|
@@ -0,0 +1,1001 @@
|
|
|
|
|
+############################################################
|
|
|
|
|
+# FlatCAM: 2D Post-processing for Manufacturing #
|
|
|
|
|
+# http://flatcam.org #
|
|
|
|
|
+# File Author: Marius Adrian Stanciu (c) #
|
|
|
|
|
+# Date: 3/10/2019 #
|
|
|
|
|
+# MIT Licence #
|
|
|
|
|
+############################################################
|
|
|
|
|
+
|
|
|
|
|
+from FlatCAMTool import FlatCAMTool
|
|
|
|
|
+from shapely.geometry import Point, Polygon, LineString
|
|
|
|
|
+from shapely.ops import cascaded_union, unary_union
|
|
|
|
|
+
|
|
|
|
|
+from FlatCAMObj import *
|
|
|
|
|
+
|
|
|
|
|
+import math
|
|
|
|
|
+from copy import copy, deepcopy
|
|
|
|
|
+import numpy as np
|
|
|
|
|
+
|
|
|
|
|
+import zlib
|
|
|
|
|
+import re
|
|
|
|
|
+
|
|
|
|
|
+import gettext
|
|
|
|
|
+import FlatCAMTranslation as fcTranslate
|
|
|
|
|
+import builtins
|
|
|
|
|
+
|
|
|
|
|
+fcTranslate.apply_language('strings')
|
|
|
|
|
+if '_' not in builtins.__dict__:
|
|
|
|
|
+ _ = gettext.gettext
|
|
|
|
|
+
|
|
|
|
|
+
|
|
|
|
|
+class ToolPDF(FlatCAMTool):
|
|
|
|
|
+ """
|
|
|
|
|
+ Parse a PDF file.
|
|
|
|
|
+ Reference here: https://www.adobe.com/content/dam/acom/en/devnet/pdf/pdfs/pdf_reference_archives/PDFReference.pdf
|
|
|
|
|
+ Return a list of geometries
|
|
|
|
|
+ """
|
|
|
|
|
+ toolName = _("PDF Import Tool")
|
|
|
|
|
+
|
|
|
|
|
+ def __init__(self, app):
|
|
|
|
|
+ FlatCAMTool.__init__(self, app)
|
|
|
|
|
+ self.app = app
|
|
|
|
|
+ self.step_per_circles = self.app.defaults["gerber_circle_steps"]
|
|
|
|
|
+
|
|
|
|
|
+ self.stream_re = re.compile(b'.*?FlateDecode.*?stream(.*?)endstream', re.S)
|
|
|
|
|
+
|
|
|
|
|
+ # detect stroke color change; it means a new object to be created
|
|
|
|
|
+ self.stroke_color_re = re.compile(r'^\s*(\d+\.?\d*) (\d+\.?\d*) (\d+\.?\d*)\s*RG$')
|
|
|
|
|
+
|
|
|
|
|
+ # detect fill color change; we check here for white color (transparent geometry);
|
|
|
|
|
+ # if detected we create an Excellon from it
|
|
|
|
|
+ self.fill_color_re = re.compile(r'^\s*(\d+\.?\d*) (\d+\.?\d*) (\d+\.?\d*)\s*rg$')
|
|
|
|
|
+
|
|
|
|
|
+ # detect 're' command
|
|
|
|
|
+ self.rect_re = re.compile(r'^(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s*re$')
|
|
|
|
|
+ # detect 'm' command
|
|
|
|
|
+ self.start_subpath_re = re.compile(r'^(-?\d+\.?\d*)\s(-?\d+\.?\d*)\sm$')
|
|
|
|
|
+ # detect 'l' command
|
|
|
|
|
+ self.draw_line_re = re.compile(r'^(-?\d+\.?\d*)\s(-?\d+\.?\d*)\sl')
|
|
|
|
|
+ # detect 'c' command
|
|
|
|
|
+ self.draw_arc_3pt_re = re.compile(r'^(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s(-?\d+\.?\d*)'
|
|
|
|
|
+ r'\s(-?\d+\.?\d*)\s*c$')
|
|
|
|
|
+ # detect 'v' command
|
|
|
|
|
+ self.draw_arc_2pt_c1start_re = re.compile(r'^(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s*v$')
|
|
|
|
|
+ # detect 'y' command
|
|
|
|
|
+ self.draw_arc_2pt_c2stop_re = re.compile(r'^(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s*y$')
|
|
|
|
|
+ # detect 'h' command
|
|
|
|
|
+ self.end_subpath_re = re.compile(r'^h$')
|
|
|
|
|
+
|
|
|
|
|
+ # detect 'w' command
|
|
|
|
|
+ self.strokewidth_re = re.compile(r'^(\d+\.?\d*)\s*w$')
|
|
|
|
|
+ # detect 'S' command
|
|
|
|
|
+ self.stroke_path__re = re.compile(r'^S\s?[Q]?$')
|
|
|
|
|
+ # detect 's' command
|
|
|
|
|
+ self.close_stroke_path__re = re.compile(r'^s$')
|
|
|
|
|
+ # detect 'f' or 'f*' command
|
|
|
|
|
+ self.fill_path_re = re.compile(r'^[f|F][*]?$')
|
|
|
|
|
+ # detect 'B' or 'B*' command
|
|
|
|
|
+ self.fill_stroke_path_re = re.compile(r'^B[*]?$')
|
|
|
|
|
+ # detect 'b' or 'b*' command
|
|
|
|
|
+ self.close_fill_stroke_path_re = re.compile(r'^b[*]?$')
|
|
|
|
|
+ # detect 'n'
|
|
|
|
|
+ self.no_op_re = re.compile(r'^n$')
|
|
|
|
|
+
|
|
|
|
|
+ # detect offset transformation. Pattern: (1) (0) (0) (1) (x) (y)
|
|
|
|
|
+ # self.offset_re = re.compile(r'^1\.?0*\s0?\.?0*\s0?\.?0*\s1\.?0*\s(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s*cm$')
|
|
|
|
|
+ # detect scale transformation. Pattern: (factor_x) (0) (0) (factor_y) (0) (0)
|
|
|
|
|
+ # self.scale_re = re.compile(r'^q? (-?\d+\.?\d*) 0\.?0* 0\.?0* (-?\d+\.?\d*) 0\.?0* 0\.?0*\s+cm$')
|
|
|
|
|
+ # detect combined transformation. Should always be the last
|
|
|
|
|
+ self.combined_transform_re = re.compile(r'^(q)?\s*(-?\d+\.?\d*) (-?\d+\.?\d*) (-?\d+\.?\d*) (-?\d+\.?\d*) '
|
|
|
|
|
+ r'(-?\d+\.?\d*) (-?\d+\.?\d*)\s+cm$')
|
|
|
|
|
+
|
|
|
|
|
+ # detect clipping path
|
|
|
|
|
+ self.clip_path_re = re.compile(r'^W[*]? n?$')
|
|
|
|
|
+
|
|
|
|
|
+ # detect save graphic state in graphic stack
|
|
|
|
|
+ self.save_gs_re = re.compile(r'^q.*?$')
|
|
|
|
|
+
|
|
|
|
|
+ # detect restore graphic state from graphic stack
|
|
|
|
|
+ self.restore_gs_re = re.compile(r'^Q.*$')
|
|
|
|
|
+
|
|
|
|
|
+ # graphic stack where we save parameters like transformation, line_width
|
|
|
|
|
+ self.gs = dict()
|
|
|
|
|
+ # each element is a list composed of sublist elements
|
|
|
|
|
+ # (each sublist has 2 lists each having 2 elements: first is offset like:
|
|
|
|
|
+ # offset_geo = [off_x, off_y], second element is scale list with 2 elements, like: scale_geo = [sc_x, sc_yy])
|
|
|
|
|
+ self.gs['transform'] = []
|
|
|
|
|
+ self.gs['line_width'] = [] # each element is a float
|
|
|
|
|
+
|
|
|
|
|
+ self.obj_dict = dict()
|
|
|
|
|
+ self.pdf_parsed = ''
|
|
|
|
|
+ self.parsed_obj_dict = dict()
|
|
|
|
|
+
|
|
|
|
|
+ # conversion factor to INCH
|
|
|
|
|
+ self.point_to_unit_factor = 0.01388888888
|
|
|
|
|
+
|
|
|
|
|
+ def run(self, toggle=True):
|
|
|
|
|
+ self.app.report_usage("ToolPDF()")
|
|
|
|
|
+
|
|
|
|
|
+ self.set_tool_ui()
|
|
|
|
|
+ self.on_open_pdf_click()
|
|
|
|
|
+
|
|
|
|
|
+ def install(self, icon=None, separator=None, **kwargs):
|
|
|
|
|
+ FlatCAMTool.install(self, icon, separator, shortcut='ALT+Q', **kwargs)
|
|
|
|
|
+
|
|
|
|
|
+ def set_tool_ui(self):
|
|
|
|
|
+ pass
|
|
|
|
|
+
|
|
|
|
|
+ def on_open_pdf_click(self):
|
|
|
|
|
+ """
|
|
|
|
|
+ File menu callback for opening an PDF file.
|
|
|
|
|
+
|
|
|
|
|
+ :return: None
|
|
|
|
|
+ """
|
|
|
|
|
+
|
|
|
|
|
+ self.app.report_usage("ToolPDF.on_open_pdf_click()")
|
|
|
|
|
+ self.app.log.debug("ToolPDF.on_open_pdf_click()")
|
|
|
|
|
+
|
|
|
|
|
+ _filter_ = "Adobe PDF Files (*.pdf);;" \
|
|
|
|
|
+ "All Files (*.*)"
|
|
|
|
|
+
|
|
|
|
|
+ try:
|
|
|
|
|
+ filenames, _f = QtWidgets.QFileDialog.getOpenFileNames(caption=_("Open PDF"),
|
|
|
|
|
+ directory=self.app.get_last_folder(),
|
|
|
|
|
+ filter=_filter_)
|
|
|
|
|
+ except TypeError:
|
|
|
|
|
+ filenames, _f = QtWidgets.QFileDialog.getOpenFileNames(caption=_("Open PDF"), filter=_filter_)
|
|
|
|
|
+
|
|
|
|
|
+ if len(filenames) == 0:
|
|
|
|
|
+ self.app.inform.emit(_("[WARNING_NOTCL] Open PDF cancelled."))
|
|
|
|
|
+ else:
|
|
|
|
|
+ for filename in filenames:
|
|
|
|
|
+ if filename != '':
|
|
|
|
|
+ self.app.worker_task.emit({'fcn': self.open_pdf, 'params': [filename]})
|
|
|
|
|
+
|
|
|
|
|
+ def open_pdf(self, filename):
|
|
|
|
|
+ new_name = filename.split('/')[-1].split('\\')[-1]
|
|
|
|
|
+ self.obj_dict.clear()
|
|
|
|
|
+ self.pdf_parsed = ''
|
|
|
|
|
+ self.parsed_obj_dict = {}
|
|
|
|
|
+ obj_type = 'gerber'
|
|
|
|
|
+
|
|
|
|
|
+ # the UNITS in PDF files are points and here we set the factor to convert them to real units (either MM or INCH)
|
|
|
|
|
+ if self.app.ui.general_defaults_form.general_app_group.units_radio.get_value().upper() == 'MM':
|
|
|
|
|
+ # 1 inch = 72 points => 1 point = 1 / 72 = 0.01388888888 inch = 0.01388888888 inch * 25.4 = 0.35277777778 mm
|
|
|
|
|
+ self.point_to_unit_factor = 25.4 / 72
|
|
|
|
|
+ else:
|
|
|
|
|
+ # 1 inch = 72 points => 1 point = 1 / 72 = 0.01388888888 inch
|
|
|
|
|
+ self.point_to_unit_factor = 1 / 72
|
|
|
|
|
+
|
|
|
|
|
+ with self.app.proc_container.new(_("Parsing PDF file ...")):
|
|
|
|
|
+ with open(filename, "rb") as f:
|
|
|
|
|
+ pdf = f.read()
|
|
|
|
|
+
|
|
|
|
|
+ stream_nr = 0
|
|
|
|
|
+ for s in re.findall(self.stream_re, pdf):
|
|
|
|
|
+ stream_nr += 1
|
|
|
|
|
+ log.debug(" PDF STREAM: %d\n" % stream_nr)
|
|
|
|
|
+ s = s.strip(b'\r\n')
|
|
|
|
|
+ try:
|
|
|
|
|
+ self.pdf_parsed += (zlib.decompress(s).decode('UTF-8') + '\r\n')
|
|
|
|
|
+ except Exception as e:
|
|
|
|
|
+ log.debug("ToolPDF.open_pdf().obj_init() --> %s" % str(e))
|
|
|
|
|
+
|
|
|
|
|
+ self.parsed_obj_dict = self.parse_pdf(pdf_content=self.pdf_parsed)
|
|
|
|
|
+
|
|
|
|
|
+ for k in self.parsed_obj_dict:
|
|
|
|
|
+ ap_dict = deepcopy(self.parsed_obj_dict[k])
|
|
|
|
|
+ if ap_dict:
|
|
|
|
|
+ if k == 0:
|
|
|
|
|
+ # Excellon
|
|
|
|
|
+ obj_type = 'excellon'
|
|
|
|
|
+
|
|
|
|
|
+ new_name = new_name + "_exc"
|
|
|
|
|
+ # store the points here until reconstitution: keys are diameters and values are list of (x,y) coords
|
|
|
|
|
+ points = {}
|
|
|
|
|
+
|
|
|
|
|
+ def obj_init(exc_obj, app_obj):
|
|
|
|
|
+ # print(self.parsed_obj_dict[0])
|
|
|
|
|
+
|
|
|
|
|
+ for geo in self.parsed_obj_dict[0]['0']['solid_geometry']:
|
|
|
|
|
+ xmin, ymin, xmax, ymax = geo.bounds
|
|
|
|
|
+ center = (((xmax - xmin) / 2) + xmin, ((ymax - ymin) / 2) + ymin)
|
|
|
|
|
+
|
|
|
|
|
+ # for drill bits, even in INCH, it's enough 3 decimals
|
|
|
|
|
+ correction_factor = 0.974
|
|
|
|
|
+ dia = (xmax - xmin) * correction_factor
|
|
|
|
|
+ dia = round(dia, 3)
|
|
|
|
|
+ if dia in points:
|
|
|
|
|
+ points[dia].append(center)
|
|
|
|
|
+ else:
|
|
|
|
|
+ points[dia] = [center]
|
|
|
|
|
+
|
|
|
|
|
+ sorted_dia = sorted(points.keys())
|
|
|
|
|
+
|
|
|
|
|
+ name_tool = 0
|
|
|
|
|
+ for dia in sorted_dia:
|
|
|
|
|
+ name_tool += 1
|
|
|
|
|
+
|
|
|
|
|
+ # create tools dictionary
|
|
|
|
|
+ spec = {"C": dia}
|
|
|
|
|
+ spec['solid_geometry'] = []
|
|
|
|
|
+ exc_obj.tools[str(name_tool)] = spec
|
|
|
|
|
+
|
|
|
|
|
+ # create drill list of dictionaries
|
|
|
|
|
+ for dia_points in points:
|
|
|
|
|
+ if dia == dia_points:
|
|
|
|
|
+ for pt in points[dia_points]:
|
|
|
|
|
+ exc_obj.drills.append({'point': Point(pt), 'tool': str(name_tool)})
|
|
|
|
|
+ break
|
|
|
|
|
+
|
|
|
|
|
+ ret = exc_obj.create_geometry()
|
|
|
|
|
+ if ret == 'fail':
|
|
|
|
|
+ log.debug("Could not create geometry for Excellon object.")
|
|
|
|
|
+ return "fail"
|
|
|
|
|
+ for tool in exc_obj.tools:
|
|
|
|
|
+ if exc_obj.tools[tool]['solid_geometry']:
|
|
|
|
|
+ return
|
|
|
|
|
+ app_obj.inform.emit(_("[ERROR_NOTCL] No geometry found in file: %s") % new_name)
|
|
|
|
|
+ return "fail"
|
|
|
|
|
+ else:
|
|
|
|
|
+ # Gerber
|
|
|
|
|
+ obj_type = 'gerber'
|
|
|
|
|
+
|
|
|
|
|
+ def obj_init(grb_obj, app_obj):
|
|
|
|
|
+
|
|
|
|
|
+ grb_obj.apertures = ap_dict
|
|
|
|
|
+
|
|
|
|
|
+ poly_buff = []
|
|
|
|
|
+ for ap in grb_obj.apertures:
|
|
|
|
|
+ for k in grb_obj.apertures[ap]:
|
|
|
|
|
+ if k == 'solid_geometry':
|
|
|
|
|
+ poly_buff += ap_dict[ap][k]
|
|
|
|
|
+
|
|
|
|
|
+ poly_buff = unary_union(poly_buff)
|
|
|
|
|
+ try:
|
|
|
|
|
+ poly_buff = poly_buff.buffer(0.0000001)
|
|
|
|
|
+ except ValueError:
|
|
|
|
|
+ pass
|
|
|
|
|
+ try:
|
|
|
|
|
+ poly_buff = poly_buff.buffer(-0.0000001)
|
|
|
|
|
+ except ValueError:
|
|
|
|
|
+ pass
|
|
|
|
|
+
|
|
|
|
|
+ grb_obj.solid_geometry = deepcopy(poly_buff)
|
|
|
|
|
+
|
|
|
|
|
+ with self.app.proc_container.new(_("Rendering PDF layer #%d ...") % (int(k) - 2)):
|
|
|
|
|
+
|
|
|
|
|
+ ret = self.app.new_object(obj_type, new_name, obj_init, autoselected=False)
|
|
|
|
|
+ if ret == 'fail':
|
|
|
|
|
+ self.app.inform.emit(_('[ERROR_NOTCL] Open PDF file failed.'))
|
|
|
|
|
+ return
|
|
|
|
|
+ # Register recent file
|
|
|
|
|
+ self.app.file_opened.emit(obj_type, filename)
|
|
|
|
|
+ # GUI feedback
|
|
|
|
|
+ self.app.inform.emit(_("[success] Opened: %s") % filename)
|
|
|
|
|
+
|
|
|
|
|
+ def parse_pdf(self, pdf_content):
|
|
|
|
|
+ path = dict()
|
|
|
|
|
+ path['lines'] = [] # it's a list of lines subpaths
|
|
|
|
|
+ path['bezier'] = [] # it's a list of bezier arcs subpaths
|
|
|
|
|
+ path['rectangle'] = [] # it's a list of rectangle subpaths
|
|
|
|
|
+
|
|
|
|
|
+ subpath = dict()
|
|
|
|
|
+ subpath['lines'] = [] # it's a list of points
|
|
|
|
|
+ subpath['bezier'] = [] # it's a list of sublists each like this [start, c1, c2, stop]
|
|
|
|
|
+ subpath['rectangle'] = [] # it's a list of sublists of points
|
|
|
|
|
+
|
|
|
|
|
+ # store the start point (when 'm' command is encountered)
|
|
|
|
|
+ current_subpath = None
|
|
|
|
|
+
|
|
|
|
|
+ # set True when 'h' command is encountered (close subpath)
|
|
|
|
|
+ close_subpath = False
|
|
|
|
|
+
|
|
|
|
|
+ start_point = None
|
|
|
|
|
+ current_point = None
|
|
|
|
|
+ size = 0
|
|
|
|
|
+
|
|
|
|
|
+ # initial values for the transformations, in case they are not encountered in the PDF file
|
|
|
|
|
+ offset_geo = [0, 0]
|
|
|
|
|
+ scale_geo = [1, 1]
|
|
|
|
|
+
|
|
|
|
|
+ # store the objects to be transformed into Gerbers
|
|
|
|
|
+ object_dict = {}
|
|
|
|
|
+
|
|
|
|
|
+ # will serve as key in the object_dict
|
|
|
|
|
+ object_nr = 1
|
|
|
|
|
+
|
|
|
|
|
+ # store the apertures here
|
|
|
|
|
+ apertures_dict = {}
|
|
|
|
|
+
|
|
|
|
|
+ # initial aperture
|
|
|
|
|
+ aperture = 10
|
|
|
|
|
+
|
|
|
|
|
+ # store the apertures with clear geometry here
|
|
|
|
|
+ # we are interested only in the circular geometry (drill holes) therefore we target only Bezier subpaths
|
|
|
|
|
+ clear_apertures_dict = dict()
|
|
|
|
|
+ # everything will be stored in the '0' aperture since we are dealing with clear polygons not strokes
|
|
|
|
|
+ clear_apertures_dict['0'] = dict()
|
|
|
|
|
+ clear_apertures_dict['0']['size'] = 0.0
|
|
|
|
|
+ clear_apertures_dict['0']['type'] = 'C'
|
|
|
|
|
+ clear_apertures_dict['0']['solid_geometry'] = []
|
|
|
|
|
+
|
|
|
|
|
+ # create first object
|
|
|
|
|
+ object_dict[object_nr] = apertures_dict
|
|
|
|
|
+ object_nr += 1
|
|
|
|
|
+
|
|
|
|
|
+ # on stroke color change we create a new apertures dictionary and store the old one in a storage from where
|
|
|
|
|
+ # it will be transformed into Gerber object
|
|
|
|
|
+ old_color = [None, None ,None]
|
|
|
|
|
+
|
|
|
|
|
+ # signal that we have clear geometry and the geometry will be added to a special object_nr = 0
|
|
|
|
|
+ flag_clear_geo = False
|
|
|
|
|
+
|
|
|
|
|
+ line_nr = 0
|
|
|
|
|
+ lines = pdf_content.splitlines()
|
|
|
|
|
+
|
|
|
|
|
+ for pline in lines:
|
|
|
|
|
+ line_nr += 1
|
|
|
|
|
+ # log.debug("line %d: %s" % (line_nr, pline))
|
|
|
|
|
+
|
|
|
|
|
+ # COLOR DETECTION / OBJECT DETECTION
|
|
|
|
|
+ match = self.stroke_color_re.search(pline)
|
|
|
|
|
+ if match:
|
|
|
|
|
+ color = [float(match.group(1)), float(match.group(2)), float(match.group(3))]
|
|
|
|
|
+ log.debug(
|
|
|
|
|
+ "ToolPDF.parse_pdf() --> STROKE Color change on line: %s --> RED=%f GREEN=%f BLUE=%f" %
|
|
|
|
|
+ (line_nr, color[0], color[1], color[2]))
|
|
|
|
|
+
|
|
|
|
|
+ if color[0] == old_color[0] and color[1] == old_color[1] and color[2] == old_color[2]:
|
|
|
|
|
+ # same color, do nothing
|
|
|
|
|
+ continue
|
|
|
|
|
+ else:
|
|
|
|
|
+ object_dict[object_nr] = deepcopy(apertures_dict)
|
|
|
|
|
+ object_nr += 1
|
|
|
|
|
+
|
|
|
|
|
+ object_dict[object_nr] = dict()
|
|
|
|
|
+ apertures_dict = {}
|
|
|
|
|
+ old_color = copy(color)
|
|
|
|
|
+ # we make sure that the following geometry is added to the right storage
|
|
|
|
|
+ flag_clear_geo = False
|
|
|
|
|
+ continue
|
|
|
|
|
+
|
|
|
|
|
+ # CLEAR GEOMETRY detection
|
|
|
|
|
+ match = self.fill_color_re.search(pline)
|
|
|
|
|
+ if match:
|
|
|
|
|
+ fill_color = [float(match.group(1)), float(match.group(2)), float(match.group(3))]
|
|
|
|
|
+ log.debug(
|
|
|
|
|
+ "ToolPDF.parse_pdf() --> FILL Color change on line: %s --> RED=%f GREEN=%f BLUE=%f" %
|
|
|
|
|
+ (line_nr, fill_color[0], fill_color[1], fill_color[2]))
|
|
|
|
|
+ # if the color is white we are seeing 'clear_geometry' that can't be seen. It may be that those
|
|
|
|
|
+ # geometries are actually holes from which we can make an Excellon file
|
|
|
|
|
+ if fill_color[0] == 1 and fill_color[1] == 1 and fill_color[2] == 1:
|
|
|
|
|
+ flag_clear_geo = True
|
|
|
|
|
+ else:
|
|
|
|
|
+ flag_clear_geo = False
|
|
|
|
|
+ continue
|
|
|
|
|
+
|
|
|
|
|
+ # TRANSFORMATIONS DETECTION #
|
|
|
|
|
+
|
|
|
|
|
+ # Detect combined transformation.
|
|
|
|
|
+ match = self.combined_transform_re.search(pline)
|
|
|
|
|
+ if match:
|
|
|
|
|
+ # detect save graphic stack event
|
|
|
|
|
+ # sometimes they combine save_to_graphics_stack with the transformation on the same line
|
|
|
|
|
+ if match.group(1) == 'q':
|
|
|
|
|
+ log.debug(
|
|
|
|
|
+ "ToolPDF.parse_pdf() --> Save to GS found on line: %s --> offset=[%f, %f] ||| scale=[%f, %f]" %
|
|
|
|
|
+ (line_nr, offset_geo[0], offset_geo[1], scale_geo[0], scale_geo[1]))
|
|
|
|
|
+
|
|
|
|
|
+ self.gs['transform'].append(deepcopy([offset_geo, scale_geo]))
|
|
|
|
|
+ self.gs['line_width'].append(deepcopy(size))
|
|
|
|
|
+
|
|
|
|
|
+ # transformation = TRANSLATION (OFFSET)
|
|
|
|
|
+ if (float(match.group(3)) == 0 and float(match.group(4)) == 0) and \
|
|
|
|
|
+ (float(match.group(6)) != 0 or float(match.group(7)) != 0):
|
|
|
|
|
+ log.debug(
|
|
|
|
|
+ "ToolPDF.parse_pdf() --> OFFSET transformation found on line: %s --> %s" % (line_nr, pline))
|
|
|
|
|
+
|
|
|
|
|
+ offset_geo[0] += float(match.group(6))
|
|
|
|
|
+ offset_geo[1] += float(match.group(7))
|
|
|
|
|
+ # log.debug("Offset= [%f, %f]" % (offset_geo[0], offset_geo[1]))
|
|
|
|
|
+
|
|
|
|
|
+ # transformation = SCALING
|
|
|
|
|
+ if float(match.group(2)) != 1 and float(match.group(5)) != 1:
|
|
|
|
|
+ log.debug(
|
|
|
|
|
+ "ToolPDF.parse_pdf() --> SCALE transformation found on line: %s --> %s" % (line_nr, pline))
|
|
|
|
|
+
|
|
|
|
|
+ scale_geo[0] *= float(match.group(2))
|
|
|
|
|
+ scale_geo[1] *= float(match.group(5))
|
|
|
|
|
+ # log.debug("Scale= [%f, %f]" % (scale_geo[0], scale_geo[1]))
|
|
|
|
|
+
|
|
|
|
|
+ continue
|
|
|
|
|
+
|
|
|
|
|
+ # detect save graphic stack event
|
|
|
|
|
+ match = self.save_gs_re.search(pline)
|
|
|
|
|
+ if match:
|
|
|
|
|
+ log.debug(
|
|
|
|
|
+ "ToolPDF.parse_pdf() --> Save to GS found on line: %s --> offset=[%f, %f] ||| scale=[%f, %f]" %
|
|
|
|
|
+ (line_nr, offset_geo[0], offset_geo[1], scale_geo[0], scale_geo[1]))
|
|
|
|
|
+ self.gs['transform'].append(deepcopy([offset_geo, scale_geo]))
|
|
|
|
|
+ self.gs['line_width'].append(deepcopy(size))
|
|
|
|
|
+
|
|
|
|
|
+ # detect restore from graphic stack event
|
|
|
|
|
+ match = self.restore_gs_re.search(pline)
|
|
|
|
|
+ if match:
|
|
|
|
|
+ log.debug(
|
|
|
|
|
+ "ToolPDF.parse_pdf() --> Restore from GS found on line: %s --> %s" % (line_nr, pline))
|
|
|
|
|
+ try:
|
|
|
|
|
+ restored_transform = self.gs['transform'].pop(-1)
|
|
|
|
|
+ offset_geo = restored_transform[0]
|
|
|
|
|
+ scale_geo = restored_transform[1]
|
|
|
|
|
+ except IndexError:
|
|
|
|
|
+ # nothing to remove
|
|
|
|
|
+ log.debug("ToolPDF.parse_pdf() --> Nothing to restore")
|
|
|
|
|
+ pass
|
|
|
|
|
+
|
|
|
|
|
+ try:
|
|
|
|
|
+ size = self.gs['line_width'].pop(-1)
|
|
|
|
|
+ except IndexError:
|
|
|
|
|
+ log.debug("ToolPDF.parse_pdf() --> Nothing to restore")
|
|
|
|
|
+ # nothing to remove
|
|
|
|
|
+ pass
|
|
|
|
|
+ # log.debug("Restored Offset= [%f, %f]" % (offset_geo[0], offset_geo[1]))
|
|
|
|
|
+ # log.debug("Restored Scale= [%f, %f]" % (scale_geo[0], scale_geo[1]))
|
|
|
|
|
+
|
|
|
|
|
+ # PATH CONSTRUCTION #
|
|
|
|
|
+
|
|
|
|
|
+ # Start SUBPATH
|
|
|
|
|
+ match = self.start_subpath_re.search(pline)
|
|
|
|
|
+ if match:
|
|
|
|
|
+ # we just started a subpath so we mark it as not closed yet
|
|
|
|
|
+ close_subpath = False
|
|
|
|
|
+
|
|
|
|
|
+ # init subpaths
|
|
|
|
|
+ subpath['lines'] = []
|
|
|
|
|
+ subpath['bezier'] = []
|
|
|
|
|
+ subpath['rectangle'] = []
|
|
|
|
|
+
|
|
|
|
|
+ # detect start point to move to
|
|
|
|
|
+ x = float(match.group(1)) + offset_geo[0]
|
|
|
|
|
+ y = float(match.group(2)) + offset_geo[1]
|
|
|
|
|
+ pt = (x * self.point_to_unit_factor * scale_geo[0],
|
|
|
|
|
+ y * self.point_to_unit_factor * scale_geo[1])
|
|
|
|
|
+ start_point = pt
|
|
|
|
|
+
|
|
|
|
|
+ # add the start point to subpaths
|
|
|
|
|
+ subpath['lines'].append(start_point)
|
|
|
|
|
+ # subpath['bezier'].append(start_point)
|
|
|
|
|
+ # subpath['rectangle'].append(start_point)
|
|
|
|
|
+ current_point = start_point
|
|
|
|
|
+ continue
|
|
|
|
|
+
|
|
|
|
|
+ # Draw Line
|
|
|
|
|
+ match = self.draw_line_re.search(pline)
|
|
|
|
|
+ if match:
|
|
|
|
|
+ current_subpath = 'lines'
|
|
|
|
|
+ x = float(match.group(1)) + offset_geo[0]
|
|
|
|
|
+ y = float(match.group(2)) + offset_geo[1]
|
|
|
|
|
+ pt = (x * self.point_to_unit_factor * scale_geo[0],
|
|
|
|
|
+ y * self.point_to_unit_factor * scale_geo[1])
|
|
|
|
|
+ subpath['lines'].append(pt)
|
|
|
|
|
+ current_point = pt
|
|
|
|
|
+ continue
|
|
|
|
|
+
|
|
|
|
|
+ # Draw Bezier 'c'
|
|
|
|
|
+ match = self.draw_arc_3pt_re.search(pline)
|
|
|
|
|
+ if match:
|
|
|
|
|
+ current_subpath = 'bezier'
|
|
|
|
|
+ start = current_point
|
|
|
|
|
+ x = float(match.group(1)) + offset_geo[0]
|
|
|
|
|
+ y = float(match.group(2)) + offset_geo[1]
|
|
|
|
|
+ c1 = (x * self.point_to_unit_factor * scale_geo[0],
|
|
|
|
|
+ y * self.point_to_unit_factor * scale_geo[1])
|
|
|
|
|
+ x = float(match.group(3)) + offset_geo[0]
|
|
|
|
|
+ y = float(match.group(4)) + offset_geo[1]
|
|
|
|
|
+ c2 = (x * self.point_to_unit_factor * scale_geo[0],
|
|
|
|
|
+ y * self.point_to_unit_factor * scale_geo[1])
|
|
|
|
|
+ x = float(match.group(5)) + offset_geo[0]
|
|
|
|
|
+ y = float(match.group(6)) + offset_geo[1]
|
|
|
|
|
+ stop = (x * self.point_to_unit_factor * scale_geo[0],
|
|
|
|
|
+ y * self.point_to_unit_factor * scale_geo[1])
|
|
|
|
|
+
|
|
|
|
|
+ subpath['bezier'].append([start, c1, c2, stop])
|
|
|
|
|
+ current_point = stop
|
|
|
|
|
+ continue
|
|
|
|
|
+
|
|
|
|
|
+ # Draw Bezier 'v'
|
|
|
|
|
+ match = self.draw_arc_2pt_c1start_re.search(pline)
|
|
|
|
|
+ if match:
|
|
|
|
|
+ current_subpath = 'bezier'
|
|
|
|
|
+ start = current_point
|
|
|
|
|
+ x = float(match.group(1)) + offset_geo[0]
|
|
|
|
|
+ y = float(match.group(2)) + offset_geo[1]
|
|
|
|
|
+ c2 = (x * self.point_to_unit_factor * scale_geo[0],
|
|
|
|
|
+ y * self.point_to_unit_factor * scale_geo[1])
|
|
|
|
|
+ x = float(match.group(3)) + offset_geo[0]
|
|
|
|
|
+ y = float(match.group(4)) + offset_geo[1]
|
|
|
|
|
+ stop = (x * self.point_to_unit_factor * scale_geo[0],
|
|
|
|
|
+ y * self.point_to_unit_factor * scale_geo[1])
|
|
|
|
|
+
|
|
|
|
|
+ subpath['bezier'].append([start, start, c2, stop])
|
|
|
|
|
+ current_point = stop
|
|
|
|
|
+ continue
|
|
|
|
|
+
|
|
|
|
|
+ # Draw Bezier 'y'
|
|
|
|
|
+ match = self.draw_arc_2pt_c2stop_re.search(pline)
|
|
|
|
|
+ if match:
|
|
|
|
|
+ start = current_point
|
|
|
|
|
+ x = float(match.group(1)) + offset_geo[0]
|
|
|
|
|
+ y = float(match.group(2)) + offset_geo[1]
|
|
|
|
|
+ c1 = (x * self.point_to_unit_factor * scale_geo[0],
|
|
|
|
|
+ y * self.point_to_unit_factor * scale_geo[1])
|
|
|
|
|
+ x = float(match.group(3)) + offset_geo[0]
|
|
|
|
|
+ y = float(match.group(4)) + offset_geo[1]
|
|
|
|
|
+ stop = (x * self.point_to_unit_factor * scale_geo[0],
|
|
|
|
|
+ y * self.point_to_unit_factor * scale_geo[1])
|
|
|
|
|
+
|
|
|
|
|
+ subpath['bezier'].append([start, c1, stop, stop])
|
|
|
|
|
+ print(subpath['bezier'])
|
|
|
|
|
+ current_point = stop
|
|
|
|
|
+ continue
|
|
|
|
|
+
|
|
|
|
|
+ # Draw Rectangle 're'
|
|
|
|
|
+ match = self.rect_re.search(pline)
|
|
|
|
|
+ if match:
|
|
|
|
|
+ current_subpath = 'rectangle'
|
|
|
|
|
+ x = (float(match.group(1)) + offset_geo[0]) * self.point_to_unit_factor * scale_geo[0]
|
|
|
|
|
+ y = (float(match.group(2)) + offset_geo[1]) * self.point_to_unit_factor * scale_geo[1]
|
|
|
|
|
+ width = (float(match.group(3)) + offset_geo[0]) * \
|
|
|
|
|
+ self.point_to_unit_factor * scale_geo[0]
|
|
|
|
|
+ height = (float(match.group(4)) + offset_geo[1]) * \
|
|
|
|
|
+ self.point_to_unit_factor * scale_geo[1]
|
|
|
|
|
+ pt1 = (x, y)
|
|
|
|
|
+ pt2 = (x+width, y)
|
|
|
|
|
+ pt3 = (x+width, y+height)
|
|
|
|
|
+ pt4 = (x, y+height)
|
|
|
|
|
+ subpath['rectangle'] += [pt1, pt2, pt3, pt4, pt1]
|
|
|
|
|
+ current_point = pt1
|
|
|
|
|
+ continue
|
|
|
|
|
+
|
|
|
|
|
+ # Detect clipping path set
|
|
|
|
|
+ # ignore this and delete the current subpath
|
|
|
|
|
+ match = self.clip_path_re.search(pline)
|
|
|
|
|
+ if match:
|
|
|
|
|
+ subpath['lines'] = []
|
|
|
|
|
+ subpath['bezier'] = []
|
|
|
|
|
+ subpath['rectangle'] = []
|
|
|
|
|
+ # it measns that we've already added the subpath to path and we need to delete it
|
|
|
|
|
+ # clipping path is usually either rectangle or lines
|
|
|
|
|
+ if close_subpath is True:
|
|
|
|
|
+ close_subpath = False
|
|
|
|
|
+ if current_subpath == 'lines':
|
|
|
|
|
+ path['lines'].pop(-1)
|
|
|
|
|
+ if current_subpath == 'rectangle':
|
|
|
|
|
+ path['rectangle'].pop(-1)
|
|
|
|
|
+ continue
|
|
|
|
|
+
|
|
|
|
|
+ # Close SUBPATH
|
|
|
|
|
+ match = self.end_subpath_re.search(pline)
|
|
|
|
|
+ if match:
|
|
|
|
|
+ close_subpath = True
|
|
|
|
|
+ if current_subpath == 'lines':
|
|
|
|
|
+ subpath['lines'].append(start_point)
|
|
|
|
|
+ # since we are closing the subpath add it to the path, a path may have chained subpaths
|
|
|
|
|
+ path['lines'].append(copy(subpath['lines']))
|
|
|
|
|
+ subpath['lines'] = []
|
|
|
|
|
+ elif current_subpath == 'bezier':
|
|
|
|
|
+ # subpath['bezier'].append(start_point)
|
|
|
|
|
+ # since we are closing the subpath add it to the path, a path may have chained subpaths
|
|
|
|
|
+ path['bezier'].append(copy(subpath['bezier']))
|
|
|
|
|
+ subpath['bezier'] = []
|
|
|
|
|
+ elif current_subpath == 'rectangle':
|
|
|
|
|
+ # subpath['rectangle'].append(start_point)
|
|
|
|
|
+ # since we are closing the subpath add it to the path, a path may have chained subpaths
|
|
|
|
|
+ path['rectangle'].append(copy(subpath['rectangle']))
|
|
|
|
|
+ subpath['rectangle'] = []
|
|
|
|
|
+ continue
|
|
|
|
|
+
|
|
|
|
|
+ # PATH PAINTING #
|
|
|
|
|
+
|
|
|
|
|
+ # Detect Stroke width / aperture
|
|
|
|
|
+ match = self.strokewidth_re.search(pline)
|
|
|
|
|
+ if match:
|
|
|
|
|
+ size = float(match.group(1))
|
|
|
|
|
+ continue
|
|
|
|
|
+
|
|
|
|
|
+ # Detect No_Op command, ignore the current subpath
|
|
|
|
|
+ match = self.no_op_re.search(pline)
|
|
|
|
|
+ if match:
|
|
|
|
|
+ subpath['lines'] = []
|
|
|
|
|
+ subpath['bezier'] = []
|
|
|
|
|
+ subpath['rectangle'] = []
|
|
|
|
|
+ continue
|
|
|
|
|
+
|
|
|
|
|
+ # Stroke the path
|
|
|
|
|
+ match = self.stroke_path__re.search(pline)
|
|
|
|
|
+ if match:
|
|
|
|
|
+ # scale the size here; some PDF printers apply transformation after the size is declared
|
|
|
|
|
+ applied_size = size * scale_geo[0] * self.point_to_unit_factor
|
|
|
|
|
+
|
|
|
|
|
+ path_geo = list()
|
|
|
|
|
+ if current_subpath == 'lines':
|
|
|
|
|
+ if path['lines']:
|
|
|
|
|
+ for subp in path['lines']:
|
|
|
|
|
+ geo = copy(subp)
|
|
|
|
|
+ geo = LineString(geo).buffer((float(applied_size) / 2), resolution=self.step_per_circles)
|
|
|
|
|
+ path_geo.append(geo)
|
|
|
|
|
+ # the path was painted therefore initialize it
|
|
|
|
|
+ path['lines'] = []
|
|
|
|
|
+ else:
|
|
|
|
|
+ geo = copy(subpath['lines'])
|
|
|
|
|
+ geo = LineString(geo).buffer((float(applied_size) / 2), resolution=self.step_per_circles)
|
|
|
|
|
+ path_geo.append(geo)
|
|
|
|
|
+ subpath['lines'] = []
|
|
|
|
|
+
|
|
|
|
|
+ if current_subpath == 'bezier':
|
|
|
|
|
+ if path['bezier']:
|
|
|
|
|
+ for subp in path['bezier']:
|
|
|
|
|
+ geo = []
|
|
|
|
|
+ for b in subp:
|
|
|
|
|
+ geo += self.bezier_to_points(start=b[0], c1=b[1], c2=b[2], stop=b[3])
|
|
|
|
|
+ geo = LineString(geo).buffer((float(applied_size) / 2), resolution=self.step_per_circles)
|
|
|
|
|
+ path_geo.append(geo)
|
|
|
|
|
+ # the path was painted therefore initialize it
|
|
|
|
|
+ path['bezier'] = []
|
|
|
|
|
+ else:
|
|
|
|
|
+ geo = []
|
|
|
|
|
+ for b in subpath['bezier']:
|
|
|
|
|
+ geo += self.bezier_to_points(start=b[0], c1=b[1], c2=b[2], stop=b[3])
|
|
|
|
|
+ geo = LineString(geo).buffer((float(applied_size) / 2), resolution=self.step_per_circles)
|
|
|
|
|
+ path_geo.append(geo)
|
|
|
|
|
+ subpath['bezier'] = []
|
|
|
|
|
+
|
|
|
|
|
+ if current_subpath == 'rectangle':
|
|
|
|
|
+ if path['rectangle']:
|
|
|
|
|
+ for subp in path['rectangle']:
|
|
|
|
|
+ geo = copy(subp)
|
|
|
|
|
+ geo = LineString(geo).buffer((float(applied_size) / 2), resolution=self.step_per_circles)
|
|
|
|
|
+ path_geo.append(geo)
|
|
|
|
|
+ # the path was painted therefore initialize it
|
|
|
|
|
+ path['rectangle'] = []
|
|
|
|
|
+ else:
|
|
|
|
|
+ geo = copy(subpath['rectangle'])
|
|
|
|
|
+ geo = LineString(geo).buffer((float(applied_size) / 2), resolution=self.step_per_circles)
|
|
|
|
|
+ path_geo.append(geo)
|
|
|
|
|
+ subpath['rectangle'] = []
|
|
|
|
|
+
|
|
|
|
|
+ # store the found geometry
|
|
|
|
|
+ found_aperture = None
|
|
|
|
|
+ if apertures_dict:
|
|
|
|
|
+ for apid in apertures_dict:
|
|
|
|
|
+ # if we already have an aperture with the current size (rounded to 5 decimals)
|
|
|
|
|
+ if apertures_dict[apid]['size'] == round(applied_size, 5):
|
|
|
|
|
+ found_aperture = apid
|
|
|
|
|
+ break
|
|
|
|
|
+
|
|
|
|
|
+ if found_aperture:
|
|
|
|
|
+ apertures_dict[copy(found_aperture)]['solid_geometry'] += path_geo
|
|
|
|
|
+ found_aperture = None
|
|
|
|
|
+ else:
|
|
|
|
|
+ if str(aperture) in apertures_dict.keys():
|
|
|
|
|
+ aperture += 1
|
|
|
|
|
+ apertures_dict[str(aperture)] = {}
|
|
|
|
|
+ apertures_dict[str(aperture)]['size'] = round(applied_size, 5)
|
|
|
|
|
+ apertures_dict[str(aperture)]['type'] = 'C'
|
|
|
|
|
+ apertures_dict[str(aperture)]['solid_geometry'] = []
|
|
|
|
|
+ apertures_dict[str(aperture)]['solid_geometry'] += path_geo
|
|
|
|
|
+ else:
|
|
|
|
|
+ apertures_dict[str(aperture)] = {}
|
|
|
|
|
+ apertures_dict[str(aperture)]['size'] = round(applied_size, 5)
|
|
|
|
|
+ apertures_dict[str(aperture)]['type'] = 'C'
|
|
|
|
|
+ apertures_dict[str(aperture)]['solid_geometry'] = []
|
|
|
|
|
+ apertures_dict[str(aperture)]['solid_geometry'] += path_geo
|
|
|
|
|
+
|
|
|
|
|
+ continue
|
|
|
|
|
+
|
|
|
|
|
+ # Fill the path
|
|
|
|
|
+ match = self.fill_path_re.search(pline)
|
|
|
|
|
+ if match:
|
|
|
|
|
+ # scale the size here; some PDF printers apply transformation after the size is declared
|
|
|
|
|
+ applied_size = size * scale_geo[0] * self.point_to_unit_factor
|
|
|
|
|
+ path_geo = list()
|
|
|
|
|
+
|
|
|
|
|
+ if current_subpath == 'lines':
|
|
|
|
|
+ if path['lines']:
|
|
|
|
|
+ for subp in path['lines']:
|
|
|
|
|
+ geo = copy(subp)
|
|
|
|
|
+ # close the subpath if it was not closed already
|
|
|
|
|
+ if close_subpath is False:
|
|
|
|
|
+ geo.append(geo[0])
|
|
|
|
|
+ geo_el = Polygon(geo).buffer(0.0000001, resolution=self.step_per_circles)
|
|
|
|
|
+ path_geo.append(geo_el)
|
|
|
|
|
+ # the path was painted therefore initialize it
|
|
|
|
|
+ path['lines'] = []
|
|
|
|
|
+ else:
|
|
|
|
|
+ geo = copy(subpath['lines'])
|
|
|
|
|
+ # close the subpath if it was not closed already
|
|
|
|
|
+ if close_subpath is False:
|
|
|
|
|
+ geo.append(start_point)
|
|
|
|
|
+ geo_el = Polygon(geo).buffer(0.0000001, resolution=self.step_per_circles)
|
|
|
|
|
+ path_geo.append(geo_el)
|
|
|
|
|
+ subpath['lines'] = []
|
|
|
|
|
+
|
|
|
|
|
+ if current_subpath == 'bezier':
|
|
|
|
|
+ geo = []
|
|
|
|
|
+ if path['bezier']:
|
|
|
|
|
+ for subp in path['bezier']:
|
|
|
|
|
+ for b in subp:
|
|
|
|
|
+ geo += self.bezier_to_points(start=b[0], c1=b[1], c2=b[2], stop=b[3])
|
|
|
|
|
+ # close the subpath if it was not closed already
|
|
|
|
|
+ if close_subpath is False:
|
|
|
|
|
+ geo.append(geo[0])
|
|
|
|
|
+ geo_el = Polygon(geo).buffer(0.0000001, resolution=self.step_per_circles)
|
|
|
|
|
+ path_geo.append(geo_el)
|
|
|
|
|
+ # the path was painted therefore initialize it
|
|
|
|
|
+ path['bezier'] = []
|
|
|
|
|
+ else:
|
|
|
|
|
+ for b in subpath['bezier']:
|
|
|
|
|
+ geo += self.bezier_to_points(start=b[0], c1=b[1], c2=b[2], stop=b[3])
|
|
|
|
|
+ if close_subpath is False:
|
|
|
|
|
+ geo.append(start_point)
|
|
|
|
|
+ geo_el = Polygon(geo).buffer(0.0000001, resolution=self.step_per_circles)
|
|
|
|
|
+ path_geo.append(geo_el)
|
|
|
|
|
+ subpath['bezier'] = []
|
|
|
|
|
+
|
|
|
|
|
+ if current_subpath == 'rectangle':
|
|
|
|
|
+ if path['rectangle']:
|
|
|
|
|
+ for subp in path['rectangle']:
|
|
|
|
|
+ geo = copy(subp)
|
|
|
|
|
+ # close the subpath if it was not closed already
|
|
|
|
|
+ if close_subpath is False and start_point is not None:
|
|
|
|
|
+ geo.append(start_point)
|
|
|
|
|
+ geo_el = Polygon(geo).buffer(0.0000001, resolution=self.step_per_circles)
|
|
|
|
|
+ path_geo.append(geo_el)
|
|
|
|
|
+ # the path was painted therefore initialize it
|
|
|
|
|
+ path['rectangle'] = []
|
|
|
|
|
+ else:
|
|
|
|
|
+ geo = copy(subpath['rectangle'])
|
|
|
|
|
+ # close the subpath if it was not closed already
|
|
|
|
|
+ if close_subpath is False and start_point is not None:
|
|
|
|
|
+ geo.append(start_point)
|
|
|
|
|
+ geo_el = Polygon(geo).buffer(0.0000001, resolution=self.step_per_circles)
|
|
|
|
|
+ path_geo.append(geo_el)
|
|
|
|
|
+ subpath['rectangle'] = []
|
|
|
|
|
+
|
|
|
|
|
+ # we finished painting and also closed the path if it was the case
|
|
|
|
|
+ close_subpath = True
|
|
|
|
|
+
|
|
|
|
|
+ # if there was a fill color change we look for circular geometries from which we can make drill holes
|
|
|
|
|
+ # for the Excellon file
|
|
|
|
|
+ if flag_clear_geo is True:
|
|
|
|
|
+ # we llok for circular geometries
|
|
|
|
|
+ if current_subpath == 'bezier':
|
|
|
|
|
+ # if there are geometries in the list
|
|
|
|
|
+ if path_geo:
|
|
|
|
|
+ clear_apertures_dict['0']['solid_geometry'] += path_geo
|
|
|
|
|
+ else:
|
|
|
|
|
+ # else, add the geometry as usual
|
|
|
|
|
+ try:
|
|
|
|
|
+ apertures_dict['0']['solid_geometry'] += path_geo
|
|
|
|
|
+ except KeyError:
|
|
|
|
|
+ # in case there is no stroke width yet therefore no aperture
|
|
|
|
|
+ apertures_dict['0'] = {}
|
|
|
|
|
+ apertures_dict['0']['size'] = applied_size
|
|
|
|
|
+ apertures_dict['0']['type'] = 'C'
|
|
|
|
|
+ apertures_dict['0']['solid_geometry'] = []
|
|
|
|
|
+ apertures_dict['0']['solid_geometry'] += path_geo
|
|
|
|
|
+ continue
|
|
|
|
|
+
|
|
|
|
|
+ # Fill and Stroke the path
|
|
|
|
|
+ match = self.fill_stroke_path_re.search(pline)
|
|
|
|
|
+ if match:
|
|
|
|
|
+ # scale the size here; some PDF printers apply transformation after the size is declared
|
|
|
|
|
+ applied_size = size * scale_geo[0] * self.point_to_unit_factor
|
|
|
|
|
+ path_geo = list()
|
|
|
|
|
+ fill_geo = list()
|
|
|
|
|
+
|
|
|
|
|
+ if current_subpath == 'lines':
|
|
|
|
|
+ if path['lines']:
|
|
|
|
|
+ # fill
|
|
|
|
|
+ for subp in path['lines']:
|
|
|
|
|
+ geo = copy(subp)
|
|
|
|
|
+ # close the subpath if it was not closed already
|
|
|
|
|
+ if close_subpath is False:
|
|
|
|
|
+ geo.append(geo[0])
|
|
|
|
|
+ geo_el = Polygon(geo).buffer(0.0000001, resolution=self.step_per_circles)
|
|
|
|
|
+ fill_geo.append(geo_el)
|
|
|
|
|
+ # stroke
|
|
|
|
|
+ for subp in path['lines']:
|
|
|
|
|
+ geo = copy(subp)
|
|
|
|
|
+ geo = LineString(geo).buffer((float(applied_size) / 2), resolution=self.step_per_circles)
|
|
|
|
|
+ path_geo.append(geo)
|
|
|
|
|
+ # the path was painted therefore initialize it
|
|
|
|
|
+ path['lines'] = []
|
|
|
|
|
+ else:
|
|
|
|
|
+ # fill
|
|
|
|
|
+ geo = copy(subpath['lines'])
|
|
|
|
|
+ # close the subpath if it was not closed already
|
|
|
|
|
+ if close_subpath is False:
|
|
|
|
|
+ geo.append(start_point)
|
|
|
|
|
+ geo_el = Polygon(geo).buffer(0.0000001, resolution=self.step_per_circles)
|
|
|
|
|
+ fill_geo.append(geo_el)
|
|
|
|
|
+ # stroke
|
|
|
|
|
+ geo = copy(subpath['lines'])
|
|
|
|
|
+ geo = LineString(geo).buffer((float(applied_size) / 2), resolution=self.step_per_circles)
|
|
|
|
|
+ path_geo.append(geo)
|
|
|
|
|
+ subpath['lines'] = []
|
|
|
|
|
+ subpath['lines'] = []
|
|
|
|
|
+
|
|
|
|
|
+ if current_subpath == 'bezier':
|
|
|
|
|
+ geo = []
|
|
|
|
|
+ if path['bezier']:
|
|
|
|
|
+ # fill
|
|
|
|
|
+ for subp in path['bezier']:
|
|
|
|
|
+ for b in subp:
|
|
|
|
|
+ geo += self.bezier_to_points(start=b[0], c1=b[1], c2=b[2], stop=b[3])
|
|
|
|
|
+ # close the subpath if it was not closed already
|
|
|
|
|
+ if close_subpath is False:
|
|
|
|
|
+ geo.append(geo[0])
|
|
|
|
|
+ geo_el = Polygon(geo).buffer(0.0000001, resolution=self.step_per_circles)
|
|
|
|
|
+ fill_geo.append(geo_el)
|
|
|
|
|
+ # stroke
|
|
|
|
|
+ for subp in path['bezier']:
|
|
|
|
|
+ geo = []
|
|
|
|
|
+ for b in subp:
|
|
|
|
|
+ geo += self.bezier_to_points(start=b[0], c1=b[1], c2=b[2], stop=b[3])
|
|
|
|
|
+ geo = LineString(geo).buffer((float(applied_size) / 2), resolution=self.step_per_circles)
|
|
|
|
|
+ path_geo.append(geo)
|
|
|
|
|
+ # the path was painted therefore initialize it
|
|
|
|
|
+ path['bezier'] = []
|
|
|
|
|
+ else:
|
|
|
|
|
+ # fill
|
|
|
|
|
+ for b in subpath['bezier']:
|
|
|
|
|
+ geo += self.bezier_to_points(start=b[0], c1=b[1], c2=b[2], stop=b[3])
|
|
|
|
|
+ if close_subpath is False:
|
|
|
|
|
+ geo.append(start_point)
|
|
|
|
|
+ geo_el = Polygon(geo).buffer(0.0000001, resolution=self.step_per_circles)
|
|
|
|
|
+ fill_geo.append(geo_el)
|
|
|
|
|
+ # stroke
|
|
|
|
|
+ geo = []
|
|
|
|
|
+ for b in subpath['bezier']:
|
|
|
|
|
+ geo += self.bezier_to_points(start=b[0], c1=b[1], c2=b[2], stop=b[3])
|
|
|
|
|
+ geo = LineString(geo).buffer((float(applied_size) / 2), resolution=self.step_per_circles)
|
|
|
|
|
+ path_geo.append(geo)
|
|
|
|
|
+ subpath['bezier'] = []
|
|
|
|
|
+
|
|
|
|
|
+ if current_subpath == 'rectangle':
|
|
|
|
|
+ if path['rectangle']:
|
|
|
|
|
+ # fill
|
|
|
|
|
+ for subp in path['rectangle']:
|
|
|
|
|
+ geo = copy(subp)
|
|
|
|
|
+ # close the subpath if it was not closed already
|
|
|
|
|
+ if close_subpath is False:
|
|
|
|
|
+ geo.append(geo[0])
|
|
|
|
|
+ geo_el = Polygon(geo).buffer(0.0000001, resolution=self.step_per_circles)
|
|
|
|
|
+ fill_geo.append(geo_el)
|
|
|
|
|
+ # stroke
|
|
|
|
|
+ for subp in path['rectangle']:
|
|
|
|
|
+ geo = copy(subp)
|
|
|
|
|
+ geo = LineString(geo).buffer((float(applied_size) / 2), resolution=self.step_per_circles)
|
|
|
|
|
+ path_geo.append(geo)
|
|
|
|
|
+ # the path was painted therefore initialize it
|
|
|
|
|
+ path['rectangle'] = []
|
|
|
|
|
+ else:
|
|
|
|
|
+ # fill
|
|
|
|
|
+ geo = copy(subpath['rectangle'])
|
|
|
|
|
+ # close the subpath if it was not closed already
|
|
|
|
|
+ if close_subpath is False:
|
|
|
|
|
+ geo.append(start_point)
|
|
|
|
|
+ geo_el = Polygon(geo).buffer(0.0000001, resolution=self.step_per_circles)
|
|
|
|
|
+ fill_geo.append(geo_el)
|
|
|
|
|
+ # stroke
|
|
|
|
|
+ geo = copy(subpath['rectangle'])
|
|
|
|
|
+ geo = LineString(geo).buffer((float(applied_size) / 2), resolution=self.step_per_circles)
|
|
|
|
|
+ path_geo.append(geo)
|
|
|
|
|
+ subpath['rectangle'] = []
|
|
|
|
|
+
|
|
|
|
|
+ # we finished painting and also closed the path if it was the case
|
|
|
|
|
+ close_subpath = True
|
|
|
|
|
+
|
|
|
|
|
+ # store the found geometry for stroking the path
|
|
|
|
|
+ found_aperture = None
|
|
|
|
|
+ if apertures_dict:
|
|
|
|
|
+ for apid in apertures_dict:
|
|
|
|
|
+ # if we already have an aperture with the current size (rounded to 5 decimals)
|
|
|
|
|
+ if apertures_dict[apid]['size'] == round(applied_size, 5):
|
|
|
|
|
+ found_aperture = apid
|
|
|
|
|
+ break
|
|
|
|
|
+
|
|
|
|
|
+ if found_aperture:
|
|
|
|
|
+ apertures_dict[copy(found_aperture)]['solid_geometry'] += path_geo
|
|
|
|
|
+ found_aperture = None
|
|
|
|
|
+ else:
|
|
|
|
|
+ if str(aperture) in apertures_dict.keys():
|
|
|
|
|
+ aperture += 1
|
|
|
|
|
+ apertures_dict[str(aperture)] = {}
|
|
|
|
|
+ apertures_dict[str(aperture)]['size'] = round(applied_size, 5)
|
|
|
|
|
+ apertures_dict[str(aperture)]['type'] = 'C'
|
|
|
|
|
+ apertures_dict[str(aperture)]['solid_geometry'] = []
|
|
|
|
|
+ apertures_dict[str(aperture)]['solid_geometry'] += path_geo
|
|
|
|
|
+ else:
|
|
|
|
|
+ apertures_dict[str(aperture)] = {}
|
|
|
|
|
+ apertures_dict[str(aperture)]['size'] = round(applied_size, 5)
|
|
|
|
|
+ apertures_dict[str(aperture)]['type'] = 'C'
|
|
|
|
|
+ apertures_dict[str(aperture)]['solid_geometry'] = []
|
|
|
|
|
+ apertures_dict[str(aperture)]['solid_geometry'] += path_geo
|
|
|
|
|
+
|
|
|
|
|
+ # store the found geometry for filling the path
|
|
|
|
|
+ try:
|
|
|
|
|
+ apertures_dict['0']['solid_geometry'] += fill_geo
|
|
|
|
|
+ except KeyError:
|
|
|
|
|
+ # in case there is no stroke width yet therefore no aperture
|
|
|
|
|
+ apertures_dict['0'] = {}
|
|
|
|
|
+ apertures_dict['0']['size'] = round(applied_size, 5)
|
|
|
|
|
+ apertures_dict['0']['type'] = 'C'
|
|
|
|
|
+ apertures_dict['0']['solid_geometry'] = []
|
|
|
|
|
+ apertures_dict['0']['solid_geometry'] += fill_geo
|
|
|
|
|
+
|
|
|
|
|
+ continue
|
|
|
|
|
+
|
|
|
|
|
+ # tidy up. copy the current aperture dict to the object dict but only if it is not empty
|
|
|
|
|
+ if apertures_dict:
|
|
|
|
|
+ object_dict[object_nr] = deepcopy(apertures_dict)
|
|
|
|
|
+
|
|
|
|
|
+ if clear_apertures_dict['0']['solid_geometry']:
|
|
|
|
|
+ object_dict[0] = deepcopy(clear_apertures_dict)
|
|
|
|
|
+
|
|
|
|
|
+ return object_dict
|
|
|
|
|
+
|
|
|
|
|
+ def bezier_to_points(self, start, c1, c2, stop):
|
|
|
|
|
+ """
|
|
|
|
|
+ # Equation Bezier, page 184 PDF 1.4 reference
|
|
|
|
|
+ # https://www.adobe.com/content/dam/acom/en/devnet/pdf/pdfs/pdf_reference_archives/PDFReference.pdf
|
|
|
|
|
+ # Given the coordinates of the four points, the curve is generated by varying the parameter t from 0.0 to 1.0
|
|
|
|
|
+ # in the following equation:
|
|
|
|
|
+ # R(t) = P0*(1 - t) ** 3 + P1*3*t*(1 - t) ** 2 + P2 * 3*(1 - t) * t ** 2 + P3*t ** 3
|
|
|
|
|
+ # When t = 0.0, the value from the function coincides with the current point P0; when t = 1.0, R(t) coincides
|
|
|
|
|
+ # with the final point P3. Intermediate values of t generate intermediate points along the curve.
|
|
|
|
|
+ # The curve does not, in general, pass through the two control points P1 and P2
|
|
|
|
|
+
|
|
|
|
|
+ :return: LineString geometry
|
|
|
|
|
+ """
|
|
|
|
|
+
|
|
|
|
|
+ # here we store the geometric points
|
|
|
|
|
+ points = []
|
|
|
|
|
+
|
|
|
|
|
+ nr_points = np.arange(0.0, 1.0, (1 / self.step_per_circles))
|
|
|
|
|
+ for t in nr_points:
|
|
|
|
|
+ term_p0 = (1 - t) ** 3
|
|
|
|
|
+ term_p1 = 3 * t * (1 - t) ** 2
|
|
|
|
|
+ term_p2 = 3 * (1 - t) * t ** 2
|
|
|
|
|
+ term_p3 = t ** 3
|
|
|
|
|
+
|
|
|
|
|
+ x = start[0] * term_p0 + c1[0] * term_p1 + c2[0] * term_p2 + stop[0] * term_p3
|
|
|
|
|
+ y = start[1] * term_p0 + c1[1] * term_p1 + c2[1] * term_p2 + stop[1] * term_p3
|
|
|
|
|
+ points.append([x, y])
|
|
|
|
|
+
|
|
|
|
|
+ return points
|
|
|
|
|
+
|
|
|
|
|
+ # def bezier_to_circle(self, path):
|
|
|
|
|
+ # lst = []
|
|
|
|
|
+ # for el in range(len(path)):
|
|
|
|
|
+ # if type(path) is list:
|
|
|
|
|
+ # for coord in path[el]:
|
|
|
|
|
+ # lst.append(coord)
|
|
|
|
|
+ # else:
|
|
|
|
|
+ # lst.append(el)
|
|
|
|
|
+ #
|
|
|
|
|
+ # if lst:
|
|
|
|
|
+ # minx = min(lst, key=lambda t: t[0])[0]
|
|
|
|
|
+ # miny = min(lst, key=lambda t: t[1])[1]
|
|
|
|
|
+ # maxx = max(lst, key=lambda t: t[0])[0]
|
|
|
|
|
+ # maxy = max(lst, key=lambda t: t[1])[1]
|
|
|
|
|
+ # center = (maxx-minx, maxy-miny)
|
|
|
|
|
+ # radius = (maxx-minx) / 2
|
|
|
|
|
+ # return [center, radius]
|
|
|
|
|
+ #
|
|
|
|
|
+ # def circle_to_points(self, center, radius):
|
|
|
|
|
+ # geo = Point(center).buffer(radius, resolution=self.step_per_circles)
|
|
|
|
|
+ # return LineString(list(geo.exterior.coords))
|
|
|
|
|
+ #
|