| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119 |
- #############################################################################
- # Copyright (c) 2013 by Panagiotis Mavrogiorgos
- # All rights reserved.
- #
- # Redistribution and use in source and binary forms, with or without
- # modification, are permitted provided that the following conditions are met:
- #
- # * Redistributions of source code must retain the above copyright notice,
- # this list of conditions and the following disclaimer.
- # * Redistributions in binary form must reproduce the above copyright notice,
- # this list of conditions and the following disclaimer in the documentation
- # and/or other materials provided with the distribution.
- # * Neither the name(s) of the copyright holders nor the names of its
- # contributors may be used to endorse or promote products derived from this
- # software without specific prior written permission.
- #
- # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AS IS AND ANY EXPRESS OR
- # IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
- # MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
- # EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ANY DIRECT, INDIRECT,
- # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
- # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
- # OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
- # LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
- # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
- # EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- #############################################################################
- #
- # @license: http://opensource.org/licenses/BSD-3-Clause
- from bisect import bisect_left
- import logging
- log = logging.getLogger('base')
- class BilinearInterpolation(object):
- """
- Bilinear interpolation with optional extrapolation.
- Usage:
- table = BilinearInterpolation(
- x_index=(1, 2, 3),
- y_index=(1, 2, 3),
- values=((110, 120, 130),
- (210, 220, 230),
- (310, 320, 330)),
- extrapolate=True)
- assert table(1, 1) == 110
- assert table(2.5, 2.5) == 275
- """
- def __init__(self, x_index, y_index, values):
- # sanity check
- x_length = len(x_index)
- y_length = len(y_index)
- if x_length < 2 or y_length < 2:
- raise ValueError("Table must be at least 2x2.")
- if y_length != len(values):
- raise ValueError("Table must have equal number of rows to y_index.")
- if any(x2 - x1 <= 0 for x1, x2 in zip(x_index, x_index[1:])):
- raise ValueError("x_index must be in strictly ascending order!")
- if any(y2 - y1 <= 0 for y1, y2 in zip(y_index, y_index[1:])):
- raise ValueError("y_index must be in strictly ascending order!")
- self.x_index = x_index
- self.y_index = y_index
- self.values = values
- self.x_length = x_length
- self.y_length = y_length
- self.extrapolate = True
- #slopes = self.slopes = []
- #for j in range(y_length):
- #intervals = zip(x_index, x_index[1:], values[j], values[j][1:])
- #slopes.append([(y2 - y1) / (x2 - x1) for x1, x2, y1, y2 in intervals])
- def __call__(self, x, y):
- # local lookups
- x_index, y_index, values = self.x_index, self.y_index, self.values
- i = bisect_left(x_index, x) - 1
- j = bisect_left(y_index, y) - 1
- if self.extrapolate:
- # fix x index
- if i == -1:
- x_slice = slice(None, 2)
- elif i == self.x_length - 1:
- x_slice = slice(-2, None)
- else:
- x_slice = slice(i, i + 2)
- # fix y index
- if j == -1:
- j = 0
- y_slice = slice(None, 2)
- elif j == self.y_length - 1:
- j = -2
- y_slice = slice(-2, None)
- else:
- y_slice = slice(j, j + 2)
- else:
- if i == -1 or i == self.x_length - 1:
- raise ValueError("Extrapolation not allowed!")
- if j == -1 or j == self.y_length - 1:
- raise ValueError("Extrapolation not allowed!")
- # if the extrapolations is False this will fail
- x1, x2 = x_index[x_slice]
- y1, y2 = y_index[y_slice]
- z11, z12 = values[j][x_slice]
- z21, z22 = values[j + 1][x_slice]
- return (z11 * (x2 - x) * (y2 - y) +
- z21 * (x - x1) * (y2 - y) +
- z12 * (x2 - x) * (y - y1) +
- z22 * (x - x1) * (y - y1)) / ((x2 - x1) * (y2 - y1))
|