|
|
@@ -7,29 +7,33 @@
|
|
|
############################################################
|
|
|
|
|
|
from FlatCAMTool import FlatCAMTool
|
|
|
+from shapely.geometry import Point, Polygon, LineString
|
|
|
+from shapely.ops import cascaded_union, unary_union
|
|
|
+
|
|
|
from FlatCAMObj import *
|
|
|
+
|
|
|
import math
|
|
|
+from copy import copy, deepcopy
|
|
|
import numpy as np
|
|
|
-import scipy.interpolate
|
|
|
|
|
|
import zlib
|
|
|
import re
|
|
|
|
|
|
import gettext
|
|
|
import FlatCAMTranslation as fcTranslate
|
|
|
+import builtins
|
|
|
|
|
|
fcTranslate.apply_language('strings')
|
|
|
-import builtins
|
|
|
if '_' not in builtins.__dict__:
|
|
|
_ = gettext.gettext
|
|
|
|
|
|
|
|
|
class ToolPDF(FlatCAMTool):
|
|
|
- '''
|
|
|
+ """
|
|
|
Parse a PDF file.
|
|
|
Reference here: https://www.adobe.com/content/dam/acom/en/devnet/pdf/pdfs/pdf_reference_archives/PDFReference.pdf
|
|
|
Return a list of geometries
|
|
|
- '''
|
|
|
+ """
|
|
|
toolName = _("PDF Import Tool")
|
|
|
|
|
|
def __init__(self, app):
|
|
|
@@ -39,50 +43,72 @@ class ToolPDF(FlatCAMTool):
|
|
|
|
|
|
self.stream_re = re.compile(b'.*?FlateDecode.*?stream(.*?)endstream', re.S)
|
|
|
|
|
|
- # detect 'w' command
|
|
|
- self.strokewidth_re = re.compile(r'^(\d+\.?\d*)\s*w$')
|
|
|
# detect 're' command
|
|
|
- self.rect_re = re.compile(r'^(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s(-?\d+\.?\d*)\sre$')
|
|
|
+ self.rect_re = re.compile(r'^(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s*re$')
|
|
|
# detect 'm' command
|
|
|
- self.start_path_re = re.compile(r'(-?\d+\.?\d*)\s(-?\d+\.?\d*)\sm$')
|
|
|
+ self.start_subpath_re = re.compile(r'^(-?\d+\.?\d*)\s(-?\d+\.?\d*)\sm$')
|
|
|
# detect 'l' command
|
|
|
- self.draw_line_re = re.compile(r'(-?\d+\.?\d*)\s(-?\d+\.?\d*)\sl')
|
|
|
+ self.draw_line_re = re.compile(r'^(-?\d+\.?\d*)\s(-?\d+\.?\d*)\sl')
|
|
|
# detect 'c' command
|
|
|
- self.draw_arc_3pt_re = re.compile(r'(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s(-?\d+\.?\d*)\sc$')
|
|
|
+ self.draw_arc_3pt_re = re.compile(r'^(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s(-?\d+\.?\d*)'
|
|
|
+ r'\s(-?\d+\.?\d*)\s*c$')
|
|
|
# detect 'v' command
|
|
|
- self.draw_arc_2pt_23_re = re.compile(r'(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s(-?\d+\.?\d*)\sv$')
|
|
|
+ self.draw_arc_2pt_c1start_re = re.compile(r'^(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s*v$')
|
|
|
# detect 'y' command
|
|
|
- self.draw_arc_2pt_13_re = re.compile(r'(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s(-?\d+\.?\d*)\sy$')
|
|
|
+ self.draw_arc_2pt_c2stop_re = re.compile(r'^(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s*y$')
|
|
|
# detect 'h' command
|
|
|
- self.end_path_re = re.compile(r'^h$')
|
|
|
-
|
|
|
+ self.end_subpath_re = re.compile(r'^h$')
|
|
|
|
|
|
+ # detect 'w' command
|
|
|
+ self.strokewidth_re = re.compile(r'^(\d+\.?\d*)\s*w$')
|
|
|
+ # detect 'S' command
|
|
|
+ self.stroke_path__re = re.compile(r'^S$')
|
|
|
+ # detect 's' command
|
|
|
+ self.close_stroke_path__re = re.compile(r'^s$')
|
|
|
+ # detect 'f' or 'f*' command
|
|
|
+ self.fill_path_re = re.compile(r'^[f|F][*]?$')
|
|
|
+ # detect 'B' or 'B*' command
|
|
|
+ self.fill_stroke_path_re = re.compile(r'^B[*]?$')
|
|
|
+ # detect 'b' or 'b*' command
|
|
|
+ self.close_fill_stroke_path_re = re.compile(r'^b[*]?$')
|
|
|
+ # detect 'n'
|
|
|
+ self.no_op_re = re.compile(r'^n$')
|
|
|
+
|
|
|
+ # detect offset transformation. Pattern: (1) (0) (0) (1) (x) (y)
|
|
|
+ self.offset_re = re.compile(r'^1\.?0*\s0?\.?0*\s0?\.?0*\s1\.?0*\s(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s*cm$')
|
|
|
+ # detect scale transformation. Pattern: (factor_x) (0) (0) (factor_y) (0) (0)
|
|
|
+ self.scale_re = re.compile(r'^q? (-?\d+\.?\d*) 0\.?0* 0\.?0* (-?\d+\.?\d*) 0\.?0* 0\.?0*\s+cm$')
|
|
|
+ # detect combined transformation. Should always be the last
|
|
|
+ self.combined_transform_re = re.compile(r'^q?\s*(-?\d+\.?\d*) (-?\d+\.?\d*) (-?\d+\.?\d*) (-?\d+\.?\d*) '
|
|
|
+ r'(-?\d+\.?\d*) (-?\d+\.?\d*)\s+cm$')
|
|
|
+
|
|
|
+ # detect clipping path
|
|
|
+ self.clip_path_re = re.compile(r'^W[*]? n?$')
|
|
|
+
|
|
|
+ self.geo_buffer = []
|
|
|
self.pdf_parsed = ''
|
|
|
|
|
|
+ # conversion factor to INCH
|
|
|
+ self.point_to_unit_factor = 0.01388888888
|
|
|
+
|
|
|
def run(self, toggle=True):
|
|
|
self.app.report_usage("ToolPDF()")
|
|
|
|
|
|
- # if toggle:
|
|
|
- # # if the splitter is hidden, display it, else hide it but only if the current widget is the same
|
|
|
- # if self.app.ui.splitter.sizes()[0] == 0:
|
|
|
- # self.app.ui.splitter.setSizes([1, 1])
|
|
|
- # else:
|
|
|
- # try:
|
|
|
- # if self.app.ui.tool_scroll_area.widget().objectName() == self.toolName:
|
|
|
- # self.app.ui.splitter.setSizes([0, 1])
|
|
|
- # except AttributeError:
|
|
|
- # pass
|
|
|
- # else:
|
|
|
- # if self.app.ui.splitter.sizes()[0] == 0:
|
|
|
- # self.app.ui.splitter.setSizes([1, 1])
|
|
|
- #
|
|
|
- # FlatCAMTool.run(self)
|
|
|
+ # init variables for reuse
|
|
|
+ self.geo_buffer = []
|
|
|
+ self.pdf_parsed = ''
|
|
|
+
|
|
|
+ # the UNITS in PDF files are points and here we set the factor to convert them to real units (either MM or INCH)
|
|
|
+ if self.app.ui.general_defaults_form.general_app_group.units_radio.get_value().upper() == 'MM':
|
|
|
+ # 1 inch = 72 points => 1 point = 1 / 72 = 0.01388888888 inch = 0.01388888888 inch * 25.4 = 0.35277777778 mm
|
|
|
+ self.point_to_unit_factor = 0.35277777778
|
|
|
+ else:
|
|
|
+ # 1 inch = 72 points => 1 point = 1 / 72 = 0.01388888888 inch
|
|
|
+ self.point_to_unit_factor = 0.01388888888
|
|
|
|
|
|
self.set_tool_ui()
|
|
|
self.on_open_pdf_click()
|
|
|
|
|
|
- # self.app.ui.notebook.setTabText(2, "PDF Tool")
|
|
|
-
|
|
|
def install(self, icon=None, separator=None, **kwargs):
|
|
|
FlatCAMTool.install(self, icon, separator, shortcut='ALT+Q', **kwargs)
|
|
|
|
|
|
@@ -104,75 +130,425 @@ class ToolPDF(FlatCAMTool):
|
|
|
|
|
|
try:
|
|
|
filenames, _f = QtWidgets.QFileDialog.getOpenFileNames(caption=_("Open PDF"),
|
|
|
- directory=self.app.get_last_folder(), filter=_filter_)
|
|
|
+ directory=self.app.get_last_folder(),
|
|
|
+ filter=_filter_)
|
|
|
except TypeError:
|
|
|
filenames, _f = QtWidgets.QFileDialog.getOpenFileNames(caption=_("Open PDF"), filter=_filter_)
|
|
|
|
|
|
- filenames = [str(filename) for filename in filenames]
|
|
|
-
|
|
|
if len(filenames) == 0:
|
|
|
self.app.inform.emit(_("[WARNING_NOTCL] Open PDF cancelled."))
|
|
|
else:
|
|
|
for filename in filenames:
|
|
|
if filename != '':
|
|
|
- self.app.worker_task.emit({'fcn': self.open_pdf,
|
|
|
- 'params': [filename]})
|
|
|
+ self.app.worker_task.emit({'fcn': self.open_pdf, 'params': [filename]})
|
|
|
|
|
|
def open_pdf(self, filename):
|
|
|
+ new_name = filename.split('/')[-1].split('\\')[-1]
|
|
|
|
|
|
def obj_init(grb_obj, app_obj):
|
|
|
with open(filename, "rb") as f:
|
|
|
pdf = f.read()
|
|
|
|
|
|
+ stream_nr = 0
|
|
|
for s in re.findall(self.stream_re, pdf):
|
|
|
+ stream_nr += 1
|
|
|
+ print("STREAM:", stream_nr, '\n', '\n')
|
|
|
s = s.strip(b'\r\n')
|
|
|
try:
|
|
|
- self.pdf_parsed += zlib.decompress(s).decode('UTF-8')
|
|
|
- except:
|
|
|
- pass
|
|
|
- grb_obj.solid_geometry = [self.bezier_to_linestring(0, 0, 0, 0)]
|
|
|
+ self.pdf_parsed += (zlib.decompress(s).decode('UTF-8') + '\r\n')
|
|
|
+ except Exception as e:
|
|
|
+ app_obj.log.debug("ToolPDF.open_pdf().obj_init() --> %s" % str(e))
|
|
|
+
|
|
|
+ ap_dict = self.parse_pdf(pdf_content=self.pdf_parsed)
|
|
|
+ grb_obj.apertures = deepcopy(ap_dict)
|
|
|
+
|
|
|
+ poly_buff = []
|
|
|
+ for ap in ap_dict:
|
|
|
+ for k in ap_dict[ap]:
|
|
|
+ if k == 'solid_geometry':
|
|
|
+ poly_buff += ap_dict[ap][k]
|
|
|
|
|
|
+ poly_buff = unary_union(poly_buff)
|
|
|
+ poly_buff = poly_buff.buffer(0.0000001)
|
|
|
+ poly_buff = poly_buff.buffer(-0.0000001)
|
|
|
+
|
|
|
+ grb_obj.solid_geometry = deepcopy(poly_buff)
|
|
|
|
|
|
with self.app.proc_container.new(_("Opening PDF.")):
|
|
|
- # obj_init()
|
|
|
- self.parse_pdf()
|
|
|
- ret = self.app.new_object("geometry", "bla", obj_init, autoselected=False)
|
|
|
- # Register recent file
|
|
|
- self.app.file_opened.emit("geometry", "bla")
|
|
|
- # # Object name
|
|
|
- # name = outname or filename.split('/')[-1].split('\\')[-1]
|
|
|
- #
|
|
|
- # ret = self.new_object("excellon", name, obj_init, autoselected=False)
|
|
|
- # if ret == 'fail':
|
|
|
- # self.inform.emit(_('[ERROR_NOTCL] Open Excellon file failed. Probable not an Excellon file.'))
|
|
|
- # return
|
|
|
- #
|
|
|
- # # Register recent file
|
|
|
- # self.file_opened.emit("excellon", filename)
|
|
|
- #
|
|
|
- # # GUI feedback
|
|
|
- # self.inform.emit(_("[success] Opened: %s") % filename)
|
|
|
- # # self.progress.emit(100)
|
|
|
-
|
|
|
- def parse_pdf(self):
|
|
|
- for pline in self.pdf_parsed:
|
|
|
- pass
|
|
|
-
|
|
|
- def bezier_to_linestring(self, start, stop, c1, c2):
|
|
|
- """
|
|
|
- From here: https://gis.stackexchange.com/questions/106937/python-library-or-algorithm-to-generate-arc-geometry-from-three-coordinate-pairs
|
|
|
- :return: LineString geometry
|
|
|
- """
|
|
|
- coords = np.array([[0, 0], [25, 10], [33, 39], [53, 53]])
|
|
|
|
|
|
- # equation Bezier, page 184 PDF 1.4 reference
|
|
|
+ ret = self.app.new_object("gerber", new_name, obj_init, autoselected=False)
|
|
|
+ if ret == 'fail':
|
|
|
+ self.app.inform.emit(_('[ERROR_NOTCL] Open PDF file failed.'))
|
|
|
+ return
|
|
|
+
|
|
|
+ # Register recent file
|
|
|
+ self.app.file_opened.emit("gerber", new_name)
|
|
|
+
|
|
|
+ # GUI feedback
|
|
|
+ self.app.inform.emit(_("[success] Opened: %s") % filename)
|
|
|
+
|
|
|
+ def parse_pdf(self, pdf_content):
|
|
|
+ path = dict()
|
|
|
+ path['lines'] = [] # it's a list of points
|
|
|
+ path['bezier'] = [] # it's a list of sublists each like this [start, c1, c2, stop]
|
|
|
+ path['rectangle'] = [] # it's a list of sublists of points
|
|
|
+
|
|
|
+ start_point = None
|
|
|
+ current_point = None
|
|
|
+ size = None
|
|
|
+
|
|
|
+ # signal that we have encountered a close path command
|
|
|
+ flag_close_path = False
|
|
|
+
|
|
|
+ # initial values for the transformations, in case they are not encountered in the PDF file
|
|
|
+ offset_geo = [0, 0]
|
|
|
+ scale_geo = [1, 1]
|
|
|
+
|
|
|
+ # initial aperture
|
|
|
+ aperture = 10
|
|
|
+
|
|
|
+ # store the apertures here
|
|
|
+ apertures_dict = {}
|
|
|
+
|
|
|
+ line_nr = 0
|
|
|
+ lines = pdf_content.splitlines()
|
|
|
+
|
|
|
+ for pline in lines:
|
|
|
+ line_nr += 1
|
|
|
+ log.debug("line %d: %s" % (line_nr, pline))
|
|
|
+
|
|
|
+ # TRANSFORMATIONS DETECTION #
|
|
|
+
|
|
|
+ # Detect Scale transform
|
|
|
+ match = self.scale_re.search(pline)
|
|
|
+ if match:
|
|
|
+ log.debug(
|
|
|
+ "ToolPDF.parse_pdf() --> SCALE transformation found on line: %s --> %s" % (line_nr, pline))
|
|
|
+ scale_geo = [float(match.group(1)), float(match.group(2))]
|
|
|
+ continue
|
|
|
+
|
|
|
+ # Detect Offset transform
|
|
|
+ match = self.offset_re.search(pline)
|
|
|
+ if match:
|
|
|
+ log.debug(
|
|
|
+ "ToolPDF.parse_pdf() --> OFFSET transformation found on line: %s --> %s" % (line_nr, pline))
|
|
|
+ offset_geo = [float(match.group(1)), float(match.group(2))]
|
|
|
+ continue
|
|
|
+
|
|
|
+ # Detect combined transformation. Must be always the last from transformations to be checked.
|
|
|
+ # TODO: Perhaps it can replace the others transformation detections
|
|
|
+ match = self.combined_transform_re.search(pline)
|
|
|
+ if match:
|
|
|
+ # transformation = TRANSLATION (OFFSET)
|
|
|
+ if float(match.group(1)) == 1 and float(match.group(2)) == 0 and \
|
|
|
+ float(match.group(3)) == 0 and float(match.group(4)) == 1:
|
|
|
+ pass
|
|
|
+
|
|
|
+ # transformation = SCALING
|
|
|
+ elif float(match.group(2)) == 0 and float(match.group(3)) == 0 and \
|
|
|
+ float(match.group(5)) == 0 and float(match.group(6)) == 0:
|
|
|
+ pass
|
|
|
+
|
|
|
+ # transformation = ROTATION
|
|
|
+ elif float(match.group(1)) == float(match.group(4)) and \
|
|
|
+ float(match.group(2)) == - float(match.group(3)) and \
|
|
|
+ float(match.group(5)) == 0 and float(match.group(6)) == 0:
|
|
|
+ # rot_angle = math.acos(float(match.group(1)))
|
|
|
+ pass
|
|
|
+
|
|
|
+ # transformation = SKEW
|
|
|
+ elif float(match.group(1)) == 1 and float(match.group(4)) == 1 and \
|
|
|
+ float(match.group(5)) == 0 and float(match.group(6)) == 0:
|
|
|
+ # skew_x = math.atan(float(match.group(2)))
|
|
|
+ # skew_y = math.atan(float(match.group(3)))
|
|
|
+ pass
|
|
|
+
|
|
|
+ # transformation combined
|
|
|
+ else:
|
|
|
+ log.debug("ToolPDF.parse_pdf() --> COMBINED transformation found on line: %s --> %s" %
|
|
|
+ (line_nr, pline))
|
|
|
+ scale_geo = [float(match.group(1)), float(match.group(4))]
|
|
|
+ offset_geo = [float(match.group(5)), float(match.group(6))]
|
|
|
+ continue
|
|
|
+
|
|
|
+ # PATH CONSTRUCTION #
|
|
|
+
|
|
|
+ # Start SUBPATH
|
|
|
+ match = self.start_subpath_re.search(pline)
|
|
|
+ if match:
|
|
|
+ x = float(match.group(1)) + offset_geo[0]
|
|
|
+ y = float(match.group(2)) + offset_geo[1]
|
|
|
+ pt = (x * self.point_to_unit_factor * scale_geo[0], y * self.point_to_unit_factor * scale_geo[1])
|
|
|
+ start_point = pt
|
|
|
+ current_point = pt
|
|
|
+ continue
|
|
|
+
|
|
|
+ # Draw Line
|
|
|
+ match = self.draw_line_re.search(pline)
|
|
|
+ if match:
|
|
|
+ x = float(match.group(1)) + offset_geo[0]
|
|
|
+ y = float(match.group(2)) + offset_geo[1]
|
|
|
+ pt = (x * self.point_to_unit_factor * scale_geo[0], y * self.point_to_unit_factor * scale_geo[1])
|
|
|
+ path['lines'].append(pt)
|
|
|
+ current_point = pt
|
|
|
+ continue
|
|
|
+
|
|
|
+ # Draw Bezier 'c'
|
|
|
+ match = self.draw_arc_3pt_re.search(pline)
|
|
|
+ if match:
|
|
|
+ start = current_point
|
|
|
+ x = float(match.group(1)) + offset_geo[0]
|
|
|
+ y = float(match.group(2)) + offset_geo[1]
|
|
|
+ c1 = (x * self.point_to_unit_factor * scale_geo[0], y * self.point_to_unit_factor * scale_geo[1])
|
|
|
+ x = float(match.group(3)) + offset_geo[0]
|
|
|
+ y = float(match.group(4)) + offset_geo[1]
|
|
|
+ c2 = (x * self.point_to_unit_factor * scale_geo[0], y * self.point_to_unit_factor * scale_geo[1])
|
|
|
+ x = float(match.group(5)) + offset_geo[0]
|
|
|
+ y = float(match.group(6)) + offset_geo[1]
|
|
|
+ stop = (x * self.point_to_unit_factor * scale_geo[0], y * self.point_to_unit_factor * scale_geo[1])
|
|
|
+
|
|
|
+ path['bezier'].append([start, c1, c2, stop])
|
|
|
+ current_point = stop
|
|
|
+ continue
|
|
|
+
|
|
|
+ # Draw Bezier 'v'
|
|
|
+ match = self.draw_arc_2pt_c1start_re.search(pline)
|
|
|
+ if match:
|
|
|
+ start = current_point
|
|
|
+ x = float(match.group(1)) + offset_geo[0]
|
|
|
+ y = float(match.group(2)) + offset_geo[1]
|
|
|
+ c2 = (x * self.point_to_unit_factor * scale_geo[0], y * self.point_to_unit_factor * scale_geo[1])
|
|
|
+ x = float(match.group(3)) + offset_geo[0]
|
|
|
+ y = float(match.group(4)) + offset_geo[1]
|
|
|
+ stop = (x * self.point_to_unit_factor * scale_geo[0], y * self.point_to_unit_factor * scale_geo[1])
|
|
|
+
|
|
|
+ path['bezier'].append([start, start, c2, stop])
|
|
|
+ current_point = stop
|
|
|
+ continue
|
|
|
+
|
|
|
+ # Draw Bezier 'y'
|
|
|
+ match = self.draw_arc_2pt_c2stop_re.search(pline)
|
|
|
+ if match:
|
|
|
+ start = current_point
|
|
|
+ x = float(match.group(1)) + offset_geo[0]
|
|
|
+ y = float(match.group(2)) + offset_geo[1]
|
|
|
+ c1 = (x * self.point_to_unit_factor * scale_geo[0], y * self.point_to_unit_factor * scale_geo[1])
|
|
|
+ x = float(match.group(3)) + offset_geo[0]
|
|
|
+ y = float(match.group(4)) + offset_geo[1]
|
|
|
+ stop = (x * self.point_to_unit_factor * scale_geo[0], y * self.point_to_unit_factor * scale_geo[1])
|
|
|
+
|
|
|
+ path['bezier'].append([start, c1, stop, stop])
|
|
|
+ current_point = stop
|
|
|
+ continue
|
|
|
+
|
|
|
+ # Close SUBPATH
|
|
|
+ match = self.end_subpath_re.search(pline)
|
|
|
+ if match:
|
|
|
+ flag_close_path = True
|
|
|
+ continue
|
|
|
+
|
|
|
+ # Draw RECTANGLE
|
|
|
+ match = self.rect_re.search(pline)
|
|
|
+ if match:
|
|
|
+ x = (float(match.group(1)) + offset_geo[0]) * self.point_to_unit_factor * scale_geo[0]
|
|
|
+ y = (float(match.group(2)) + offset_geo[1]) * self.point_to_unit_factor * scale_geo[1]
|
|
|
+ width = (float(match.group(3)) + offset_geo[0]) * self.point_to_unit_factor * scale_geo[0]
|
|
|
+ height = (float(match.group(4)) + offset_geo[1]) * self.point_to_unit_factor * scale_geo[1]
|
|
|
+ pt1 = (x, y)
|
|
|
+ pt2 = (x+width, y)
|
|
|
+ pt3 = (x+width, y+height)
|
|
|
+ pt4 = (x, y+height)
|
|
|
+ path['rectangle'] += [pt1, pt2, pt3, pt4, pt1]
|
|
|
+ current_point = pt1
|
|
|
+ continue
|
|
|
+
|
|
|
+ # Detect clipping path set
|
|
|
+ # ignore this and delete the current subpath
|
|
|
+ match = self.clip_path_re.search(pline)
|
|
|
+ if match:
|
|
|
+ path['lines'] = []
|
|
|
+ path['bezier'] = []
|
|
|
+ path['rectangle'] = []
|
|
|
+ continue
|
|
|
+
|
|
|
+ # PATH PAINTING #
|
|
|
+
|
|
|
+ # Detect Stroke width / aperture
|
|
|
+ match = self.strokewidth_re.search(pline)
|
|
|
+ if match:
|
|
|
+ size = float(match.group(1)) * self.point_to_unit_factor * scale_geo[0]
|
|
|
+ flag = 0
|
|
|
+
|
|
|
+ if not apertures_dict:
|
|
|
+ apertures_dict[str(aperture)] = dict()
|
|
|
+ apertures_dict[str(aperture)]['size'] = size
|
|
|
+ apertures_dict[str(aperture)]['type'] = 'C'
|
|
|
+ apertures_dict[str(aperture)]['solid_geometry'] = []
|
|
|
+ else:
|
|
|
+ for k in apertures_dict:
|
|
|
+ if size == apertures_dict[k]['size']:
|
|
|
+ flag = 1
|
|
|
+ break
|
|
|
+ if flag == 0:
|
|
|
+ aperture += 1
|
|
|
+ apertures_dict[str(aperture)] = dict()
|
|
|
+ apertures_dict[str(aperture)]['size'] = size
|
|
|
+ apertures_dict[str(aperture)]['type'] = 'C'
|
|
|
+ apertures_dict[str(aperture)]['solid_geometry'] = []
|
|
|
+ continue
|
|
|
+
|
|
|
+ # Detect No_Op command, ignore the current subpath
|
|
|
+ match = self.no_op_re.search(pline)
|
|
|
+ if match:
|
|
|
+ path['lines'] = []
|
|
|
+ path['bezier'] = []
|
|
|
+ path['rectangle'] = []
|
|
|
+ continue
|
|
|
+
|
|
|
+ # Stroke the path
|
|
|
+ match = self.stroke_path__re.search(pline)
|
|
|
+ if match:
|
|
|
+ # path['lines'] = []
|
|
|
+ # path['bezier'] = []
|
|
|
+ # path['rectangle'] = []
|
|
|
+ # continue
|
|
|
+ geo = None
|
|
|
+ if path['lines']:
|
|
|
+ path['lines'].insert(0, start_point)
|
|
|
+ geo = copy(path['lines'])
|
|
|
+ if flag_close_path:
|
|
|
+ flag_close_path = False
|
|
|
+ geo.append(start_point)
|
|
|
+ path['lines'] = []
|
|
|
+
|
|
|
+ if path['bezier']:
|
|
|
+ geo = list()
|
|
|
+ geo.append(start_point)
|
|
|
+ for b in path['bezier']:
|
|
|
+ geo += self.bezier_to_points(start=b[0], c1=b[1], c2=b[2], stop=b[3])
|
|
|
+ if flag_close_path:
|
|
|
+ flag_close_path = False
|
|
|
+ geo.append(start_point)
|
|
|
+ path['bezier'] = []
|
|
|
+
|
|
|
+ if path['rectangle']:
|
|
|
+ geo = copy(path['rectangle'])
|
|
|
+ # if flag_close_path:
|
|
|
+ # flag_close_path = False
|
|
|
+ # geo.append(start_point)
|
|
|
+ path['rectangle'] = []
|
|
|
+
|
|
|
+ ext_geo = LineString(geo)
|
|
|
+ ext_geo = ext_geo.buffer((float(size) / 2), resolution=self.step_per_circles)
|
|
|
+ # ext_geo = affinity.scale(ext_geo, scale_geo[0], scale_geo[1])
|
|
|
+ # off_x = offset_geo[0]
|
|
|
+ # off_y = offset_geo[1]
|
|
|
+ #
|
|
|
+ # ext_geo = affinity.translate(ext_geo, off_x, off_y)
|
|
|
+ try:
|
|
|
+ apertures_dict[str(aperture)]['solid_geometry'].append(deepcopy(ext_geo))
|
|
|
+ except KeyError:
|
|
|
+ # in case there is no stroke width yet therefore no aperture
|
|
|
+ apertures_dict['0'] = {}
|
|
|
+ apertures_dict['0']['solid_geometry'] = []
|
|
|
+ apertures_dict['0']['size'] = size
|
|
|
+ apertures_dict['0']['type'] = 'C'
|
|
|
+ apertures_dict['0']['solid_geometry'].append(deepcopy(ext_geo))
|
|
|
+ continue
|
|
|
+
|
|
|
+ # Fill the path
|
|
|
+ match = self.fill_path_re.search(pline)
|
|
|
+ match2 = self.fill_stroke_path_re.search(pline)
|
|
|
+ if match or match2:
|
|
|
+
|
|
|
+ geo = None
|
|
|
+ if path['lines']:
|
|
|
+ path['lines'].insert(0, start_point)
|
|
|
+ geo = copy(path['lines'])
|
|
|
+ geo.append(start_point)
|
|
|
+ path['lines'] = []
|
|
|
+
|
|
|
+ elif path['bezier']:
|
|
|
+ geo = []
|
|
|
+ for b in path['bezier']:
|
|
|
+ geo += self.bezier_to_points(start=b[0], c1=b[1], c2=b[2], stop=b[3])
|
|
|
+ geo.append(start_point)
|
|
|
+ path['bezier'] = []
|
|
|
+
|
|
|
+ elif path['rectangle']:
|
|
|
+ # path['rectangle'].append(start_point)
|
|
|
+ geo = copy(path['rectangle'])
|
|
|
+ path['rectangle'] = []
|
|
|
+
|
|
|
+ ext_geo = Polygon(geo)
|
|
|
+ ext_geo = ext_geo.buffer(0.000001, resolution=self.step_per_circles)
|
|
|
+ # ext_geo = affinity.scale(ext_geo, scale_geo[0], scale_geo[1])
|
|
|
+ # off_x = offset_geo[0]
|
|
|
+ # off_y = offset_geo[1]
|
|
|
+ #
|
|
|
+ # ext_geo = affinity.translate(ext_geo, off_x, off_y)
|
|
|
+ try:
|
|
|
+ apertures_dict[str(aperture)]['solid_geometry'].append(deepcopy(ext_geo))
|
|
|
+ except KeyError:
|
|
|
+ # in case there is no stroke width yet therefore no aperture
|
|
|
+ apertures_dict['0'] = {}
|
|
|
+ apertures_dict['0']['solid_geometry'] = []
|
|
|
+ apertures_dict['0']['size'] = size
|
|
|
+ apertures_dict['0']['type'] = 'C'
|
|
|
+ apertures_dict['0']['solid_geometry'].append(deepcopy(ext_geo))
|
|
|
+ continue
|
|
|
+
|
|
|
+ return apertures_dict
|
|
|
+
|
|
|
+ def bezier_to_points(self, start, c1, c2, stop):
|
|
|
+ """
|
|
|
+ # Equation Bezier, page 184 PDF 1.4 reference
|
|
|
# https://www.adobe.com/content/dam/acom/en/devnet/pdf/pdfs/pdf_reference_archives/PDFReference.pdf
|
|
|
- # R(t) = P0*(1 - t) ** 3 + P1*3*t*(1 - 5) ** 2 + P2 * 3*(1 - t) * t ** 2 + P3*t ** 3
|
|
|
+ # Given the coordinates of the four points, the curve is generated by varying the parameter t from 0.0 to 1.0
|
|
|
+ # in the following equation:
|
|
|
+ # R(t) = P0*(1 - t) ** 3 + P1*3*t*(1 - t) ** 2 + P2 * 3*(1 - t) * t ** 2 + P3*t ** 3
|
|
|
+ # When t = 0.0, the value from the function coincides with the current point P0; when t = 1.0, R(t) coincides
|
|
|
+ # with the final point P3. Intermediate values of t generate intermediate points along the curve.
|
|
|
+ # The curve does not, in general, pass through the two control points P1 and P2
|
|
|
|
|
|
- domain = []
|
|
|
- i = 0
|
|
|
- while i <=1:
|
|
|
- domain.append(i)
|
|
|
- for i in domain:
|
|
|
+ :return: LineString geometry
|
|
|
+ """
|
|
|
|
|
|
- return even_line
|
|
|
+ # here we store the geometric points
|
|
|
+ points = []
|
|
|
+
|
|
|
+ nr_points = np.arange(0.0, 1.0, (1 / self.step_per_circles))
|
|
|
+ for t in nr_points:
|
|
|
+ term_p0 = (1 - t) ** 3
|
|
|
+ term_p1 = 3 * t * (1 - t) ** 2
|
|
|
+ term_p2 = 3 * (1 - t) * t ** 2
|
|
|
+ term_p3 = t ** 3
|
|
|
+
|
|
|
+ x = start[0] * term_p0 + c1[0] * term_p1 + c2[0] * term_p2 + stop[0] * term_p3
|
|
|
+ y = start[1] * term_p0 + c1[1] * term_p1 + c2[1] * term_p2 + stop[1] * term_p3
|
|
|
+ points.append([x, y])
|
|
|
+
|
|
|
+ return points
|
|
|
+
|
|
|
+ # def bezier_to_circle(self, path):
|
|
|
+ # lst = []
|
|
|
+ # for el in range(len(path)):
|
|
|
+ # if type(path) is list:
|
|
|
+ # for coord in path[el]:
|
|
|
+ # lst.append(coord)
|
|
|
+ # else:
|
|
|
+ # lst.append(el)
|
|
|
+ #
|
|
|
+ # if lst:
|
|
|
+ # minx = min(lst, key=lambda t: t[0])[0]
|
|
|
+ # miny = min(lst, key=lambda t: t[1])[1]
|
|
|
+ # maxx = max(lst, key=lambda t: t[0])[0]
|
|
|
+ # maxy = max(lst, key=lambda t: t[1])[1]
|
|
|
+ # center = (maxx-minx, maxy-miny)
|
|
|
+ # radius = (maxx-minx) / 2
|
|
|
+ # return [center, radius]
|
|
|
+ #
|
|
|
+ # def circle_to_points(self, center, radius):
|
|
|
+ # geo = Point(center).buffer(radius, resolution=self.step_per_circles)
|
|
|
+ # return LineString(list(geo.exterior.coords))
|
|
|
+ #
|