.affinity import scale, translate
- import shapely.affinity as affinity
- from shapely.geometry import box as shply_box
- from lxml import etree as ET
- import ezdxf
- from appParsers.ParseDXF import *
- from appParsers.ParseSVG import svgparselength, getsvggeo, svgparse_viewbox
- import gettext
- import builtins
- if '_' not in builtins.__dict__:
- _ = gettext.gettext
- log = logging.getLogger('base')
- class Gerber(Geometry):
- """
- Here it is done all the Gerber parsing.
- **ATTRIBUTES**
- * ``apertures`` (dict): The keys are names/identifiers of each aperture.
- The values are dictionaries key/value pairs which describe the aperture. The
- type key is always present and the rest depend on the key:
- +-----------+-----------------------------------+
- | Key | Value |
- +===========+===================================+
- | type | (str) "C", "R", "O", "P", or "AP" |
- +-----------+-----------------------------------+
- | others | Depend on ``type`` |
- +-----------+-----------------------------------+
- | solid_geometry | (list) |
- +-----------+-----------------------------------+
- * ``aperture_macros`` (dictionary): Are predefined geometrical structures
- that can be instantiated with different parameters in an aperture
- definition. See ``apertures`` above. The key is the name of the macro,
- and the macro itself, the value, is a ``Aperture_Macro`` object.
- * ``flash_geometry`` (list): List of (Shapely) geometric object resulting
- from ``flashes``. These are generated from ``flashes`` in ``do_flashes()``.
- * ``buffered_paths`` (list): List of (Shapely) polygons resulting from
- *buffering* (or thickening) the ``paths`` with the aperture. These are
- generated from ``paths`` in ``buffer_paths()``.
- **USAGE**::
- g = Gerber()
- g.parse_file(filename)
- g.create_geometry()
- do_something(s.solid_geometry)
- """
- # defaults = {
- # "steps_per_circle": 128,
- # "use_buffer_for_union": True
- # }
- app = None
- def __init__(self, steps_per_circle=None):
- """
- The constructor takes no parameters. Use ``gerber.parse_files()``
- or ``gerber.parse_lines()`` to populate the object from Gerber source.
- :return: Gerber object
- :rtype: Gerber
- """
- # How to approximate a circle with lines.
- self.steps_per_circle = int(self.app.defaults["gerber_circle_steps"])
- self.decimals = self.app.decimals
- # Initialize parent
- Geometry.__init__(self, geo_steps_per_circle=self.steps_per_circle)
- # Number format
- self.int_digits = 3
- """Number of integer digits in Gerber numbers. Used during parsing."""
- self.frac_digits = 4
- """Number of fraction digits in Gerber numbers. Used during parsing."""
- self.gerber_zeros = self.app.defaults['gerber_def_zeros']
- """Zeros in Gerber numbers. If 'L' then remove leading zeros, if 'T' remove trailing zeros. Used during parsing.
- """
- # ## Gerber elements # ##
- '''
- apertures = {
- 'id':{
- 'type':string,
- 'size':float,
- 'width':float,
- 'height':float,
- 'geometry': [],
- }
- }
- apertures['geometry'] list elements are dicts
- dict = {
- 'solid': [],
- 'follow': [],
- 'clear': []
- }
- '''
- # store the file units here:
- self.units = self.app.defaults['gerber_def_units']
- # aperture storage
- self.apertures = {}
- # Aperture Macros
- self.aperture_macros = {}
- # will store the Gerber geometry's as solids
- self.solid_geometry = Polygon()
- # will store the Gerber geometry's as paths
- self.follow_geometry = []
- # made True when the LPC command is encountered in Gerber parsing
- # it allows adding data into the clear_geometry key of the self.apertures[aperture] dict
- self.is_lpc = False
- self.source_file = ''
- # ### Parser patterns ## ##
- # FS - Format Specification
- # The format of X and Y must be the same!
- # L-omit leading zeros, T-omit trailing zeros, D-no zero supression
- # A-absolute notation, I-incremental notation
- self.fmt_re = re.compile(r'%?FS([LTD])?([AI])X(\d)(\d)Y\d\d\*%?$')
- self.fmt_re_alt = re.compile(r'%FS([LTD])?([AI])X(\d)(\d)Y\d\d\*MO(IN|MM)\*%$')
- self.fmt_re_orcad = re.compile(r'(G\d+)*\**%FS([LTD])?([AI]).*X(\d)(\d)Y\d\d\*%$')
- # Mode (IN/MM)
- self.mode_re = re.compile(r'^%?MO(IN|MM)\*%?$')
- # Comment G04|G4
- self.comm_re = re.compile(r'^G0?4(.*)$')
- # AD - Aperture definition
- # Aperture Macro names: Name = [a-zA-Z_.$]{[a-zA-Z_.0-9]+}
- # NOTE: Adding "-" to support output from Upverter.
- self.ad_re = re.compile(r'^%ADD(\d\d+)([a-zA-Z_$\.][a-zA-Z0-9_$\.\-]*)(?:,(.*))?\*%$')
- # AM - Aperture Macro
- # Beginning of macro (Ends with *%):
- # self.am_re = re.compile(r'^%AM([a-zA-Z0-9]*)\*')
- # Tool change
- # May begin with G54 but that is deprecated
- self.tool_re = re.compile(r'^(?:G54)?D(\d\d+)\*$')
- # G01... - Linear interpolation plus flashes with coordinates
- # Operation code (D0x) missing is deprecated... oh well I will support it.
- self.lin_re = re.compile(r'^(?:G0?(1))?(?=.*X([\+-]?\d+))?(?=.*Y([\+-]?\d+))?[XY][^DIJ]*(?:D0?([123]))?\*$')
- # Operation code alone, usually just D03 (Flash)
- self.opcode_re = re.compile(r'^D0?([123])\*$')
- # G02/3... - Circular interpolation with coordinates
- # 2-clockwise, 3-counterclockwise
- # Operation code (D0x) missing is deprecated... oh well I will support it.
- # Optional start with G02 or G03, optional end with D01 or D02 with
- # optional coordinates but at least one in any order.
- self.circ_re = re.compile(r'^(?:G0?([23]))?(?=.*X([\+-]?\d+))?(?=.*Y([\+-]?\d+))' +
- '?(?=.*I([\+-]?\d+))?(?=.*J([\+-]?\d+))?[XYIJ][^D]*(?:D0([12]))?\*$')
- # G01/2/3 Occurring without coordinates
- self.interp_re = re.compile(r'^(?:G0?([123]))\*')
- # Single G74 or multi G75 quadrant for circular interpolation
- self.quad_re = re.compile(r'^G7([45]).*\*$')
- # Region mode on
- # In region mode, D01 starts a region
- # and D02 ends it. A new region can be started again
- # with D01. All contours must be closed before
- # D02 or G37.
- self.regionon_re = re.compile(r'^G36\*$')
- # Region mode off
- # Will end a region and come off region mode.
- # All contours must be closed before D02 or G37.
- self.regionoff_re = re.compile(r'^G37\*$')
- # End of file
- self.eof_re = re.compile(r'^M02\*')
- # IP - Image polarity
- self.pol_re = re.compile(r'^%?IP(POS|NEG)\*%?$')
- # LP - Level polarity
- self.lpol_re = re.compile(r'^%LP([DC])\*%$')
- # Units (OBSOLETE)
- self.units_re = re.compile(r'^G7([01])\*$')
- # Absolute/Relative G90/1 (OBSOLETE)
- self.absrel_re = re.compile(r'^G9([01])\*$')
- # Aperture macros
- self.am1_re = re.compile(r'^%AM([^\*]+)\*([^%]+)?(%)?$')
- self.am2_re = re.compile(r'(.*)%$')
- # flag to store if a conversion was done. It is needed because multiple units declarations can be found
- # in a Gerber file (normal or obsolete ones)
- self.conversion_done = False
- self.use_buffer_for_union = self.app.defaults["gerber_use_buffer_for_union"]
- # Attributes to be included in serialization
- # Always append to it because it carries contents
- # from Geometry.
- self.ser_attrs += ['apertures', 'int_digits', 'frac_digits', 'aperture_macros', 'solid_geometry', 'source_file']
- def aperture_parse(self, apertureId, apertureType, apParameters):
- """
- Parse gerber aperture definition into dictionary of apertures.
- The following kinds and their attributes are supported:
- * *Circular (C)*: size (float)
- * *Rectangle (R)*: width (float), height (float)
- * *Obround (O)*: width (float), height (float).
- * *Polygon (P)*: diameter(float), vertices(int), [rotation(float)]
- * *Aperture Macro (AM)*: macro (ApertureMacro), modifiers (list)
- :param apertureId: Id of the aperture being defined.
- :param apertureType: Type of the aperture.
- :param apParameters: Parameters of the aperture.
- :type apertureId: str
- :type apertureType: str
- :type apParameters: str
- :return: Identifier of the aperture.
- :rtype: str
- """
- if self.app.abort_flag:
- # graceful abort requested by the user
- raise grace
- # Found some Gerber with a leading zero in the aperture id and the
- # referenced it without the zero, so this is a hack to handle that.
- apid = str(int(apertureId))
- try: # Could be empty for aperture macros
- paramList = apParameters.split('X')
- except Exception:
- paramList = None
- if apertureType == "C": # Circle, example: %ADD11C,0.1*%
- self.apertures[apid] = {"type": "C",
- "size": float(paramList[0])}
- return apid
- if apertureType == "R": # Rectangle, example: %ADD15R,0.05X0.12*%
- self.apertures[apid] = {"type": "R",
- "width": float(paramList[0]),
- "height": float(paramList[1]),
- "size": np.sqrt(float(paramList[0]) ** 2 + float(paramList[1]) ** 2)} # Hack
- return apid
- if apertureType == "O": # Obround
- self.apertures[apid] = {"type": "O",
- "width": float(paramList[0]),
- "height": float(paramList[1]),
- "size": np.sqrt(float(paramList[0]) ** 2 + float(paramList[1]) ** 2)} # Hack
- return apid
- if apertureType == "P": # Polygon (regular)
- self.apertures[apid] = {"type": "P",
- "diam": float(paramList[0]),
- "nVertices": int(paramList[1]),
- "size": float(paramList[0])} # Hack
- if len(paramList) >= 3:
- self.apertures[apid]["rotation"] = float(paramList[2])
- return apid
- if apertureType in self.aperture_macros:
- self.apertures[apid] = {"type": "AM",
- "macro": self.aperture_macros[apertureType],
- "modifiers": paramList}
- return apid
- log.warning("Aperture not implemented: %s" % str(apertureType))
- return None
- def parse_file(self, filename, follow=False):
- """
- Calls Gerber.parse_lines() with generator of lines
- read from the given file. Will split the lines if multiple
- statements are found in a single original line.
- The following line is split into two::
- G54D11*G36*
- First is ``G54D11*`` and seconds is ``G36*``.
- :param filename: Gerber file to parse.
- :type filename: str
- :param follow: If true, will not create polygons, just lines
- following the gerber path.
- :type follow: bool
- :return: None
- """
- with open(filename, 'r') as gfile:
- def line_generator():
- for line in gfile:
- line = line.strip(' \r\n')
- while len(line) > 0:
- # If ends with '%' leave as is.
- if line[-1] == '%':
- yield line
- break
- # Split after '*' if any.
- starpos = line.find('*')
- if starpos > -1:
- cleanline = line[:starpos + 1]
- yield cleanline
- line = line[starpos + 1:]
- # Otherwise leave as is.
- else:
- # yield clean line
- yield line
- break
- processed_lines = list(line_generator())
- self.parse_lines(processed_lines)
- # @profile
- def parse_lines(self, glines):
- """
- Main Gerber parser. Reads Gerber and populates ``self.paths``, ``self.apertures``,
- ``self.flashes``, ``self.regions`` and ``self.units``.
- :param glines: Gerber code as list of strings, each element being
- one line of the source file.
- :type glines: list
- :return: None
- :rtype: None
- """
- # Coordinates of the current path, each is [x, y]
- path = []
- # this is for temporary storage of solid geometry until it is added to poly_buffer
- geo_s = None
- # this is for temporary storage of follow geometry until it is added to follow_buffer
- geo_f = None
- # Polygons are stored here until there is a change in polarity.
- # Only then they are combined via unary_union and added or
- # subtracted from solid_geometry. This is ~100 times faster than
- # applying a union for every new polygon.
- poly_buffer = []
- # store here the follow geometry
- follow_buffer = []
- last_path_aperture = None
- current_aperture = None
- # 1,2 or 3 from "G01", "G02" or "G03"
- current_interpolation_mode = None
- # 1 or 2 from "D01" or "D02"
- # Note this is to support deprecated Gerber not putting
- # an operation code at the end of every coordinate line.
- current_operation_code = None
- # Current coordinates
- current_x = 0
- current_y = 0
- previous_x = 0
- previous_y = 0
- current_d = None
- # Absolute or Relative/Incremental coordinates
- # Not implemented
- # absolute = True
- # How to interpret circular interpolation: SINGLE or MULTI
- quadrant_mode = None
- # Indicates we are parsing an aperture macro
- current_macro = None
- # Indicates the current polarity: D-Dark, C-Clear
- current_polarity = 'D'
- # If a region is being defined
- making_region = False
- # ### Parsing starts here ## ##
- line_num = 0
- gline = ""
- s_tol = float(self.app.defaults["gerber_simp_tolerance"])
- self.app.inform.emit('%s %d %s.' % (_("Gerber processing. Parsing"), len(glines), _("lines")))
- try:
- for gline in glines:
- if self.app.abort_flag:
- # graceful abort requested by the user
- raise grace
- line_num += 1
- self.source_file += gline + '\n'
- # Cleanup #
- gline = gline.strip(' \r\n')
- # log.debug("Line=%3s %s" % (line_num, gline))
- # ###############################################################
- # ################ Ignored lines ############################
- # ################ Comments ############################
- # ###############################################################
- match = self.comm_re.search(gline)
- if match:
- continue
- # ###############################################################
- # ################ Polarity change #############################
- # ######## Example: %LPD*% or %LPC*% ###################
- # ######## If polarity changes, creates geometry from current #
- # ######## buffer, then adds or subtracts accordingly. #
- # ###############################################################
- match = self.lpol_re.search(gline)
- if match:
- new_polarity = match.group(1)
- # log.info("Polarity CHANGE, LPC = %s, poly_buff = %s" % (self.is_lpc, poly_buffer))
- self.is_lpc = True if new_polarity == 'C' else False
- try:
- path_length = len(path)
- except TypeError:
- path_length = 1
- if path_length > 1 and current_polarity != new_polarity:
- # finish the current path and add it to the storage
- # --- Buffered ----
- width = self.apertures[last_path_aperture]["size"]
- geo_dict = {}
- geo_f = LineString(path)
- if not geo_f.is_empty:
- follow_buffer.append(geo_f)
- geo_dict['follow'] = geo_f
- geo_s = LineString(path).buffer(width / 1.999, int(self.steps_per_circle / 4))
- if not geo_s.is_empty and geo_s.is_valid:
- if self.app.defaults['gerber_simplification']:
- poly_buffer.append(geo_s.simplify(s_tol))
- else:
- poly_buffer.append(geo_s)
- if self.is_lpc is True:
- geo_dict['clear'] = geo_s
- else:
- geo_dict['solid'] = geo_s
- if last_path_aperture not in self.apertures:
- self.apertures[last_path_aperture] = {}
- if 'geometry' not in self.apertures[last_path_aperture]:
- self.apertures[last_path_aperture]['geometry'] = []
- self.apertures[last_path_aperture]['geometry'].append(deepcopy(geo_dict))
- path = [path[-1]]
- # --- Apply buffer ---
- # If added for testing of bug #83
- # TODO: Remove when bug fixed
- try:
- buff_length = len(poly_buffer)
- except TypeError:
- buff_length = 1
- if buff_length > 0:
- if current_polarity == 'D':
- self.solid_geometry = self.solid_geometry.union(unary_union(poly_buffer))
- else:
- self.solid_geometry = self.solid_geometry.difference(unary_union(poly_buffer))
- # follow_buffer = []
- poly_buffer = []
- current_polarity = new_polarity
- continue
- # ################################################################
- # ##################### Number format ###########################
- # ##################### Example: %FSLAX24Y24*% #################
- # ################################################################
- match = self.fmt_re.search(gline)
- if match:
- absolute = {'A': 'Absolute', 'I': 'Relative'}[match.group(2)]
- if match.group(1) is not None:
- self.gerber_zeros = match.group(1)
- self.int_digits = int(match.group(3))
- self.frac_digits = int(match.group(4))
- log.debug("Gerber format found. (%s) " % str(gline))
- log.debug(
- "Gerber format found. Gerber zeros = %s (L-omit leading zeros, T-omit trailing zeros, "
- "D-no zero supression)" % self.gerber_zeros)
- log.debug("Gerber format found. Coordinates type = %s (Absolute or Relative)" % absolute)
- continue
- # ################################################################
- # ######################## Mode (IN/MM) #######################
- # ##################### Example: %MOIN*% #####################
- # ################################################################
- match = self.mode_re.search(gline)
- if match:
- self.units = match.group(1)
- log.debug("Gerber units found = %s" % self.units)
- # Changed for issue #80
- # self.convert_units(match.group(1))
- self.conversion_done = True
- continue
- # ################################################################
- # Combined Number format and Mode --- Allegro does this ##########
- # ################################################################
- match = self.fmt_re_alt.search(gline)
- if match:
- absolute = {'A': 'Absolute', 'I': 'Relative'}[match.group(2)]
- if match.group(1) is not None:
- self.gerber_zeros = match.group(1)
- self.int_digits = int(match.group(3))
- self.frac_digits = int(match.group(4))
- log.debug("Gerber format found. (%s) " % str(gline))
- log.debug(
- "Gerber format found. Gerber zeros = %s (L-omit leading zeros, T-omit trailing zeros, "
- "D-no zero suppression)" % self.gerber_zeros)
- log.debug("Gerber format found. Coordinates type = %s (Absolute or Relative)" % absolute)
- self.units = match.group(5)
- log.debug("Gerber units found = %s" % self.units)
- # Changed for issue #80
- # self.convert_units(match.group(5))
- self.conversion_done = True
- continue
- # ################################################################
- # #### Search for OrCAD way for having Number format ########
- # ################################################################
- match = self.fmt_re_orcad.search(gline)
- if match:
- if match.group(1) is not None:
- if match.group(1) == 'G74':
- quadrant_mode = 'SINGLE'
- elif match.group(1) == 'G75':
- quadrant_mode = 'MULTI'
- absolute = {'A': 'Absolute', 'I': 'Relative'}[match.group(3)]
- if match.group(2) is not None:
- self.gerber_zeros = match.group(2)
- self.int_digits = int(match.group(4))
- self.frac_digits = int(match.group(5))
- log.debug("Gerber format found. (%s) " % str(gline))
- log.debug(
- "Gerber format found. Gerber zeros = %s (L-omit leading zeros, T-omit trailing zeros, "
- "D-no zerosuppressionn)" % self.gerber_zeros)
- log.debug("Gerber format found. Coordinates type = %s (Absolute or Relative)" % absolute)
- self.units = match.group(1)
- log.debug("Gerber units found = %s" % self.units)
- # Changed for issue #80
- # self.convert_units(match.group(5))
- self.conversion_done = True
- continue
- # ################################################################
- # ############ Units (G70/1) OBSOLETE ######################
- # ################################################################
- match = self.units_re.search(gline)
- if match:
- obs_gerber_units = {'0': 'IN', '1': 'MM'}[match.group(1)]
- self.units = obs_gerber_units
- log.warning("Gerber obsolete units found = %s" % obs_gerber_units)
- # Changed for issue #80
- # self.convert_units({'0': 'IN', '1': 'MM'}[match.group(1)])
- self.conversion_done = True
- continue
- # ################################################################
- # ##### Absolute/relative coordinates G90/1 OBSOLETE ###########
- # ################################################################
- match = self.absrel_re.search(gline)
- if match:
- absolute = {'0': "Absolute", '1': "Relative"}[match.group(1)]
- log.warning("Gerber obsolete coordinates type found = %s (Absolute or Relative) " % absolute)
- continue
- # ################################################################
- # Aperture Macros ################################################
- # Having this at the beginning will slow things down
- # but macros can have complicated statements than could
- # be caught by other patterns.
- # ################################################################
- if current_macro is None: # No macro started yet
- match = self.am1_re.search(gline)
- # Start macro if match, else not an AM, carry on.
- if match:
- log.debug("Starting macro. Line %d: %s" % (line_num, gline))
- current_macro = match.group(1)
- self.aperture_macros[current_macro] = ApertureMacro(name=current_macro)
- if match.group(2): # Append
- self.aperture_macros[current_macro].append(match.group(2))
- if match.group(3): # Finish macro
- # self.aperture_macros[current_macro].parse_content()
- current_macro = None
- log.debug("Macro complete in 1 line.")
- continue
- else: # Continue macro
- log.debug("Continuing macro. Line %d." % line_num)
- match = self.am2_re.search(gline)
- if match: # Finish macro
- log.debug("End of macro. Line %d." % line_num)
- self.aperture_macros[current_macro].append(match.group(1))
- # self.aperture_macros[current_macro].parse_content()
- current_macro = None
- else: # Append
- self.aperture_macros[current_macro].append(gline)
- continue
- # ################################################################
- # ############## Aperture definitions %ADD... #################
- # ################################################################
- match = self.ad_re.search(gline)
- if match:
- # log.info("Found aperture definition. Line %d: %s" % (line_num, gline))
- self.aperture_parse(match.group(1), match.group(2), match.group(3))
- continue
- # ################################################################
- # ################ Operation code alone #########################
- # ########### Operation code alone, usually just D03 (Flash) ###
- # self.opcode_re = re.compile(r'^D0?([123])\*$')
- # ################################################################
- match = self.opcode_re.search(gline)
- if match:
- current_operation_code = int(match.group(1))
- current_d = current_operation_code
- if current_operation_code == 3:
- # --- Buffered ---
- try:
- # log.debug("Bare op-code %d." % current_operation_code)
- geo_dict = {}
- flash = self.create_flash_geometry(
- Point(current_x, current_y), self.apertures[current_aperture],
- self.steps_per_circle)
- geo_dict['follow'] = Point([current_x, current_y])
- if not flash.is_empty:
- if self.app.defaults['gerber_simplification']:
- poly_buffer.append(flash.simplify(s_tol))
- else:
- poly_buffer.append(flash)
- if self.is_lpc is True:
- geo_dict['clear'] = flash
- else:
- geo_dict['solid'] = flash
- if current_aperture not in self.apertures:
- self.apertures[current_aperture] = {}
- if 'geometry' not in self.apertures[current_aperture]:
- self.apertures[current_aperture]['geometry'] = []
- self.apertures[current_aperture]['geometry'].append(deepcopy(geo_dict))
- except IndexError:
- log.warning("Line %d: %s -> Nothing there to flash!" % (line_num, gline))
- continue
- # ################################################################
- # ################ Tool/aperture change ########################
- # ################ Example: D12* ########################
- # ################################################################
- match = self.tool_re.search(gline)
- if match:
- current_aperture = match.group(1)
- # log.debug("Line %d: Aperture change to (%s)" % (line_num, current_aperture))
- # If the aperture value is zero then make it something quite small but with a non-zero value
- # so it can be processed by FlatCAM.
- # But first test to see if the aperture type is "aperture macro". In that case
- # we should not test for "size" key as it does not exist in this case.
- if self.apertures[current_aperture]["type"] != "AM":
- if self.apertures[current_aperture]["size"] == 0:
- self.apertures[current_aperture]["size"] = 1e-12
- # log.debug(self.apertures[current_aperture])
- # Take care of the current path with the previous tool
- try:
- path_length = len(path)
- except TypeError:
- path_length = 1
- if path_length > 1:
- if self.apertures[last_path_aperture]["type"] == 'R':
- # do nothing because 'R' type moving aperture is none at once
- pass
- else:
- geo_dict = {}
- geo_f = LineString(path)
- if not geo_f.is_empty:
- follow_buffer.append(geo_f)
- geo_dict['follow'] = geo_f
- # --- Buffered ----
- width = self.apertures[last_path_aperture]["size"]
- geo_s = LineString(path).buffer(width / 1.999, int(self.steps_per_circle / 4))
- if not geo_s.is_empty:
- if self.app.defaults['gerber_simplification']:
- poly_buffer.append(geo_s.simplify(s_tol))
- else:
- poly_buffer.append(geo_s)
- if self.is_lpc is True:
- geo_dict['clear'] = geo_s
- else:
- geo_dict['solid'] = geo_s
- if last_path_aperture not in self.apertures:
- self.apertures[last_path_aperture] = {}
- if 'geometry' not in self.apertures[last_path_aperture]:
- self.apertures[last_path_aperture]['geometry'] = []
- self.apertures[last_path_aperture]['geometry'].append(deepcopy(geo_dict))
- path = [path[-1]]
- continue
- # ################################################################
- # ################ G36* - Begin region ########################
- # ################################################################
- if self.regionon_re.search(gline):
- try:
- path_length = len(path)
- except TypeError:
- path_length = 1
- if path_length > 1:
- # Take care of what is left in the path
- geo_dict = {}
- geo_f = LineString(path)
- if not geo_f.is_empty:
- follow_buffer.append(geo_f)
- geo_dict['follow'] = geo_f
- # --- Buffered ----
- width = self.apertures[last_path_aperture]["size"]
- geo_s = LineString(path).buffer(width / 1.999, int(self.steps_per_circle / 4))
- if not geo_s.is_empty:
- if self.app.defaults['gerber_simplification']:
- poly_buffer.append(geo_s.simplify(s_tol))
- else:
- poly_buffer.append(geo_s)
- if self.is_lpc is True:
- geo_dict['clear'] = geo_s
- else:
- geo_dict['solid'] = geo_s
- if last_path_aperture not in self.apertures:
- self.apertures[last_path_aperture] = {}
- if 'geometry' not in self.apertures[last_path_aperture]:
- self.apertures[last_path_aperture]['geometry'] = []
- self.apertures[last_path_aperture]['geometry'].append(deepcopy(geo_dict))
- path = [path[-1]]
- making_region = True
- continue
- # ################################################################
- # ################ G37* - End region ########################
- # ################################################################
- if self.regionoff_re.search(gline):
- making_region = False
- if '0' not in self.apertures:
- self.apertures['0'] = {}
- self.apertures['0']['type'] = 'REG'
- self.apertures['0']['size'] = 0.0
- self.apertures['0']['geometry'] = []
- # if D02 happened before G37 we now have a path with 1 element only; we have to add the current
- # geo to the poly_buffer otherwise we loose it
- if current_operation_code == 2:
- try:
- path_length = len(path)
- except TypeError:
- path_length = 1
- if path_length == 1:
- # this means that the geometry was prepared previously and we just need to add it
- geo_dict = {}
- if geo_f:
- if not geo_f.is_empty:
- follow_buffer.append(geo_f)
- geo_dict['follow'] = geo_f
- if geo_s:
- if not geo_s.is_empty:
- if self.app.defaults['gerber_simplification']:
- poly_buffer.append(geo_s.simplify(s_tol))
- else:
- poly_buffer.append(geo_s)
- if self.is_lpc is True:
- geo_dict['clear'] = geo_s
- else:
- geo_dict['solid'] = geo_s
- if geo_s or geo_f:
- self.apertures['0']['geometry'].append(deepcopy(geo_dict))
- path = [[current_x, current_y]] # Start new path
- # Only one path defines region?
- # This can happen if D02 happened before G37 and
- # is not and error.
- try:
- path_length = len(path)
- except TypeError:
- path_length = 1
- if path_length < 3:
- # print "ERROR: Path contains less than 3 points:"
- # path = [[current_x, current_y]]
- continue
- # For regions we may ignore an aperture that is None
- # --- Buffered ---
- geo_dict = {}
- if current_aperture in self.apertures:
- # the following line breaks loading of Circuit Studio Gerber files
- # buff_value = float(self.apertures[current_aperture]['size']) / 2.0
- # region_geo = Polygon(path).buffer(buff_value, int(self.steps_per_circle))
- region_geo = Polygon(path) # Sprint Layout Gerbers with ground fill are crashed with above
- else:
- region_geo = Polygon(path)
- region_f = region_geo.exterior
- if not region_f.is_empty:
- follow_buffer.append(region_f)
- geo_dict['follow'] = region_f
- region_s = region_geo
- if not region_s.is_valid:
- region_s = region_s.buffer(0, int(self.steps_per_circle))
- if not region_s.is_empty:
- if self.app.defaults['gerber_simplification']:
- poly_buffer.append(region_s.simplify(s_tol))
- else:
- poly_buffer.append(region_s)
- if self.is_lpc is True:
- geo_dict['clear'] = region_s
- else:
- geo_dict['solid'] = region_s
- if not region_s.is_empty or not region_f.is_empty:
- self.apertures['0']['geometry'].append(deepcopy(geo_dict))
- path = [[current_x, current_y]] # Start new path
- continue
- # ################################################################
- # ################ G01/2/3* - Interpolation mode change #########
- # #### Can occur along with coordinates and operation code but ##
- # #### sometimes by itself (handled here). #####################
- # #### Example: G01* #####################
- # ################################################################
- match = self.interp_re.search(gline)
- if match:
- current_interpolation_mode = int(match.group(1))
- continue
- # ################################################################
- # ######### G01 - Linear interpolation plus flashes #############
- # ######### Operation code (D0x) missing is deprecated #########
- # REGEX: r'^(?:G0?(1))?(?:X(-?\d+))?(?:Y(-?\d+))?(?:D0([123]))?\*$'
- # ################################################################
- match = self.lin_re.search(gline)
- if match:
- # Dxx alone?
- # if match.group(1) is None and match.group(2) is None and match.group(3) is None:
- # try:
- # current_operation_code = int(match.group(4))
- # except Exception:
- # pass # A line with just * will match too.
- # continue
- # NOTE: Letting it continue allows it to react to the
- # operation code.
- # Parse coordinates
- if match.group(2) is not None:
- linear_x = parse_gerber_number(match.group(2),
- self.int_digits, self.frac_digits, self.gerber_zeros)
- current_x = linear_x
- else:
- linear_x = current_x
- if match.group(3) is not None:
- linear_y = parse_gerber_number(match.group(3),
- self.int_digits, self.frac_digits, self.gerber_zeros)
- current_y = linear_y
- else:
- linear_y = current_y
- # Parse operation code
- if match.group(4) is not None:
- current_operation_code = int(match.group(4))
- # Pen down: add segment
- if current_operation_code == 1:
- # if linear_x or linear_y are None, ignore those
- if current_x is not None and current_y is not None:
- # only add the point if it's a new one otherwise skip it (harder to process)
- if path[-1] != [current_x, current_y]:
- path.append([current_x, current_y])
- elif len(path) == 1:
- # it's a flash that is done by moving with pen up D2 and then just a pen down D1
- # Reset path starting point
- path = [[current_x, current_y]]
- # --- BUFFERED ---
- # Draw the flash
- # this treats the case when we are storing geometry as paths
- geo_dict = {}
- geo_flash = Point([current_x, current_y])
- follow_buffer.append(geo_flash)
- geo_dict['follow'] = geo_flash
- # this treats the case when we are storing geometry as solids
- flash = self.create_flash_geometry(
- Point([current_x, current_y]),
- self.apertures[current_aperture],
- self.steps_per_circle
- )
- if not flash.is_empty:
- if self.app.defaults['gerber_simplification']:
- poly_buffer.append(flash.simplify(s_tol))
- else:
- poly_buffer.append(flash)
- if self.is_lpc is True:
- geo_dict['clear'] = flash
- else:
- geo_dict['solid'] = flash
- if current_aperture not in self.apertures:
- self.apertures[current_aperture] = {}
- if 'geometry' not in self.apertures[current_aperture]:
- self.apertures[current_aperture]['geometry'] = []
- self.apertures[current_aperture]['geometry'].append(deepcopy(geo_dict))
- if making_region is False:
- # if the aperture is rectangle then add a rectangular shape having as parameters the
- # coordinates of the start and end point and also the width and height
- # of the 'R' aperture
- try:
- if self.apertures[current_aperture]["type"] == 'R':
- width = self.apertures[current_aperture]['width']
- height = self.apertures[current_aperture]['height']
- minx = min(path[0][0], path[1][0]) - width / 2
- maxx = max(path[0][0], path[1][0]) + width / 2
- miny = min(path[0][1], path[1][1]) - height / 2
- maxy = max(path[0][1], path[1][1]) + height / 2
- log.debug("Coords: %s - %s - %s - %s" % (minx, miny, maxx, maxy))
- geo_dict = {}
- geo_f = Point([current_x, current_y])
- follow_buffer.append(geo_f)
- geo_dict['follow'] = geo_f
- geo_s = shply_box(minx, miny, maxx, maxy)
- if self.app.defaults['gerber_simplification']:
- poly_buffer.append(geo_s.simplify(s_tol))
- else:
- poly_buffer.append(geo_s)
- if self.is_lpc is True:
- geo_dict['clear'] = geo_s
- else:
- geo_dict['solid'] = geo_s
- if current_aperture not in self.apertures:
- self.apertures[current_aperture] = {}
- if 'geometry' not in self.apertures[current_aperture]:
- self.apertures[current_aperture]['geometry'] = []
- self.apertures[current_aperture]['geometry'].append(deepcopy(geo_dict))
- except Exception:
- pass
- last_path_aperture = current_aperture
- # we do this for the case that a region is done without having defined any aperture
- if last_path_aperture is None:
- if '0' not in self.apertures:
- self.apertures['0'] = {}
- self.apertures['0']['type'] = 'REG'
- self.apertures['0']['size'] = 0.0
- self.apertures['0']['geometry'] = []
- last_path_aperture = '0'
- else:
- self.app.inform.emit('[WARNING] %s: %s' %
- (_("Coordinates missing, line ignored"), str(gline)))
- self.app.inform.emit('[WARNING_NOTCL] %s' %
- _("GERBER file might be CORRUPT. Check the file !!!"))
- elif current_operation_code == 2:
- try:
- path_length = len(path)
- except TypeError:
- path_length = 1
- if path_length > 1:
- geo_s = None
- geo_dict = {}
- # --- BUFFERED ---
- # this treats the case when we are storing geometry as paths only
- if making_region:
- # we do this for the case that a region is done without having defined any aperture
- if last_path_aperture is None:
- if '0' not in self.apertures:
- self.apertures['0'] = {}
- self.apertures['0']['type'] = 'REG'
- self.apertures['0']['size'] = 0.0
- self.apertures['0']['geometry'] = []
- last_path_aperture = '0'
- geo_f = Polygon()
- else:
- geo_f = LineString(path)
- try:
- if self.apertures[last_path_aperture]["type"] != 'R':
- if not geo_f.is_empty:
- follow_buffer.append(geo_f)
- geo_dict['follow'] = geo_f
- except Exception as e:
- log.debug("camlib.Gerber.parse_lines() --> %s" % str(e))
- if not geo_f.is_empty:
- follow_buffer.append(geo_f)
- geo_dict['follow'] = geo_f
- # this treats the case when we are storing geometry as solids
- if making_region:
- # we do this for the case that a region is done without having defined any aperture
- if last_path_aperture is None:
- if '0' not in self.apertures:
- self.apertures['0'] = {}
- self.apertures['0']['type'] = 'REG'
- self.apertures['0']['size'] = 0.0
- self.apertures['0']['geometry'] = []
- last_path_aperture = '0'
- try:
- geo_s = Polygon(path)
- except ValueError:
- log.warning("Problem %s %s" % (gline, line_num))
- self.app.inform.emit('[ERROR] %s: %s' %
- (_("Region does not have enough points. "
- "File will be processed but there are parser errors. "
- "Line number"), str(line_num)))
- else:
- if last_path_aperture is None:
- log.warning("No aperture defined for curent path. (%d)" % line_num)
- width = self.apertures[last_path_aperture]["size"] # TODO: WARNING this should fail!
- geo_s = LineString(path).buffer(width / 1.999, int(self.steps_per_circle / 4))
- try:
- if self.apertures[last_path_aperture]["type"] != 'R':
- if not geo_s.is_empty:
- if self.app.defaults['gerber_simplification']:
- poly_buffer.append(geo_s.simplify(s_tol))
- else:
- poly_buffer.append(geo_s)
- if self.is_lpc is True:
- geo_dict['clear'] = geo_s
- else:
- geo_dict['solid'] = geo_s
- except Exception as e:
- log.debug("camlib.Gerber.parse_lines() --> %s" % str(e))
- if self.app.defaults['gerber_simplification']:
- poly_buffer.append(geo_s.simplify(s_tol))
- else:
- poly_buffer.append(geo_s)
- if self.is_lpc is True:
- geo_dict['clear'] = geo_s
- else:
- geo_dict['solid'] = geo_s
- if last_path_aperture not in self.apertures:
- self.apertures[last_path_aperture] = {}
- if 'geometry' not in self.apertures[last_path_aperture]:
- self.apertures[last_path_aperture]['geometry'] = []
- self.apertures[last_path_aperture]['geometry'].append(deepcopy(geo_dict))
- # if linear_x or linear_y are None, ignore those
- if linear_x is not None and linear_y is not None:
- path = [[linear_x, linear_y]] # Start new path
- else:
- self.app.inform.emit('[WARNING] %s: %s' %
- (_("Coordinates missing, line ignored"), str(gline)))
- self.app.inform.emit('[WARNING_NOTCL] %s' %
- _("GERBER file might be CORRUPT. Check the file !!!"))
- # Flash
- # Not allowed in region mode.
- elif current_operation_code == 3:
- # Create path draw so far.
- try:
- path_length = len(path)
- except TypeError:
- path_length = 1
- if path_length > 1:
- # --- Buffered ----
- geo_dict = {}
- # this treats the case when we are storing geometry as paths
- geo_f = LineString(path)
- if not geo_f.is_empty:
- try:
- if self.apertures[last_path_aperture]["type"] != 'R':
- follow_buffer.append(geo_f)
- geo_dict['follow'] = geo_f
- except Exception as e:
- log.debug("camlib.Gerber.parse_lines() --> G01 match D03 --> %s" % str(e))
- follow_buffer.append(geo_f)
- geo_dict['follow'] = geo_f
- # this treats the case when we are storing geometry as solids
- width = self.apertures[last_path_aperture]["size"]
- geo_s = LineString(path).buffer(width / 1.999, int(self.steps_per_circle / 4))
- if not geo_s.is_empty:
- try:
- if self.apertures[last_path_aperture]["type"] != 'R':
- if self.app.defaults['gerber_simplification']:
- poly_buffer.append(geo_s.simplify(s_tol))
- else:
- poly_buffer.append(geo_s)
- if self.is_lpc is True:
- geo_dict['clear'] = geo_s
- else:
- geo_dict['solid'] = geo_s
- except Exception:
- if self.app.defaults['gerber_simplification']:
- poly_buffer.append(geo_s.simplify(s_tol))
- else:
- poly_buffer.append(geo_s)
- if self.is_lpc is True:
- geo_dict['clear'] = geo_s
- else:
- geo_dict['solid'] = geo_s
- if last_path_aperture not in self.apertures:
- self.apertures[last_path_aperture] = {}
- if 'geometry' not in self.apertures[last_path_aperture]:
- self.apertures[last_path_aperture]['geometry'] = []
- self.apertures[last_path_aperture]['geometry'].append(deepcopy(geo_dict))
- # Reset path starting point
- path = [[linear_x, linear_y]]
- # --- BUFFERED ---
- # Draw the flash
- # this treats the case when we are storing geometry as paths
- geo_dict = {}
- geo_flash = Point([linear_x, linear_y])
- follow_buffer.append(geo_flash)
- geo_dict['follow'] = geo_flash
- # this treats the case when we are storing geometry as solids
- flash = self.create_flash_geometry(
- Point([linear_x, linear_y]),
- self.apertures[current_aperture],
- self.steps_per_circle
- )
- if not flash.is_empty:
- if self.app.defaults['gerber_simplification']:
- poly_buffer.append(flash.simplify(s_tol))
- else:
- poly_buffer.append(flash)
- if self.is_lpc is True:
- geo_dict['clear'] = flash
- else:
- geo_dict['solid'] = flash
- if current_aperture not in self.apertures:
- self.apertures[current_aperture] = {}
- if 'geometry' not in self.apertures[current_aperture]:
- self.apertures[current_aperture]['geometry'] = []
- self.apertures[current_aperture]['geometry'].append(deepcopy(geo_dict))
- # maybe those lines are not exactly needed but it is easier to read the program as those coordinates
- # are used in case that circular interpolation is encountered within the Gerber file
- current_x = linear_x
- current_y = linear_y
- # log.debug("Line_number=%3s X=%s Y=%s (%s)" % (line_num, linear_x, linear_y, gline))
- continue
- # ################################################################
- # ######### G74/75* - Single or multiple quadrant arcs ##########
- # ################################################################
- match = self.quad_re.search(gline)
- if match:
- if match.group(1) == '4':
- quadrant_mode = 'SINGLE'
- else:
- quadrant_mode = 'MULTI'
- continue
- # ################################################################
- # ######### G02/3 - Circular interpolation #####################
- # ######### 2-clockwise, 3-counterclockwise #####################
- # ######### Ex. format: G03 X0 Y50 I-50 J0 where the #########
- # ######### X, Y coords are the coords of the End Point #########
- # ################################################################
- match = self.circ_re.search(gline)
- if match:
- arcdir = [None, None, "cw", "ccw"]
- mode, circular_x, circular_y, i, j, d = match.groups()
- try:
- circular_x = parse_gerber_number(circular_x,
- self.int_digits, self.frac_digits, self.gerber_zeros)
- except Exception:
- circular_x = current_x
- try:
- circular_y = parse_gerber_number(circular_y,
- self.int_digits, self.frac_digits, self.gerber_zeros)
- except Exception:
- circular_y = current_y
- # According to Gerber specification i and j are not modal, which means that when i or j are missing,
- # they are to be interpreted as being zero
- try:
- i = parse_gerber_number(i, self.int_digits, self.frac_digits, self.gerber_zeros)
- except Exception:
- i = 0
- try:
- j = parse_gerber_number(j, self.int_digits, self.frac_digits, self.gerber_zeros)
- except Exception:
- j = 0
- if quadrant_mode is None:
- log.error("Found arc without preceding quadrant specification G74 or G75. (%d)" % line_num)
- log.error(gline)
- continue
- if mode is None and current_interpolation_mode not in [2, 3]:
- log.error("Found arc without circular interpolation mode defined. (%d)" % line_num)
- log.error(gline)
- continue
- elif mode is not None:
- current_interpolation_mode = int(mode)
- # Set operation code if provided
- if d is not None:
- current_operation_code = int(d)
- # Nothing created! Pen Up.
- if current_operation_code == 2:
- log.warning("Arc with D2. (%d)" % line_num)
- try:
- path_length = len(path)
- except TypeError:
- path_length = 1
- if path_length > 1:
- geo_dict = {}
- if last_path_aperture is None:
- log.warning("No aperture defined for curent path. (%d)" % line_num)
- # --- BUFFERED ---
- width = self.apertures[last_path_aperture]["size"]
- # this treats the case when we are storing geometry as paths
- geo_f = LineString(path)
- if not geo_f.is_empty:
- follow_buffer.append(geo_f)
- geo_dict['follow'] = geo_f
- # this treats the case when we are storing geometry as solids
- buffered = LineString(path).buffer(width / 1.999, int(self.steps_per_circle))
- if not buffered.is_empty:
- if self.app.defaults['gerber_simplification']:
- poly_buffer.append(buffered.simplify(s_tol))
- else:
- poly_buffer.append(buffered)
- if self.is_lpc is True:
- geo_dict['clear'] = buffered
- else:
- geo_dict['solid'] = buffered
- if last_path_aperture not in self.apertures:
- self.apertures[last_path_aperture] = {}
- if 'geometry' not in self.apertures[last_path_aperture]:
- self.apertures[last_path_aperture]['geometry'] = []
- self.apertures[last_path_aperture]['geometry'].append(deepcopy(geo_dict))
- current_x = circular_x
- current_y = circular_y
- path = [[current_x, current_y]] # Start new path
- continue
- # Flash should not happen here
- if current_operation_code == 3:
- log.error("Trying to flash within arc. (%d)" % line_num)
- continue
- if quadrant_mode == 'MULTI':
- center = [i + current_x, j + current_y]
- radius = np.sqrt(i ** 2 + j ** 2)
- start = np.arctan2(-j, -i) # Start angle
- # Numerical errors might prevent start == stop therefore
- # we check ahead of time. This should result in a
- # 360 degree arc.
- if current_x == circular_x and current_y == circular_y:
- stop = start
- else:
- stop = np.arctan2(-center[1] + circular_y, -center[0] + circular_x) # Stop angle
- this_arc = arc(center, radius, start, stop,
- arcdir[current_interpolation_mode],
- self.steps_per_circle)
- # The last point in the computed arc can have
- # numerical errors. The exact final point is the
- # specified (x, y). Replace.
- this_arc[-1] = (circular_x, circular_y)
- # Last point in path is current point
- # current_x = this_arc[-1][0]
- # current_y = this_arc[-1][1]
- current_x, current_y = circular_x, circular_y
- # Append
- path += this_arc
- last_path_aperture = current_aperture
- continue
- if quadrant_mode == 'SINGLE':
- center_candidates = [
- [i + current_x, j + current_y],
- [-i + current_x, j + current_y],
- [i + current_x, -j + current_y],
- [-i + current_x, -j + current_y]
- ]
- valid = False
- log.debug("I: %f J: %f" % (i, j))
- for center in center_candidates:
- radius = np.sqrt(i ** 2 + j ** 2)
- # Make sure radius to start is the same as radius to end.
- radius2 = np.sqrt((center[0] - circular_x) ** 2 + (center[1] - circular_y) ** 2)
- if radius2 < radius * 0.95 or radius2 > radius * 1.05:
- continue # Not a valid center.
- # Correct i and j and continue as with multi-quadrant.
- i = center[0] - current_x
- j = center[1] - current_y
- start = np.arctan2(-j, -i) # Start angle
- stop = np.arctan2(-center[1] + circular_y, -center[0] + circular_x) # Stop angle
- angle = abs(arc_angle(start, stop, arcdir[current_interpolation_mode]))
- log.debug("ARC START: %f, %f CENTER: %f, %f STOP: %f, %f" %
- (current_x, current_y, center[0], center[1], circular_x, circular_y))
- log.debug("START Ang: %f, STOP Ang: %f, DIR: %s, ABS: %.12f <= %.12f: %s" %
- (start * 180 / np.pi, stop * 180 / np.pi, arcdir[current_interpolation_mode],
- angle * 180 / np.pi, np.pi / 2 * 180 / np.pi, angle <= (np.pi + 1e-6) / 2))
- if angle <= (np.pi + 1e-6) / 2:
- log.debug("########## ACCEPTING ARC ############")
- this_arc = arc(center, radius, start, stop,
- arcdir[current_interpolation_mode],
- self.steps_per_circle)
- # Replace with exact values
- this_arc[-1] = (circular_x, circular_y)
- # current_x = this_arc[-1][0]
- # current_y = this_arc[-1][1]
- current_x, current_y = circular_x, circular_y
- path += this_arc
- last_path_aperture = current_aperture
- valid = True
- break
- if valid:
- continue
- else:
- log.warning("Invalid arc in line %d." % line_num)
- # ################################################################
- # ######### EOF - END OF FILE ####################################
- # ################################################################
- match = self.eof_re.search(gline)
- if match:
- continue
- # ################################################################
- # ######### Line did not match any pattern. Warn user. ##########
- # ################################################################
- log.warning("Line ignored (%d): %s" % (line_num, gline))
- # provide the app with a way to process the GUI events when in a blocking loop
- QtWidgets.QApplication.processEvents()
- try:
- path_length = len(path)
- except TypeError:
- path_length = 1
- if path_length > 1:
- # In case that G01 (moving) aperture is rectangular, there is no need to still create
- # another geo since we already created a shapely box using the start and end coordinates found in
- # path variable. We do it only for other apertures than 'R' type
- if self.apertures[last_path_aperture]["type"] == 'R':
- pass
- else:
- # EOF, create shapely LineString if something still in path
- # ## --- Buffered ---
- geo_dict = {}
- # this treats the case when we are storing geometry as paths
- geo_f = LineString(path)
- if not geo_f.is_empty:
- follow_buffer.append(geo_f)
- geo_dict['follow'] = geo_f
- # this treats the case when we are storing geometry as solids
- width = self.apertures[last_path_aperture]["size"]
- geo_s = LineString(path).buffer(width / 1.999, int(self.steps_per_circle / 4))
- if not geo_s.is_empty:
- if self.app.defaults['gerber_simplification']:
- poly_buffer.append(geo_s.simplify(s_tol))
- else:
- poly_buffer.append(geo_s)
- if self.is_lpc is True:
- geo_dict['clear'] = geo_s
- else:
- geo_dict['solid'] = geo_s
- if last_path_aperture not in self.apertures:
- self.apertures[last_path_aperture] = {}
- if 'geometry' not in self.apertures[last_path_aperture]:
- self.apertures[last_path_aperture]['geometry'] = []
- self.apertures[last_path_aperture]['geometry'].append(deepcopy(geo_dict))
- # --- Apply buffer ---
- # this treats the case when we are storing geometry as paths
- self.follow_geometry = follow_buffer
- # this treats the case when we are storing geometry as solids
- try:
- buff_length = len(poly_buffer)
- except TypeError:
- buff_length = 1
- try:
- sol_geo_length = len(self.solid_geometry)
- except TypeError:
- sol_geo_length = 1
- try:
- if buff_length == 0 and sol_geo_length in [0, 1] and self.solid_geometry.area == 0:
- log.error("Object is not Gerber file or empty. Aborting Object creation.")
- return 'fail'
- except TypeError as e:
- log.error("Object is not Gerber file or empty. Aborting Object creation. %s" % str(e))
- return 'fail'
- log.warning("Joining %d polygons." % buff_length)
- self.app.inform.emit('%s: %d.' % (_("Gerber processing. Joining polygons"), buff_length))
- if self.use_buffer_for_union:
- log.debug("Union by buffer...")
- new_poly = MultiPolygon(poly_buffer)
- if self.app.defaults["gerber_buffering"] == 'full':
- new_poly = new_poly.buffer(0.00000001)
- new_poly = new_poly.buffer(-0.00000001)
- log.warning("Union(buffer) done.")
- else:
- log.debug("Union by union()...")
- new_poly = unary_union(poly_buffer)
- new_poly = new_poly.buffer(0, int(self.steps_per_circle / 4))
- log.warning("Union done.")
- if current_polarity == 'D':
- self.app.inform.emit('%s' % _("Gerber processing. Applying Gerber polarity."))
- if new_poly.is_valid:
- self.solid_geometry = self.solid_geometry.union(new_poly)
- else:
- # I do this so whenever the parsed geometry of the file is not valid (intersections) it is still
- # loaded. Instead of applying a union I add to a list of polygons.
- final_poly = []
- try:
- for poly in new_poly:
- final_poly.append(poly)
- except TypeError:
- final_poly.append(new_poly)
- try:
- for poly in self.solid_geometry:
- final_poly.append(poly)
- except TypeError:
- final_poly.append(self.solid_geometry)
- self.solid_geometry = final_poly
- # FIX for issue #347 - Sprint Layout generate Gerber files when the copper pour is enabled
- # it use a filled bounding box polygon to which add clear polygons (negative) to isolate the copper
- # features
- if self.app.defaults['gerber_extra_buffering']:
- candidate_geo = []
- try:
- for p in self.solid_geometry:
- candidate_geo.append(p.buffer(-0.0000001))
- except TypeError:
- candidate_geo.append(self.solid_geometry.buffer(-0.0000001))
- self.solid_geometry = candidate_geo
- # try:
- # self.solid_geometry = self.solid_geometry.union(new_poly)
- # except Exception as e:
- # # in case in the new_poly are some self intersections try to avoid making union with them
- # for poly in new_poly:
- # try:
- # self.solid_geometry = self.solid_geometry.union(poly)
- # except Exception:
- # pass
- else:
- self.solid_geometry = self.solid_geometry.difference(new_poly)
- if self.app.defaults['gerber_clean_apertures']:
- # clean the Gerber file of apertures with no geometry
- for apid, apvalue in list(self.apertures.items()):
- if 'geometry' not in apvalue:
- self.apertures.pop(apid)
- # init this for the following operations
- self.conversion_done = False
- except Exception as err:
- ex_type, ex, tb = sys.exc_info()
- traceback.print_tb(tb)
- # print traceback.format_exc()
- log.error("Gerber PARSING FAILED. Line %d: %s" % (line_num, gline))
- loc = '%s #%d %s: %s\n' % (_("Gerber Line"), line_num, _("Gerber Line Content"), gline) + repr(err)
- self.app.inform.emit('[ERROR] %s\n%s:' %
- (_("Gerber Parser ERROR"), loc))
- @staticmethod
- def create_flash_geometry(location, aperture, steps_per_circle=None):
- # log.debug('Flashing @%s, Aperture: %s' % (location, aperture))
- if type(location) == list:
- location = Point(location)
- if aperture['type'] == 'C': # Circles
- return location.buffer(aperture['size'] / 2, int(steps_per_circle / 4))
- if aperture['type'] == 'R': # Rectangles
- loc = location.coords[0]
- width = aperture['width']
- height = aperture['height']
- minx = loc[0] - width / 2
- maxx = loc[0] + width / 2
- miny = loc[1] - height / 2
- maxy = loc[1] + height / 2
- return shply_box(minx, miny, maxx, maxy)
- if aperture['type'] == 'O': # Obround
- loc = location.coords[0]
- width = aperture['width']
- height = aperture['height']
- if width > height:
- p1 = Point(loc[0] + 0.5 * (width - height), loc[1])
- p2 = Point(loc[0] - 0.5 * (width - height), loc[1])
- c1 = p1.buffer(height * 0.5, int(steps_per_circle / 4))
- c2 = p2.buffer(height * 0.5, int(steps_per_circle / 4))
- else:
- p1 = Point(loc[0], loc[1] + 0.5 * (height - width))
- p2 = Point(loc[0], loc[1] - 0.5 * (height - width))
- c1 = p1.buffer(width * 0.5, int(steps_per_circle / 4))
- c2 = p2.buffer(width * 0.5, int(steps_per_circle / 4))
- return unary_union([c1, c2]).convex_hull
- if aperture['type'] == 'P': # Regular polygon
- loc = location.coords[0]
- diam = aperture['diam']
- n_vertices = aperture['nVertices']
- points = []
- for i in range(0, n_vertices):
- x = loc[0] + 0.5 * diam * (np.cos(2 * np.pi * i / n_vertices))
- y = loc[1] + 0.5 * diam * (np.sin(2 * np.pi * i / n_vertices))
- points.append((x, y))
- ply = Polygon(points)
- if 'rotation' in aperture:
- ply = affinity.rotate(ply, aperture['rotation'])
- return ply
- if aperture['type'] == 'AM': # Aperture Macro
- loc = location.coords[0]
- flash_geo = aperture['macro'].make_geometry(aperture['modifiers'])
- if flash_geo.is_empty:
- log.warning("Empty geometry for Aperture Macro: %s" % str(aperture['macro'].name))
- return affinity.translate(flash_geo, xoff=loc[0], yoff=loc[1])
- log.warning("Unknown aperture type: %s" % aperture['type'])
- return None
- def create_geometry(self):
- """
- Geometry from a Gerber file is made up entirely of polygons.
- Every stroke (linear or circular) has an aperture which gives
- it thickness. Additionally, aperture strokes have non-zero area,
- and regions naturally do as well.
- :rtype : None
- :return: None
- """
- pass
- # self.buffer_paths()
- #
- # self.fix_regions()
- #
- # self.do_flashes()
- #
- # self.solid_geometry = unary_union(self.buffered_paths +
- # [poly['polygon'] for poly in self.regions] +
- # self.flash_geometry)
- def get_bounding_box(self, margin=0.0, rounded=False):
- """
- Creates and returns a rectangular polygon bounding at a distance of
- margin from the object's ``solid_geometry``. If margin > 0, the polygon
- can optionally have rounded corners of radius equal to margin.
- :param margin: Distance to enlarge the rectangular bounding
- box in both positive and negative, x and y axes.
- :type margin: float
- :param rounded: Wether or not to have rounded corners.
- :type rounded: bool
- :return: The bounding box.
- :rtype: Shapely.Polygon
- """
- bbox = self.solid_geometry.envelope.buffer(margin)
- if not rounded:
- bbox = bbox.envelope
- return bbox
- def bounds(self, flatten=None):
- """
- Returns coordinates of rectangular bounds
- of Gerber geometry: (xmin, ymin, xmax, ymax).
- :param flatten: Not used, it is here for compatibility with base class method
- :return: None
- """
- log.debug("parseGerber.Gerber.bounds()")
- if self.solid_geometry is None:
- log.debug("solid_geometry is None")
- return 0, 0, 0, 0
- def bounds_rec(obj):
- if type(obj) is list and type(obj) is not MultiPolygon:
- minx = np.Inf
- miny = np.Inf
- maxx = -np.Inf
- maxy = -np.Inf
- for k in obj:
- if type(k) is dict:
- for key in k:
- minx_, miny_, maxx_, maxy_ = bounds_rec(k[key])
- minx = min(minx, minx_)
- miny = min(miny, miny_)
- maxx = max(maxx, maxx_)
- maxy = max(maxy, maxy_)
- else:
- if not k.is_empty:
- try:
- minx_, miny_, maxx_, maxy_ = bounds_rec(k)
- except Exception as e:
- log.debug("camlib.Gerber.bounds() --> %s" % str(e))
- return
- minx = min(minx, minx_)
- miny = min(miny, miny_)
- maxx = max(maxx, maxx_)
- maxy = max(maxy, maxy_)
- return minx, miny, maxx, maxy
- else:
- # it's a Shapely object, return it's bounds
- return obj.bounds
- bounds_coords = bounds_rec(self.solid_geometry)
- return bounds_coords
- def convert_units(self, obj_units):
- """
- Converts the units of the object to ``units`` by scaling all
- the geometry appropriately. This call ``scale()``. Don't call
- it again in descendants.
- :param obj_units: "IN" or "MM"
- :type obj_units: str
- :return: Scaling factor resulting from unit change.
- :rtype: float
- """
- if obj_units.upper() == self.units.upper():
- log.debug("parseGerber.Gerber.convert_units() --> Factor: 1")
- return 1.0
- if obj_units.upper() == "MM":
- factor = 25.4
- log.debug("parseGerber.Gerber.convert_units() --> Factor: 25.4")
- elif obj_units.upper() == "IN":
- factor = 1 / 25.4
- log.debug("parseGerber.Gerber.convert_units() --> Factor: %s" % str(1 / 25.4))
- else:
- log.error("Unsupported units: %s" % str(obj_units))
- log.debug("parseGerber.Gerber.convert_units() --> Factor: 1")
- return 1.0
- self.units = obj_units
- self.file_units_factor = factor
- self.scale(factor, factor)
- return factor
- def import_svg(self, filename, object_type='gerber', flip=True, units=None):
- """
- Imports shapes from an SVG file into the object's geometry.
- :param filename: Path to the SVG file.
- :type filename: str
- :param object_type: parameter passed further along
- :param flip: Flip the vertically.
- :type flip: bool
- :param units: FlatCAM units
- :return: None
- """
- log.debug("appParsers.ParseGerber.Gerber.import_svg()")
- # Parse into list of shapely objects
- svg_tree = ET.parse(filename)
- svg_root = svg_tree.getroot()
- # Change origin to bottom left
- # h = float(svg_root.get('height'))
- # w = float(svg_root.get('width'))
- h = svgparselength(svg_root.get('height'))[0] # TODO: No units support yet
- units = self.app.defaults['units'] if units is None else units
- res = self.app.defaults['gerber_circle_steps']
- factor = svgparse_viewbox(svg_root)
- geos = getsvggeo(svg_root, 'gerber', units=units, res=res, factor=factor)
- if flip:
- geos = [translate(scale(g, 1.0, -1.0, origin=(0, 0)), yoff=h) for g in geos]
- # Add to object
- if self.solid_geometry is None:
- self.solid_geometry = []
- # if type(self.solid_geometry) == list:
- # if type(geos) == list:
- # self.solid_geometry += geos
- # else:
- # self.solid_geometry.append(geos)
- # else: # It's shapely geometry
- # self.solid_geometry = [self.solid_geometry, geos]
- if type(geos) == list:
- # HACK for importing QRCODE exported by FlatCAM
- try:
- geos_length = len(geos)
- except TypeError:
- geos_length = 1
- if geos_length == 1:
- geo_qrcode = []
- geo_qrcode.append(Polygon(geos[0].exterior))
- for i_el in geos[0].interiors:
- geo_qrcode.append(Polygon(i_el).buffer(0, resolution=res))
- for poly in geo_qrcode:
- geos.append(poly)
- if type(self.solid_geometry) == list:
- self.solid_geometry += geos
- else:
- geos.append(self.solid_geometry)
- self.solid_geometry = geos
- else:
- if type(self.solid_geometry) == list:
- self.solid_geometry.append(geos)
- else:
- self.solid_geometry = [self.solid_geometry, geos]
- # flatten the self.solid_geometry list for import_svg() to import SVG as Gerber
- self.solid_geometry = list(self.flatten_list(self.solid_geometry))
- try:
- __ = iter(self.solid_geometry)
- except TypeError:
- self.solid_geometry = [self.solid_geometry]
- if '0' not in self.apertures:
- self.apertures['0'] = {}
- self.apertures['0']['type'] = 'REG'
- self.apertures['0']['size'] = 0.0
- self.apertures['0']['geometry'] = []
- for pol in self.solid_geometry:
- new_el = {}
- new_el['solid'] = pol
- new_el['follow'] = pol.exterior
- self.apertures['0']['geometry'].append(new_el)
- def import_dxf_as_gerber(self, filename, units='MM'):
- """
- Imports shapes from an DXF file into the Gerberobject geometry.
- :param filename: Path to the DXF file.
- :type filename: str
- :param units: Application units
- :return: None
- """
- log.debug("Parsing DXF file geometry into a Gerber object geometry.")
- # Parse into list of shapely objects
- dxf = ezdxf.readfile(filename)
- geos = getdxfgeo(dxf)
- # trying to optimize the resulting geometry by merging contiguous lines
- geos = linemerge(geos)
- # Add to object
- if self.solid_geometry is None:
- self.solid_geometry = []
- if type(self.solid_geometry) is list:
- if type(geos) is list:
- self.solid_geometry += geos
- else:
- self.solid_geometry.append(geos)
- else: # It's shapely geometry
- self.solid_geometry = [self.solid_geometry, geos]
- # flatten the self.solid_geometry list for import_dxf() to import DXF as Gerber
- flat_geo = list(self.flatten_list(self.solid_geometry))
- if flat_geo:
- self.solid_geometry = unary_union(flat_geo)
- self.follow_geometry = self.solid_geometry
- else:
- return "fail"
- # create the self.apertures data structure
- if '0' not in self.apertures:
- self.apertures['0'] = {}
- self.apertures['0']['type'] = 'REG'
- self.apertures['0']['size'] = 0.0
- self.apertures['0']['geometry'] = []
- for pol in flat_geo:
- new_el = {}
- new_el['solid'] = pol
- new_el['follow'] = pol
- self.apertures['0']['geometry'].append(deepcopy(new_el))
- def scale(self, xfactor, yfactor=None, point=None):
- """
- Scales the objects' geometry on the XY plane by a given factor.
- These are:
- * ``buffered_paths``
- * ``flash_geometry``
- * ``solid_geometry``
- * ``regions``
- NOTE:
- Does not modify the data used to create these elements. If these
- are recreated, the scaling will be lost. This behavior was modified
- because of the complexity reached in this class.
- :param xfactor: Number by which to scale on X axis.
- :type xfactor: float
- :param yfactor: Number by which to scale on Y axis.
- :type yfactor: float
- :param point: reference point for scaling operation
- :rtype : None
- """
- log.debug("parseGerber.Gerber.scale()")
- try:
- xfactor = float(xfactor)
- except Exception:
- self.app.inform.emit('[ERROR_NOTCL] %s' %
- _("Scale factor has to be a number: integer or float."))
- return
- if yfactor is None:
- yfactor = xfactor
- else:
- try:
- yfactor = float(yfactor)
- except Exception:
- self.app.inform.emit('[ERROR_NOTCL] %s' %
- _("Scale factor has to be a number: integer or float."))
- return
- if xfactor == 0 and yfactor == 0:
- return
- if point is None:
- px = 0
- py = 0
- else:
- px, py = point
- # variables to display the percentage of work done
- self.geo_len = 0
- try:
- self.geo_len = len(self.solid_geometry)
- except TypeError:
- self.geo_len = 1
- self.old_disp_number = 0
- self.el_count = 0
- def scale_geom(obj):
- if type(obj) is list:
- new_obj = []
- for g in obj:
- new_obj.append(scale_geom(g))
- return new_obj
- else:
- try:
- self.el_count += 1
- disp_number = int(np.interp(self.el_count, [0, self.geo_len], [0, 99]))
- if self.old_disp_number < disp_number <= 100:
- self.app.proc_container.update_view_text(' %d%%' % disp_number)
- self.old_disp_number = disp_number
- return affinity.scale(obj, xfactor, yfactor, origin=(px, py))
- except AttributeError:
- return obj
- self.solid_geometry = scale_geom(self.solid_geometry)
- self.follow_geometry = scale_geom(self.follow_geometry)
- # we need to scale the geometry stored in the Gerber apertures, too
- try:
- for apid in self.apertures:
- new_geometry = []
- if 'geometry' in self.apertures[apid]:
- for geo_el in self.apertures[apid]['geometry']:
- new_geo_el = {}
- if 'solid' in geo_el:
- new_geo_el['solid'] = scale_geom(geo_el['solid'])
- if 'follow' in geo_el:
- new_geo_el['follow'] = scale_geom(geo_el['follow'])
- if 'clear' in geo_el:
- new_geo_el['clear'] = scale_geom(geo_el['clear'])
- new_geometry.append(new_geo_el)
- self.apertures[apid]['geometry'] = deepcopy(new_geometry)
- try:
- if str(self.apertures[apid]['type']) == 'R' or str(self.apertures[apid]['type']) == 'O':
- self.apertures[apid]['width'] *= xfactor
- self.apertures[apid]['height'] *= xfactor
- elif str(self.apertures[apid]['type']) == 'P':
- self.apertures[apid]['diam'] *= xfactor
- self.apertures[apid]['nVertices'] *= xfactor
- except KeyError:
- pass
- try:
- if self.apertures[apid]['size'] is not None:
- self.apertures[apid]['size'] = float(self.apertures[apid]['size'] * xfactor)
- except KeyError:
- pass
- except Exception as e:
- log.debug('camlib.Gerber.scale() Exception --> %s' % str(e))
- return 'fail'
- self.app.inform.emit('[success] %s' % _("Gerber Scale done."))
- self.app.proc_container.new_text = ''
- # ## solid_geometry ???
- # It's a cascaded union of objects.
- # self.solid_geometry = affinity.scale(self.solid_geometry, factor,
- # factor, origin=(0, 0))
- # # Now buffered_paths, flash_geometry and solid_geometry
- # self.create_geometry()
- def offset(self, vect):
- """
- Offsets the objects' geometry on the XY plane by a given vector.
- These are:
- * ``buffered_paths``
- * ``flash_geometry``
- * ``solid_geometry``
- * ``regions``
- NOTE:
- Does not modify the data used to create these elements. If these
- are recreated, the scaling will be lost. This behavior was modified
- because of the complexity reached in this class.
- :param vect: (x, y) offset vector.
- :type vect: tuple
- :return: None
- """
- log.debug("parseGerber.Gerber.offset()")
- try:
- dx, dy = vect
- except TypeError:
- self.app.inform.emit('[ERROR_NOTCL] %s' %
- _("An (x,y) pair of values are needed. "
- "Probable you entered only one value in the Offset field."))
- return
- if dx == 0 and dy == 0:
- return
- # variables to display the percentage of work done
- self.geo_len = 0
- try:
- self.geo_len = len(self.solid_geometry)
- except TypeError:
- self.geo_len = 1
- self.old_disp_number = 0
- self.el_count = 0
- def offset_geom(obj):
- if type(obj) is list:
- new_obj = []
- for g in obj:
- new_obj.append(offset_geom(g))
- return new_obj
- else:
- try:
- self.el_count += 1
- disp_number = int(np.interp(self.el_count, [0, self.geo_len], [0, 99]))
- if self.old_disp_number < disp_number <= 100:
- self.app.proc_container.update_view_text(' %d%%' % disp_number)
- self.old_disp_number = disp_number
- return affinity.translate(obj, xoff=dx, yoff=dy)
- except AttributeError:
- return obj
- # ## Solid geometry
- self.solid_geometry = offset_geom(self.solid_geometry)
- self.follow_geometry = offset_geom(self.follow_geometry)
- # we need to offset the geometry stored in the Gerber apertures, too
- try:
- for apid in self.apertures:
- if 'geometry' in self.apertures[apid]:
- for geo_el in self.apertures[apid]['geometry']:
- if 'solid' in geo_el:
- geo_el['solid'] = offset_geom(geo_el['solid'])
- if 'follow' in geo_el:
- geo_el['follow'] = offset_geom(geo_el['follow'])
- if 'clear' in geo_el:
- geo_el['clear'] = offset_geom(geo_el['clear'])
- except Exception as e:
- log.debug('camlib.Gerber.offset() Exception --> %s' % str(e))
- return 'fail'
- self.app.inform.emit('[success] %s' %
- _("Gerber Offset done."))
- self.app.proc_container.new_text = ''
- def mirror(self, axis, point):
- """
- Mirrors the object around a specified axis passing through
- the given point. What is affected:
- * ``buffered_paths``
- * ``flash_geometry``
- * ``solid_geometry``
- * ``regions``
- NOTE:
- Does not modify the data used to create these elements. If these
- are recreated, the scaling will be lost. This behavior was modified
- because of the complexity reached in this class.
- :param axis: "X" or "Y" indicates around which axis to mirror.
- :type axis: str
- :param point: [x, y] point belonging to the mirror axis.
- :type point: list
- :return: None
- """
- log.debug("parseGerber.Gerber.mirror()")
- px, py = point
- xscale, yscale = {"X": (1.0, -1.0), "Y": (-1.0, 1.0)}[axis]
- # variables to display the percentage of work done
- self.geo_len = 0
- try:
- self.geo_len = len(self.solid_geometry)
- except TypeError:
- self.geo_len = 1
- self.old_disp_number = 0
- self.el_count = 0
- def mirror_geom(obj):
- if type(obj) is list:
- new_obj = []
- for g in obj:
- new_obj.append(mirror_geom(g))
- return new_obj
- else:
- try:
- self.el_count += 1
- disp_number = int(np.interp(self.el_count, [0, self.geo_len], [0, 99]))
- if self.old_disp_number < disp_number <= 100:
- self.app.proc_container.update_view_text(' %d%%' % disp_number)
- self.old_disp_number = disp_number
- return affinity.scale(obj, xscale, yscale, origin=(px, py))
- except AttributeError:
- return obj
- self.solid_geometry = mirror_geom(self.solid_geometry)
- self.follow_geometry = mirror_geom(self.follow_geometry)
- # we need to mirror the geometry stored in the Gerber apertures, too
- try:
- for apid in self.apertures:
- if 'geometry' in self.apertures[apid]:
- for geo_el in self.apertures[apid]['geometry']:
- if 'solid' in geo_el:
- geo_el['solid'] = mirror_geom(geo_el['solid'])
- if 'follow' in geo_el:
- geo_el['follow'] = mirror_geom(geo_el['follow'])
- if 'clear' in geo_el:
- geo_el['clear'] = mirror_geom(geo_el['clear'])
- except Exception as e:
- log.debug('camlib.Gerber.mirror() Exception --> %s' % str(e))
- return 'fail'
- self.app.inform.emit('[success] %s' %
- _("Gerber Mirror done."))
- self.app.proc_container.new_text = ''
- def skew(self, angle_x, angle_y, point):
- """
- Shear/Skew the geometries of an object by angles along x and y dimensions.
- Parameters
- ----------
- angle_x, angle_y : float, float
- The shear angle(s) for the x and y axes respectively. These can be
- specified in either degrees (default) or radians by setting
- use_radians=True.
- See shapely manual for more information:
- http://toblerity.org/shapely/manual.html#affine-transformations
- :param angle_x: the angle on X axis for skewing
- :param angle_y: the angle on Y axis for skewing
- :param point: reference point for skewing operation
- :return None
- """
- log.debug("parseGerber.Gerber.skew()")
- px, py = point
- if angle_x == 0 and angle_y == 0:
- return
- # variables to display the percentage of work done
- self.geo_len = 0
- try:
- self.geo_len = len(self.solid_geometry)
- except TypeError:
- self.geo_len = 1
- self.old_disp_number = 0
- self.el_count = 0
- def skew_geom(obj):
- if type(obj) is list:
- new_obj = []
- for g in obj:
- new_obj.append(skew_geom(g))
- return new_obj
- else:
- try:
- self.el_count += 1
- disp_number = int(np.interp(self.el_count, [0, self.geo_len], [0, 100]))
- if self.old_disp_number < disp_number <= 100:
- self.app.proc_container.update_view_text(' %d%%' % disp_number)
- self.old_disp_number = disp_number
- return affinity.skew(obj, angle_x, angle_y, origin=(px, py))
- except AttributeError:
- return obj
- self.solid_geometry = skew_geom(self.solid_geometry)
- self.follow_geometry = skew_geom(self.follow_geometry)
- # we need to skew the geometry stored in the Gerber apertures, too
- try:
- for apid in self.apertures:
- if 'geometry' in self.apertures[apid]:
- for geo_el in self.apertures[apid]['geometry']:
- if 'solid' in geo_el:
- geo_el['solid'] = skew_geom(geo_el['solid'])
- if 'follow' in geo_el:
- geo_el['follow'] = skew_geom(geo_el['follow'])
- if 'clear' in geo_el:
- geo_el['clear'] = skew_geom(geo_el['clear'])
- except Exception as e:
- log.debug('camlib.Gerber.skew() Exception --> %s' % str(e))
- return 'fail'
- self.app.inform.emit('[success] %s' % _("Gerber Skew done."))
- self.app.proc_container.new_text = ''
- def rotate(self, angle, point):
- """
- Rotate an object by a given angle around given coords (point)
- :param angle:
- :param point:
- :return:
- """
- log.debug("parseGerber.Gerber.rotate()")
- px, py = point
- if angle == 0:
- return
- # variables to display the percentage of work done
- self.geo_len = 0
- try:
- self.geo_len = len(self.solid_geometry)
- except TypeError:
- self.geo_len = 1
- self.old_disp_number = 0
- self.el_count = 0
- def rotate_geom(obj):
- if type(obj) is list:
- new_obj = []
- for g in obj:
- new_obj.append(rotate_geom(g))
- return new_obj
- else:
- try:
- self.el_count += 1
- disp_number = int(np.interp(self.el_count, [0, self.geo_len], [0, 100]))
- if self.old_disp_number < disp_number <= 100:
- self.app.proc_container.update_view_text(' %d%%' % disp_number)
- self.old_disp_number = disp_number
- return affinity.rotate(obj, angle, origin=(px, py))
- except AttributeError:
- return obj
- self.solid_geometry = rotate_geom(self.solid_geometry)
- self.follow_geometry = rotate_geom(self.follow_geometry)
- # we need to rotate the geometry stored in the Gerber apertures, too
- try:
- for apid in self.apertures:
- if 'geometry' in self.apertures[apid]:
- for geo_el in self.apertures[apid]['geometry']:
- if 'solid' in geo_el:
- geo_el['solid'] = rotate_geom(geo_el['solid'])
- if 'follow' in geo_el:
- geo_el['follow'] = rotate_geom(geo_el['follow'])
- if 'clear' in geo_el:
- geo_el['clear'] = rotate_geom(geo_el['clear'])
- except Exception as e:
- log.debug('camlib.Gerber.rotate() Exception --> %s' % str(e))
- return 'fail'
- self.app.inform.emit('[success] %s' % _("Gerber Rotate done."))
- self.app.proc_container.new_text = ''
- def buffer(self, distance, join=2, factor=None):
- """
- :param distance: If 'factor' is True then distance is the factor
- :param join: The type of joining used by the Shapely buffer method. Can be: round, square and bevel
- :param factor: True or False (None)
- :return:
- """
- log.debug("parseGerber.Gerber.buffer()")
- if distance == 0:
- return
- # variables to display the percentage of work done
- self.geo_len = 0
- try:
- self.geo_len = len(self.solid_geometry)
- except (TypeError, ValueError):
- self.geo_len = 1
- self.old_disp_number = 0
- self.el_count = 0
- if factor is None:
- def buffer_geom(obj):
- if type(obj) is list:
- new_obj = []
- for g in obj:
- new_obj.append(buffer_geom(g))
- return new_obj
- else:
- try:
- self.el_count += 1
- disp_number = int(np.interp(self.el_count, [0, self.geo_len], [0, 100]))
- if self.old_disp_number < disp_number <= 100:
- self.app.proc_container.update_view_text(' %d%%' % disp_number)
- self.old_disp_number = disp_number
- return obj.buffer(distance, resolution=int(self.steps_per_circle), join_style=join)
- except AttributeError:
- return obj
- res = buffer_geom(self.solid_geometry)
- try:
- __ = iter(res)
- self.solid_geometry = res
- except TypeError:
- self.solid_geometry = [res]
- # we need to buffer the geometry stored in the Gerber apertures, too
- try:
- for apid in self.apertures:
- new_geometry = []
- if 'geometry' in self.apertures[apid]:
- for geo_el in self.apertures[apid]['geometry']:
- new_geo_el = {}
- if 'solid' in geo_el:
- new_geo_el['solid'] = buffer_geom(geo_el['solid'])
- if 'follow' in geo_el:
- new_geo_el['follow'] = geo_el['follow']
- if 'clear' in geo_el:
- new_geo_el['clear'] = buffer_geom(geo_el['clear'])
- new_geometry.append(new_geo_el)
- self.apertures[apid]['geometry'] = deepcopy(new_geometry)
- try:
- if str(self.apertures[apid]['type']) == 'R' or str(self.apertures[apid]['type']) == 'O':
- self.apertures[apid]['width'] += (distance * 2)
- self.apertures[apid]['height'] += (distance * 2)
- elif str(self.apertures[apid]['type']) == 'P':
- self.apertures[apid]['diam'] += (distance * 2)
- self.apertures[apid]['nVertices'] += (distance * 2)
- except KeyError:
- pass
- try:
- if self.apertures[apid]['size'] is not None:
- self.apertures[apid]['size'] = float(self.apertures[apid]['size'] + (distance * 2))
- except KeyError:
- pass
- except Exception as e:
- log.debug('camlib.Gerber.buffer() Exception --> %s' % str(e))
- return 'fail'
- else:
- try:
- for apid in self.apertures:
- try:
- if str(self.apertures[apid]['type']) == 'R' or str(self.apertures[apid]['type']) == 'O':
- self.apertures[apid]['width'] *= distance
- self.apertures[apid]['height'] *= distance
- elif str(self.apertures[apid]['type']) == 'P':
- self.apertures[apid]['diam'] *= distance
- self.apertures[apid]['nVertices'] *= distance
- except KeyError:
- pass
- try:
- if self.apertures[apid]['size'] is not None:
- self.apertures[apid]['size'] = float(self.apertures[apid]['size']) * distance
- except KeyError:
- pass
- new_geometry = []
- if 'geometry' in self.apertures[apid]:
- for geo_el in self.apertures[apid]['geometry']:
- new_geo_el = {}
- if 'follow' in geo_el:
- new_geo_el['follow'] = geo_el['follow']
- size = float(self.apertures[apid]['size'])
- if isinstance(new_geo_el['follow'], Point):
- if str(self.apertures[apid]['type']) == 'C':
- new_geo_el['solid'] = geo_el['follow'].buffer(
- size / 1.9999,
- resolution=int(self.steps_per_circle)
- )
- elif str(self.apertures[apid]['type']) == 'R':
- width = self.apertures[apid]['width']
- height = self.apertures[apid]['height']
- minx = new_geo_el['follow'].x - width / 2
- maxx = new_geo_el['follow'].x + width / 2
- miny = new_geo_el['follow'].y - height / 2
- maxy = new_geo_el['follow'].y + height / 2
- geo_p = shply_box(minx, miny, maxx, maxy)
- new_geo_el['solid'] = geo_p
- else:
- log.debug("appParsers.ParseGerber.Gerber.buffer() --> "
- "ap type not supported")
- else:
- new_geo_el['solid'] = geo_el['follow'].buffer(
- size/1.9999,
- resolution=int(self.steps_per_circle)
- )
- if 'clear' in geo_el:
- new_geo_el['clear'] = geo_el['clear']
- new_geometry.append(new_geo_el)
- self.apertures[apid]['geometry'] = deepcopy(new_geometry)
- except Exception as e:
- log.debug('camlib.Gerber.buffer() Exception --> %s' % str(e))
- return 'fail'
- # make the new solid_geometry
- new_solid_geo = []
- for apid in self.apertures:
- if 'geometry' in self.apertures[apid]:
- new_solid_geo += [geo_el['solid'] for geo_el in self.apertures[apid]['geometry']]
- self.solid_geometry = MultiPolygon(new_solid_geo)
- self.solid_geometry = self.solid_geometry.buffer(0.000001)
- self.solid_geometry = self.solid_geometry.buffer(-0.000001)
- self.app.inform.emit('[success] %s' % _("Gerber Buffer done."))
- self.app.proc_container.new_text = ''
- def parse_gerber_number(strnumber, int_digits, frac_digits, zeros):
- """
- Parse a single number of Gerber coordinates.
- :param strnumber: String containing a number in decimal digits
- from a coordinate data block, possibly with a leading sign.
- :type strnumber: str
- :param int_digits: Number of digits used for the integer
- part of the number
- :type frac_digits: int
- :param frac_digits: Number of digits used for the fractional
- part of the number
- :type frac_digits: int
- :param zeros: If 'L', leading zeros are removed and trailing zeros are kept. Same situation for 'D' when
- no zero suppression is done. If 'T', is in reverse.
- :type zeros: str
- :return: The number in floating point.
- :rtype: float
- """
- ret_val = None
- if zeros == 'L' or zeros == 'D':
- ret_val = int(strnumber) * (10 ** (-frac_digits))
- if zeros == 'T':
- int_val = int(strnumber)
- ret_val = (int_val * (10 ** ((int_digits + frac_digits) - len(strnumber)))) * (10 ** (-frac_digits))
- return ret_val
|