############################################################ # FlatCAM: 2D Post-processing for Manufacturing # # http://flatcam.org # # File Author: Marius Adrian Stanciu (c) # # Date: 3/10/2019 # # MIT Licence # ############################################################ from FlatCAMTool import FlatCAMTool from shapely.geometry import Point, Polygon, LineString from shapely.ops import cascaded_union, unary_union from FlatCAMObj import * import math from copy import copy, deepcopy import numpy as np import zlib import re import gettext import FlatCAMTranslation as fcTranslate import builtins fcTranslate.apply_language('strings') if '_' not in builtins.__dict__: _ = gettext.gettext class ToolPDF(FlatCAMTool): """ Parse a PDF file. Reference here: https://www.adobe.com/content/dam/acom/en/devnet/pdf/pdfs/pdf_reference_archives/PDFReference.pdf Return a list of geometries """ toolName = _("PDF Import Tool") def __init__(self, app): FlatCAMTool.__init__(self, app) self.app = app self.step_per_circles = self.app.defaults["gerber_circle_steps"] self.stream_re = re.compile(b'.*?FlateDecode.*?stream(.*?)endstream', re.S) # detect 're' command self.rect_re = re.compile(r'^(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s*re$') # detect 'm' command self.start_subpath_re = re.compile(r'^(-?\d+\.?\d*)\s(-?\d+\.?\d*)\sm$') # detect 'l' command self.draw_line_re = re.compile(r'^(-?\d+\.?\d*)\s(-?\d+\.?\d*)\sl') # detect 'c' command self.draw_arc_3pt_re = re.compile(r'^(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s(-?\d+\.?\d*)' r'\s(-?\d+\.?\d*)\s*c$') # detect 'v' command self.draw_arc_2pt_c1start_re = re.compile(r'^(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s*v$') # detect 'y' command self.draw_arc_2pt_c2stop_re = re.compile(r'^(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s*y$') # detect 'h' command self.end_subpath_re = re.compile(r'^h$') # detect 'w' command self.strokewidth_re = re.compile(r'^(\d+\.?\d*)\s*w$') # detect 'S' command self.stroke_path__re = re.compile(r'^S\s?[Q]?$') # detect 's' command self.close_stroke_path__re = re.compile(r'^s$') # detect 'f' or 'f*' command self.fill_path_re = re.compile(r'^[f|F][*]?$') # detect 'B' or 'B*' command self.fill_stroke_path_re = re.compile(r'^B[*]?$') # detect 'b' or 'b*' command self.close_fill_stroke_path_re = re.compile(r'^b[*]?$') # detect 'n' self.no_op_re = re.compile(r'^n$') # detect offset transformation. Pattern: (1) (0) (0) (1) (x) (y) self.offset_re = re.compile(r'^1\.?0*\s0?\.?0*\s0?\.?0*\s1\.?0*\s(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s*cm$') # detect scale transformation. Pattern: (factor_x) (0) (0) (factor_y) (0) (0) self.scale_re = re.compile(r'^q? (-?\d+\.?\d*) 0\.?0* 0\.?0* (-?\d+\.?\d*) 0\.?0* 0\.?0*\s+cm$') # detect combined transformation. Should always be the last self.combined_transform_re = re.compile(r'^q?\s*(-?\d+\.?\d*) (-?\d+\.?\d*) (-?\d+\.?\d*) (-?\d+\.?\d*) ' r'(-?\d+\.?\d*) (-?\d+\.?\d*)\s+cm$') # detect clipping path self.clip_path_re = re.compile(r'^W[*]? n?$') self.geo_buffer = [] self.pdf_parsed = '' # conversion factor to INCH self.point_to_unit_factor = 0.01388888888 def run(self, toggle=True): self.app.report_usage("ToolPDF()") # init variables for reuse self.geo_buffer = [] self.pdf_parsed = '' # the UNITS in PDF files are points and here we set the factor to convert them to real units (either MM or INCH) if self.app.ui.general_defaults_form.general_app_group.units_radio.get_value().upper() == 'MM': # 1 inch = 72 points => 1 point = 1 / 72 = 0.01388888888 inch = 0.01388888888 inch * 25.4 = 0.35277777778 mm self.point_to_unit_factor = 0.35277777778 else: # 1 inch = 72 points => 1 point = 1 / 72 = 0.01388888888 inch self.point_to_unit_factor = 0.01388888888 self.set_tool_ui() self.on_open_pdf_click() def install(self, icon=None, separator=None, **kwargs): FlatCAMTool.install(self, icon, separator, shortcut='ALT+Q', **kwargs) def set_tool_ui(self): pass def on_open_pdf_click(self): """ File menu callback for opening an PDF file. :return: None """ self.app.report_usage("ToolPDF.on_open_pdf_click()") self.app.log.debug("ToolPDF.on_open_pdf_click()") _filter_ = "Adobe PDF Files (*.pdf);;" \ "All Files (*.*)" try: filenames, _f = QtWidgets.QFileDialog.getOpenFileNames(caption=_("Open PDF"), directory=self.app.get_last_folder(), filter=_filter_) except TypeError: filenames, _f = QtWidgets.QFileDialog.getOpenFileNames(caption=_("Open PDF"), filter=_filter_) if len(filenames) == 0: self.app.inform.emit(_("[WARNING_NOTCL] Open PDF cancelled.")) else: for filename in filenames: if filename != '': self.app.worker_task.emit({'fcn': self.open_pdf, 'params': [filename]}) def open_pdf(self, filename): new_name = filename.split('/')[-1].split('\\')[-1] def obj_init(grb_obj, app_obj): with open(filename, "rb") as f: pdf = f.read() stream_nr = 0 for s in re.findall(self.stream_re, pdf): stream_nr += 1 log.debug(" PDF STREAM: %d\n" % stream_nr) s = s.strip(b'\r\n') try: self.pdf_parsed += (zlib.decompress(s).decode('UTF-8') + '\r\n') except Exception as e: app_obj.log.debug("ToolPDF.open_pdf().obj_init() --> %s" % str(e)) ap_dict = self.parse_pdf(pdf_content=self.pdf_parsed) grb_obj.apertures = deepcopy(ap_dict) poly_buff = [] for ap in ap_dict: for k in ap_dict[ap]: if k == 'solid_geometry': poly_buff += ap_dict[ap][k] poly_buff = unary_union(poly_buff) poly_buff = poly_buff.buffer(0.0000001) poly_buff = poly_buff.buffer(-0.0000001) grb_obj.solid_geometry = deepcopy(poly_buff) with self.app.proc_container.new(_("Opening PDF.")): ret = self.app.new_object("gerber", new_name, obj_init, autoselected=False) if ret == 'fail': self.app.inform.emit(_('[ERROR_NOTCL] Open PDF file failed.')) return # Register recent file self.app.file_opened.emit("gerber", new_name) # GUI feedback self.app.inform.emit(_("[success] Opened: %s") % filename) def parse_pdf(self, pdf_content): path = dict() path['lines'] = [] # it's a list of lines subpaths path['bezier'] = [] # it's a list of bezier arcs subpaths path['rectangle'] = [] # it's a list of rectangle subpaths subpath = dict() subpath['lines'] = [] # it's a list of points subpath['bezier'] = [] # it's a list of sublists each like this [start, c1, c2, stop] subpath['rectangle'] = [] # it's a list of sublists of points # store the start point (when 'm' command is encountered) current_subpath = None # set True when 'h' command is encountered (close path) close_path = False start_point = None current_point = None size = 0 # initial values for the transformations, in case they are not encountered in the PDF file offset_geo = [0, 0] scale_geo = [1, 1] c_offset_f= [0, 0] c_scale_f = [1, 1] # initial aperture aperture = 10 # store the apertures here apertures_dict = {} # it seems that first transform apply to the whole PDF; signal here if it's first first_transform = True line_nr = 0 lines = pdf_content.splitlines() for pline in lines: line_nr += 1 log.debug("line %d: %s" % (line_nr, pline)) # TRANSFORMATIONS DETECTION # # # Detect Scale transform # match = self.scale_re.search(pline) # if match: # log.debug( # "ToolPDF.parse_pdf() --> SCALE transformation found on line: %s --> %s" % (line_nr, pline)) # if first_transform: # first_transform = False # c_scale_f = [float(match.group(1)), float(match.group(2))] # else: # scale_geo = [float(match.group(1)), float(match.group(2))] # continue # # Detect Offset transform # match = self.offset_re.search(pline) # if match: # log.debug( # "ToolPDF.parse_pdf() --> OFFSET transformation found on line: %s --> %s" % (line_nr, pline)) # offset_geo = [float(match.group(1)), float(match.group(2))] # continue # Detect combined transformation. Must be always the last from transformations to be checked. match = self.combined_transform_re.search(pline) if match: # transformation = TRANSLATION (OFFSET) if (float(match.group(2)) == 0 and float(match.group(3)) == 0) and \ (float(match.group(5)) != 0 or float(match.group(6)) != 0): log.debug( "ToolPDF.parse_pdf() --> OFFSET transformation found on line: %s --> %s" % (line_nr, pline)) if first_transform: c_offset_f = [float(match.group(5)), float(match.group(6))] else: offset_geo = [float(match.group(5)), float(match.group(6))] # transformation = SCALING if float(match.group(1)) != 1 and float(match.group(4)) != 1: log.debug( "ToolPDF.parse_pdf() --> SCALE transformation found on line: %s --> %s" % (line_nr, pline)) if first_transform: c_scale_f = [float(match.group(1)), float(match.group(4))] else: scale_geo = [float(match.group(1)), float(match.group(4))] if first_transform: first_transform = False continue # PATH CONSTRUCTION # # Start SUBPATH match = self.start_subpath_re.search(pline) if match: # we just started a subpath so we mark it as not closed yet close_path = False # init subpaths subpath['lines'] = [] subpath['bezier'] = [] subpath['rectangle'] = [] # detect start point to move to x = float(match.group(1)) + offset_geo[0] y = float(match.group(2)) + offset_geo[1] pt = (x * self.point_to_unit_factor * scale_geo[0] * c_scale_f[0], y * self.point_to_unit_factor * scale_geo[1] * c_scale_f[1]) start_point = pt # add the start point to subpaths subpath['lines'].append(start_point) # subpath['bezier'].append(start_point) subpath['rectangle'].append(start_point) current_point = start_point continue # Draw Line match = self.draw_line_re.search(pline) if match: current_subpath = 'lines' x = float(match.group(1)) + offset_geo[0] y = float(match.group(2)) + offset_geo[1] pt = (x * self.point_to_unit_factor * scale_geo[0] * c_scale_f[0], y * self.point_to_unit_factor * scale_geo[1] * c_scale_f[1]) subpath['lines'].append(pt) current_point = pt continue # Draw Bezier 'c' match = self.draw_arc_3pt_re.search(pline) if match: current_subpath = 'bezier' start = current_point x = float(match.group(1)) + offset_geo[0] y = float(match.group(2)) + offset_geo[1] c1 = (x * self.point_to_unit_factor * scale_geo[0] * c_scale_f[0], y * self.point_to_unit_factor * scale_geo[1] * c_scale_f[1]) x = float(match.group(3)) + offset_geo[0] y = float(match.group(4)) + offset_geo[1] c2 = (x * self.point_to_unit_factor * scale_geo[0] * c_scale_f[0], y * self.point_to_unit_factor * scale_geo[1] * c_scale_f[1]) x = float(match.group(5)) + offset_geo[0] y = float(match.group(6)) + offset_geo[1] stop = (x * self.point_to_unit_factor * scale_geo[0] * c_scale_f[0], y * self.point_to_unit_factor * scale_geo[1] * c_scale_f[1]) subpath['bezier'].append([start, c1, c2, stop]) current_point = stop continue # Draw Bezier 'v' match = self.draw_arc_2pt_c1start_re.search(pline) if match: current_subpath = 'bezier' start = current_point x = float(match.group(1)) + offset_geo[0] y = float(match.group(2)) + offset_geo[1] c2 = (x * self.point_to_unit_factor * scale_geo[0] * c_scale_f[0], y * self.point_to_unit_factor * scale_geo[1] * c_scale_f[1]) x = float(match.group(3)) + offset_geo[0] y = float(match.group(4)) + offset_geo[1] stop = (x * self.point_to_unit_factor * scale_geo[0] * c_scale_f[0], y * self.point_to_unit_factor * scale_geo[1] * c_scale_f[1]) subpath['bezier'].append([start, start, c2, stop]) current_point = stop continue # Draw Bezier 'y' match = self.draw_arc_2pt_c2stop_re.search(pline) if match: start = current_point x = float(match.group(1)) + offset_geo[0] y = float(match.group(2)) + offset_geo[1] c1 = (x * self.point_to_unit_factor * scale_geo[0] * c_scale_f[0], y * self.point_to_unit_factor * scale_geo[1] * c_scale_f[1]) x = float(match.group(3)) + offset_geo[0] y = float(match.group(4)) + offset_geo[1] stop = (x * self.point_to_unit_factor * scale_geo[0] * c_scale_f[0], y * self.point_to_unit_factor * scale_geo[1] * c_scale_f[1]) subpath['bezier'].append([start, c1, stop, stop]) print(subpath['bezier']) current_point = stop continue # Draw RECTANGLE match = self.rect_re.search(pline) if match: current_subpath = 'rectangle' x = (float(match.group(1)) + offset_geo[0]) * self.point_to_unit_factor * scale_geo[0] * c_scale_f[0] y = (float(match.group(2)) + offset_geo[1]) * self.point_to_unit_factor * scale_geo[1] * c_scale_f[1] width = (float(match.group(3)) + offset_geo[0]) * \ self.point_to_unit_factor * scale_geo[0] * c_scale_f[0] height = (float(match.group(4)) + offset_geo[1]) * \ self.point_to_unit_factor * scale_geo[1] * c_scale_f[1] pt1 = (x, y) pt2 = (x+width, y) pt3 = (x+width, y+height) pt4 = (x, y+height) # TODO: I'm not sure if rectangles are a subpath in themselves that autoclose subpath['rectangle'] += [pt1, pt2, pt3, pt4, pt1] current_point = pt1 continue # Detect clipping path set # ignore this and delete the current subpath match = self.clip_path_re.search(pline) if match: subpath['lines'] = [] subpath['bezier'] = [] subpath['rectangle'] = [] # it measns that we've already added the subpath to path and we need to delete it # clipping path is usually either rectangle or lines if close_path is True: close_path = False if current_subpath == 'lines': path['lines'].pop(-1) if current_subpath == 'rectangle': path['rectangle'].pop(-1) continue # Close SUBPATH match = self.end_subpath_re.search(pline) if match: close_path = True if current_subpath == 'lines': subpath['lines'].append(start_point) # since we are closing the subpath add it to the path, a path may have chained subpaths path['lines'].append(copy(subpath['lines'])) subpath['lines'] = [] elif current_subpath == 'bezier': # subpath['bezier'].append(start_point) # since we are closing the subpath add it to the path, a path may have chained subpaths path['bezier'].append(copy(subpath['bezier'])) subpath['bezier'] = [] elif current_subpath == 'rectangle': subpath['rectangle'].append(start_point) # since we are closing the subpath add it to the path, a path may have chained subpaths path['rectangle'].append(copy(subpath['rectangle'])) subpath['rectangle'] = [] continue # PATH PAINTING # # Detect Stroke width / aperture match = self.strokewidth_re.search(pline) if match: size = float(match.group(1)) # flag = 0 # # if not apertures_dict: # apertures_dict[str(aperture)] = dict() # apertures_dict[str(aperture)]['size'] = size # apertures_dict[str(aperture)]['type'] = 'C' # apertures_dict[str(aperture)]['solid_geometry'] = [] # else: # for k in apertures_dict: # if size == apertures_dict[k]['size']: # flag = 1 # break # if flag == 0: # aperture += 1 # apertures_dict[str(aperture)] = dict() # apertures_dict[str(aperture)]['size'] = size # apertures_dict[str(aperture)]['type'] = 'C' # apertures_dict[str(aperture)]['solid_geometry'] = [] continue # Detect No_Op command, ignore the current subpath match = self.no_op_re.search(pline) if match: subpath['lines'] = [] subpath['bezier'] = [] subpath['rectangle'] = [] continue # Stroke the path match = self.stroke_path__re.search(pline) if match: # scale the size here; some PDF printers apply transformation after the size is declared applied_size = size * scale_geo[0] * c_scale_f[0] * self.point_to_unit_factor path_geo = list() if current_subpath == 'lines': if path['lines']: for subp in path['lines']: geo = copy(subp) geo = LineString(geo).buffer((float(applied_size) / 2), resolution=self.step_per_circles) path_geo.append(geo) # the path was painted therefore initialize it path['lines'] = [] else: geo = copy(subpath['lines']) geo = LineString(geo).buffer((float(applied_size) / 2), resolution=self.step_per_circles) path_geo.append(geo) subpath['lines'] = [] if current_subpath == 'bezier': if path['bezier']: for subp in path['bezier']: geo = [] for b in subp: geo += self.bezier_to_points(start=b[0], c1=b[1], c2=b[2], stop=b[3]) geo = LineString(geo).buffer((float(applied_size) / 2), resolution=self.step_per_circles) path_geo.append(geo) # the path was painted therefore initialize it path['bezier'] = [] else: geo = [] for b in subpath['bezier']: geo += self.bezier_to_points(start=b[0], c1=b[1], c2=b[2], stop=b[3]) geo = LineString(geo).buffer((float(applied_size) / 2), resolution=self.step_per_circles) path_geo.append(geo) subpath['bezier'] = [] if current_subpath == 'rectangle': if path['rectangle']: for subp in path['rectangle']: geo = copy(subp) geo = LineString(geo).buffer((float(applied_size) / 2), resolution=self.step_per_circles) path_geo.append(geo) # the path was painted therefore initialize it path['rectangle'] = [] else: geo = copy(subpath['rectangle']) geo = LineString(geo).buffer((float(applied_size) / 2), resolution=self.step_per_circles) path_geo.append(geo) subpath['rectangle'] = [] try: apertures_dict[str(aperture)]['solid_geometry'] += path_geo except KeyError: # in case there is no stroke width yet therefore no aperture apertures_dict[str(aperture)] = {} apertures_dict[str(aperture)]['size'] = applied_size apertures_dict[str(aperture)]['type'] = 'C' apertures_dict[str(aperture)]['solid_geometry'] = [] apertures_dict[str(aperture)]['solid_geometry'] += path_geo continue # Fill the path match = self.fill_path_re.search(pline) if match: # scale the size here; some PDF printers apply transformation after the size is declared applied_size = size * scale_geo[0] * c_scale_f[0] * self.point_to_unit_factor path_geo = list() if current_subpath == 'lines': if path['lines']: for subp in path['lines']: geo = copy(subp) # close the subpath if it was not closed already if close_path is False: geo.append(geo[0]) geo_el = Polygon(geo).buffer(0.0000001, resolution=self.step_per_circles) path_geo.append(geo_el) # the path was painted therefore initialize it path['lines'] = [] else: geo = copy(subpath['lines']) # close the subpath if it was not closed already if close_path is False: geo.append(start_point) geo_el = Polygon(geo).buffer(0.0000001, resolution=self.step_per_circles) path_geo.append(geo_el) subpath['lines'] = [] if current_subpath == 'bezier': geo = [] if path['bezier']: for subp in path['bezier']: for b in subp: geo += self.bezier_to_points(start=b[0], c1=b[1], c2=b[2], stop=b[3]) # close the subpath if it was not closed already if close_path is False: geo.append(geo[0]) geo_el = Polygon(geo).buffer(0.0000001, resolution=self.step_per_circles) path_geo.append(geo_el) # the path was painted therefore initialize it path['bezier'] = [] else: for b in subpath['bezier']: geo += self.bezier_to_points(start=b[0], c1=b[1], c2=b[2], stop=b[3]) if close_path is False: geo.append(start_point) geo_el = Polygon(geo).buffer(0.0000001, resolution=self.step_per_circles) path_geo.append(geo_el) subpath['bezier'] = [] if current_subpath == 'rectangle': if path['rectangle']: for subp in path['rectangle']: geo = copy(subp) # close the subpath if it was not closed already if close_path is False: geo.append(geo[0]) geo_el = Polygon(geo).buffer(0.0000001, resolution=self.step_per_circles) path_geo.append(geo_el) # the path was painted therefore initialize it path['rectangle'] = [] else: geo = copy(subpath['rectangle']) # close the subpath if it was not closed already if close_path is False: geo.append(start_point) geo_el = Polygon(geo).buffer(0.0000001, resolution=self.step_per_circles) path_geo.append(geo_el) subpath['rectangle'] = [] # we finished painting and also closed the path if it was the case close_path = True try: apertures_dict['0']['solid_geometry'] += path_geo except KeyError: # in case there is no stroke width yet therefore no aperture apertures_dict['0'] = {} apertures_dict['0']['size'] = applied_size apertures_dict['0']['type'] = 'C' apertures_dict['0']['solid_geometry'] = [] apertures_dict['0']['solid_geometry'] += path_geo continue # fill and stroke the path match = self.fill_stroke_path_re.search(pline) if match: # scale the size here; some PDF printers apply transformation after the size is declared applied_size = size * scale_geo[0] * c_scale_f[0] * self.point_to_unit_factor path_geo = list() if current_subpath == 'lines': if path['lines']: # fill for subp in path['lines']: geo = copy(subp) # close the subpath if it was not closed already if close_path is False: geo.append(geo[0]) geo_el = Polygon(geo).buffer(0.0000001, resolution=self.step_per_circles) path_geo.append(geo_el) # stroke for subp in path['lines']: geo = copy(subp) geo = LineString(geo).buffer((float(applied_size) / 2), resolution=self.step_per_circles) path_geo.append(geo) # the path was painted therefore initialize it path['lines'] = [] else: # fill geo = copy(subpath['lines']) # close the subpath if it was not closed already if close_path is False: geo.append(start_point) geo_el = Polygon(geo).buffer(0.0000001, resolution=self.step_per_circles) path_geo.append(geo_el) # stroke geo = copy(subpath['lines']) geo = LineString(geo).buffer((float(applied_size) / 2), resolution=self.step_per_circles) path_geo.append(geo) subpath['lines'] = [] subpath['lines'] = [] if current_subpath == 'bezier': geo = [] if path['bezier']: # fill for subp in path['bezier']: for b in subp: geo += self.bezier_to_points(start=b[0], c1=b[1], c2=b[2], stop=b[3]) # close the subpath if it was not closed already if close_path is False: geo.append(geo[0]) geo_el = Polygon(geo).buffer(0.0000001, resolution=self.step_per_circles) path_geo.append(geo_el) # stroke for subp in path['bezier']: geo = [] for b in subp: geo += self.bezier_to_points(start=b[0], c1=b[1], c2=b[2], stop=b[3]) geo = LineString(geo).buffer((float(applied_size) / 2), resolution=self.step_per_circles) path_geo.append(geo) # the path was painted therefore initialize it path['bezier'] = [] else: # fill for b in subpath['bezier']: geo += self.bezier_to_points(start=b[0], c1=b[1], c2=b[2], stop=b[3]) if close_path is False: geo.append(start_point) geo_el = Polygon(geo).buffer(0.0000001, resolution=self.step_per_circles) path_geo.append(geo_el) # stroke geo = [] for b in subpath['bezier']: geo += self.bezier_to_points(start=b[0], c1=b[1], c2=b[2], stop=b[3]) geo = LineString(geo).buffer((float(applied_size) / 2), resolution=self.step_per_circles) path_geo.append(geo) subpath['bezier'] = [] if current_subpath == 'rectangle': if path['rectangle']: # fill for subp in path['rectangle']: geo = copy(subp) # close the subpath if it was not closed already if close_path is False: geo.append(geo[0]) geo_el = Polygon(geo).buffer(0.0000001, resolution=self.step_per_circles) path_geo.append(geo_el) # stroke for subp in path['rectangle']: geo = copy(subp) geo = LineString(geo).buffer((float(applied_size) / 2), resolution=self.step_per_circles) path_geo.append(geo) # the path was painted therefore initialize it path['rectangle'] = [] else: # fill geo = copy(subpath['rectangle']) # close the subpath if it was not closed already if close_path is False: geo.append(start_point) geo_el = Polygon(geo).buffer(0.0000001, resolution=self.step_per_circles) path_geo.append(geo_el) # stroke geo = copy(subpath['rectangle']) geo = LineString(geo).buffer((float(applied_size) / 2), resolution=self.step_per_circles) path_geo.append(geo) subpath['rectangle'] = [] # we finished painting and also closed the path if it was the case close_path = True try: apertures_dict['0']['solid_geometry'] += path_geo except KeyError: # in case there is no stroke width yet therefore no aperture apertures_dict['0'] = {} apertures_dict['0']['size'] = applied_size apertures_dict['0']['type'] = 'C' apertures_dict['0']['solid_geometry'] = [] apertures_dict['0']['solid_geometry'] += path_geo continue return apertures_dict def bezier_to_points(self, start, c1, c2, stop): """ # Equation Bezier, page 184 PDF 1.4 reference # https://www.adobe.com/content/dam/acom/en/devnet/pdf/pdfs/pdf_reference_archives/PDFReference.pdf # Given the coordinates of the four points, the curve is generated by varying the parameter t from 0.0 to 1.0 # in the following equation: # R(t) = P0*(1 - t) ** 3 + P1*3*t*(1 - t) ** 2 + P2 * 3*(1 - t) * t ** 2 + P3*t ** 3 # When t = 0.0, the value from the function coincides with the current point P0; when t = 1.0, R(t) coincides # with the final point P3. Intermediate values of t generate intermediate points along the curve. # The curve does not, in general, pass through the two control points P1 and P2 :return: LineString geometry """ # here we store the geometric points points = [] nr_points = np.arange(0.0, 1.0, (1 / self.step_per_circles)) for t in nr_points: term_p0 = (1 - t) ** 3 term_p1 = 3 * t * (1 - t) ** 2 term_p2 = 3 * (1 - t) * t ** 2 term_p3 = t ** 3 x = start[0] * term_p0 + c1[0] * term_p1 + c2[0] * term_p2 + stop[0] * term_p3 y = start[1] * term_p0 + c1[1] * term_p1 + c2[1] * term_p2 + stop[1] * term_p3 points.append([x, y]) return points # def bezier_to_circle(self, path): # lst = [] # for el in range(len(path)): # if type(path) is list: # for coord in path[el]: # lst.append(coord) # else: # lst.append(el) # # if lst: # minx = min(lst, key=lambda t: t[0])[0] # miny = min(lst, key=lambda t: t[1])[1] # maxx = max(lst, key=lambda t: t[0])[0] # maxy = max(lst, key=lambda t: t[1])[1] # center = (maxx-minx, maxy-miny) # radius = (maxx-minx) / 2 # return [center, radius] # # def circle_to_points(self, center, radius): # geo = Point(center).buffer(radius, resolution=self.step_per_circles) # return LineString(list(geo.exterior.coords)) #