|
@@ -9,12 +9,11 @@ from PyQt5 import QtWidgets, QtCore
|
|
|
|
|
|
|
|
from FlatCAMTool import FlatCAMTool
|
|
from FlatCAMTool import FlatCAMTool
|
|
|
from FlatCAMCommon import GracefulException as grace
|
|
from FlatCAMCommon import GracefulException as grace
|
|
|
-
|
|
|
|
|
-from shapely.geometry import Point, Polygon, LineString, MultiPolygon
|
|
|
|
|
|
|
+from flatcamParsers.ParsePDF import PdfParser
|
|
|
|
|
+from shapely.geometry import Point, MultiPolygon
|
|
|
from shapely.ops import unary_union
|
|
from shapely.ops import unary_union
|
|
|
|
|
|
|
|
-from copy import copy, deepcopy
|
|
|
|
|
-import numpy as np
|
|
|
|
|
|
|
+from copy import deepcopy
|
|
|
|
|
|
|
|
import zlib
|
|
import zlib
|
|
|
import re
|
|
import re
|
|
@@ -45,73 +44,9 @@ class ToolPDF(FlatCAMTool):
|
|
|
FlatCAMTool.__init__(self, app)
|
|
FlatCAMTool.__init__(self, app)
|
|
|
self.app = app
|
|
self.app = app
|
|
|
self.decimals = self.app.decimals
|
|
self.decimals = self.app.decimals
|
|
|
- self.step_per_circles = self.app.defaults["gerber_circle_steps"]
|
|
|
|
|
|
|
|
|
|
self.stream_re = re.compile(b'.*?FlateDecode.*?stream(.*?)endstream', re.S)
|
|
self.stream_re = re.compile(b'.*?FlateDecode.*?stream(.*?)endstream', re.S)
|
|
|
|
|
|
|
|
- # detect stroke color change; it means a new object to be created
|
|
|
|
|
- self.stroke_color_re = re.compile(r'^\s*(\d+\.?\d*) (\d+\.?\d*) (\d+\.?\d*)\s*RG$')
|
|
|
|
|
-
|
|
|
|
|
- # detect fill color change; we check here for white color (transparent geometry);
|
|
|
|
|
- # if detected we create an Excellon from it
|
|
|
|
|
- self.fill_color_re = re.compile(r'^\s*(\d+\.?\d*) (\d+\.?\d*) (\d+\.?\d*)\s*rg$')
|
|
|
|
|
-
|
|
|
|
|
- # detect 're' command
|
|
|
|
|
- self.rect_re = re.compile(r'^(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s*re$')
|
|
|
|
|
- # detect 'm' command
|
|
|
|
|
- self.start_subpath_re = re.compile(r'^(-?\d+\.?\d*)\s(-?\d+\.?\d*)\sm$')
|
|
|
|
|
- # detect 'l' command
|
|
|
|
|
- self.draw_line_re = re.compile(r'^(-?\d+\.?\d*)\s(-?\d+\.?\d*)\sl')
|
|
|
|
|
- # detect 'c' command
|
|
|
|
|
- self.draw_arc_3pt_re = re.compile(r'^(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s(-?\d+\.?\d*)'
|
|
|
|
|
- r'\s(-?\d+\.?\d*)\s*c$')
|
|
|
|
|
- # detect 'v' command
|
|
|
|
|
- self.draw_arc_2pt_c1start_re = re.compile(r'^(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s*v$')
|
|
|
|
|
- # detect 'y' command
|
|
|
|
|
- self.draw_arc_2pt_c2stop_re = re.compile(r'^(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s*y$')
|
|
|
|
|
- # detect 'h' command
|
|
|
|
|
- self.end_subpath_re = re.compile(r'^h$')
|
|
|
|
|
-
|
|
|
|
|
- # detect 'w' command
|
|
|
|
|
- self.strokewidth_re = re.compile(r'^(\d+\.?\d*)\s*w$')
|
|
|
|
|
- # detect 'S' command
|
|
|
|
|
- self.stroke_path__re = re.compile(r'^S\s?[Q]?$')
|
|
|
|
|
- # detect 's' command
|
|
|
|
|
- self.close_stroke_path__re = re.compile(r'^s$')
|
|
|
|
|
- # detect 'f' or 'f*' command
|
|
|
|
|
- self.fill_path_re = re.compile(r'^[f|F][*]?$')
|
|
|
|
|
- # detect 'B' or 'B*' command
|
|
|
|
|
- self.fill_stroke_path_re = re.compile(r'^B[*]?$')
|
|
|
|
|
- # detect 'b' or 'b*' command
|
|
|
|
|
- self.close_fill_stroke_path_re = re.compile(r'^b[*]?$')
|
|
|
|
|
- # detect 'n'
|
|
|
|
|
- self.no_op_re = re.compile(r'^n$')
|
|
|
|
|
-
|
|
|
|
|
- # detect offset transformation. Pattern: (1) (0) (0) (1) (x) (y)
|
|
|
|
|
- # self.offset_re = re.compile(r'^1\.?0*\s0?\.?0*\s0?\.?0*\s1\.?0*\s(-?\d+\.?\d*)\s(-?\d+\.?\d*)\s*cm$')
|
|
|
|
|
- # detect scale transformation. Pattern: (factor_x) (0) (0) (factor_y) (0) (0)
|
|
|
|
|
- # self.scale_re = re.compile(r'^q? (-?\d+\.?\d*) 0\.?0* 0\.?0* (-?\d+\.?\d*) 0\.?0* 0\.?0*\s+cm$')
|
|
|
|
|
- # detect combined transformation. Should always be the last
|
|
|
|
|
- self.combined_transform_re = re.compile(r'^(q)?\s*(-?\d+\.?\d*) (-?\d+\.?\d*) (-?\d+\.?\d*) (-?\d+\.?\d*) '
|
|
|
|
|
- r'(-?\d+\.?\d*) (-?\d+\.?\d*)\s+cm$')
|
|
|
|
|
-
|
|
|
|
|
- # detect clipping path
|
|
|
|
|
- self.clip_path_re = re.compile(r'^W[*]? n?$')
|
|
|
|
|
-
|
|
|
|
|
- # detect save graphic state in graphic stack
|
|
|
|
|
- self.save_gs_re = re.compile(r'^q.*?$')
|
|
|
|
|
-
|
|
|
|
|
- # detect restore graphic state from graphic stack
|
|
|
|
|
- self.restore_gs_re = re.compile(r'^.*Q.*$')
|
|
|
|
|
-
|
|
|
|
|
- # graphic stack where we save parameters like transformation, line_width
|
|
|
|
|
- self.gs = {}
|
|
|
|
|
- # each element is a list composed of sublist elements
|
|
|
|
|
- # (each sublist has 2 lists each having 2 elements: first is offset like:
|
|
|
|
|
- # offset_geo = [off_x, off_y], second element is scale list with 2 elements, like: scale_geo = [sc_x, sc_yy])
|
|
|
|
|
- self.gs['transform'] = []
|
|
|
|
|
- self.gs['line_width'] = [] # each element is a float
|
|
|
|
|
-
|
|
|
|
|
self.pdf_decompressed = {}
|
|
self.pdf_decompressed = {}
|
|
|
|
|
|
|
|
# key = file name and extension
|
|
# key = file name and extension
|
|
@@ -125,8 +60,7 @@ class ToolPDF(FlatCAMTool):
|
|
|
# when empty we start the layer rendering
|
|
# when empty we start the layer rendering
|
|
|
self.parsing_promises = []
|
|
self.parsing_promises = []
|
|
|
|
|
|
|
|
- # conversion factor to INCH
|
|
|
|
|
- self.point_to_unit_factor = 0.01388888888
|
|
|
|
|
|
|
+ self.parser = PdfParser(app=self.app)
|
|
|
|
|
|
|
|
def run(self, toggle=True):
|
|
def run(self, toggle=True):
|
|
|
self.app.defaults.report_usage("ToolPDF()")
|
|
self.app.defaults.report_usage("ToolPDF()")
|
|
@@ -174,20 +108,13 @@ class ToolPDF(FlatCAMTool):
|
|
|
def open_pdf(self, filename):
|
|
def open_pdf(self, filename):
|
|
|
short_name = filename.split('/')[-1].split('\\')[-1]
|
|
short_name = filename.split('/')[-1].split('\\')[-1]
|
|
|
self.parsing_promises.append(short_name)
|
|
self.parsing_promises.append(short_name)
|
|
|
|
|
+
|
|
|
self.pdf_parsed[short_name] = {}
|
|
self.pdf_parsed[short_name] = {}
|
|
|
self.pdf_parsed[short_name]['pdf'] = {}
|
|
self.pdf_parsed[short_name]['pdf'] = {}
|
|
|
self.pdf_parsed[short_name]['filename'] = filename
|
|
self.pdf_parsed[short_name]['filename'] = filename
|
|
|
|
|
|
|
|
self.pdf_decompressed[short_name] = ''
|
|
self.pdf_decompressed[short_name] = ''
|
|
|
|
|
|
|
|
- # the UNITS in PDF files are points and here we set the factor to convert them to real units (either MM or INCH)
|
|
|
|
|
- if self.app.defaults['units'].upper() == 'MM':
|
|
|
|
|
- # 1 inch = 72 points => 1 point = 1 / 72 = 0.01388888888 inch = 0.01388888888 inch * 25.4 = 0.35277777778 mm
|
|
|
|
|
- self.point_to_unit_factor = 25.4 / 72
|
|
|
|
|
- else:
|
|
|
|
|
- # 1 inch = 72 points => 1 point = 1 / 72 = 0.01388888888 inch
|
|
|
|
|
- self.point_to_unit_factor = 1 / 72
|
|
|
|
|
-
|
|
|
|
|
if self.app.abort_flag:
|
|
if self.app.abort_flag:
|
|
|
# graceful abort requested by the user
|
|
# graceful abort requested by the user
|
|
|
raise grace
|
|
raise grace
|
|
@@ -208,9 +135,11 @@ class ToolPDF(FlatCAMTool):
|
|
|
try:
|
|
try:
|
|
|
self.pdf_decompressed[short_name] += (zlib.decompress(s).decode('UTF-8') + '\r\n')
|
|
self.pdf_decompressed[short_name] += (zlib.decompress(s).decode('UTF-8') + '\r\n')
|
|
|
except Exception as e:
|
|
except Exception as e:
|
|
|
|
|
+ self.app.inform.emit('[ERROR_NOTCL] %s: %s\n%s' % (_("Failed to open"), str(filename), str(e)))
|
|
|
log.debug("ToolPDF.open_pdf().obj_init() --> %s" % str(e))
|
|
log.debug("ToolPDF.open_pdf().obj_init() --> %s" % str(e))
|
|
|
|
|
+ return
|
|
|
|
|
|
|
|
- self.pdf_parsed[short_name]['pdf'] = self.parse_pdf(pdf_content=self.pdf_decompressed[short_name])
|
|
|
|
|
|
|
+ self.pdf_parsed[short_name]['pdf'] = self.parser.parse_pdf(pdf_content=self.pdf_decompressed[short_name])
|
|
|
# we used it, now we delete it
|
|
# we used it, now we delete it
|
|
|
self.pdf_decompressed[short_name] = ''
|
|
self.pdf_decompressed[short_name] = ''
|
|
|
|
|
|
|
@@ -271,27 +200,24 @@ class ToolPDF(FlatCAMTool):
|
|
|
for tool in exc_obj.tools:
|
|
for tool in exc_obj.tools:
|
|
|
if exc_obj.tools[tool]['solid_geometry']:
|
|
if exc_obj.tools[tool]['solid_geometry']:
|
|
|
return
|
|
return
|
|
|
- app_obj.inform.emit('[ERROR_NOTCL] %s: %s' %
|
|
|
|
|
- (_("No geometry found in file"), outname))
|
|
|
|
|
|
|
+ app_obj.inform.emit('[ERROR_NOTCL] %s: %s' % (_("No geometry found in file"), outname))
|
|
|
return "fail"
|
|
return "fail"
|
|
|
|
|
|
|
|
with self.app.proc_container.new(_("Rendering PDF layer #%d ...") % int(layer_nr)):
|
|
with self.app.proc_container.new(_("Rendering PDF layer #%d ...") % int(layer_nr)):
|
|
|
|
|
|
|
|
ret_val = self.app.new_object("excellon", outname, obj_init, autoselected=False)
|
|
ret_val = self.app.new_object("excellon", outname, obj_init, autoselected=False)
|
|
|
if ret_val == 'fail':
|
|
if ret_val == 'fail':
|
|
|
- self.app.inform.emit('[ERROR_NOTCL] %s' %
|
|
|
|
|
- _('Open PDF file failed.'))
|
|
|
|
|
|
|
+ self.app.inform.emit('[ERROR_NOTCL] %s' % _('Open PDF file failed.'))
|
|
|
return
|
|
return
|
|
|
# Register recent file
|
|
# Register recent file
|
|
|
self.app.file_opened.emit("excellon", filename)
|
|
self.app.file_opened.emit("excellon", filename)
|
|
|
# GUI feedback
|
|
# GUI feedback
|
|
|
- self.app.inform.emit('[success] %s: %s' %
|
|
|
|
|
- (_("Rendered"), outname))
|
|
|
|
|
|
|
+ self.app.inform.emit('[success] %s: %s' % (_("Rendered"), outname))
|
|
|
|
|
|
|
|
def layer_rendering_as_gerber(self, filename, ap_dict, layer_nr):
|
|
def layer_rendering_as_gerber(self, filename, ap_dict, layer_nr):
|
|
|
outname = filename.split('/')[-1].split('\\')[-1] + "_%s" % str(layer_nr)
|
|
outname = filename.split('/')[-1].split('\\')[-1] + "_%s" % str(layer_nr)
|
|
|
|
|
|
|
|
- def obj_init(grb_obj):
|
|
|
|
|
|
|
+ def obj_init(grb_obj, app_obj):
|
|
|
|
|
|
|
|
grb_obj.apertures = ap_dict
|
|
grb_obj.apertures = ap_dict
|
|
|
|
|
|
|
@@ -354,8 +280,7 @@ class ToolPDF(FlatCAMTool):
|
|
|
|
|
|
|
|
ret = self.app.new_object('gerber', outname, obj_init, autoselected=False)
|
|
ret = self.app.new_object('gerber', outname, obj_init, autoselected=False)
|
|
|
if ret == 'fail':
|
|
if ret == 'fail':
|
|
|
- self.app.inform.emit('[ERROR_NOTCL] %s' %
|
|
|
|
|
- _('Open PDF file failed.'))
|
|
|
|
|
|
|
+ self.app.inform.emit('[ERROR_NOTCL] %s' % _('Open PDF file failed.'))
|
|
|
return
|
|
return
|
|
|
# Register recent file
|
|
# Register recent file
|
|
|
self.app.file_opened.emit('gerber', filename)
|
|
self.app.file_opened.emit('gerber', filename)
|
|
@@ -398,6 +323,7 @@ class ToolPDF(FlatCAMTool):
|
|
|
try:
|
|
try:
|
|
|
if not self.parsing_promises:
|
|
if not self.parsing_promises:
|
|
|
self.check_thread.stop()
|
|
self.check_thread.stop()
|
|
|
|
|
+ log.debug("PDF --> start rendering")
|
|
|
# parsing finished start the layer rendering
|
|
# parsing finished start the layer rendering
|
|
|
if self.pdf_parsed:
|
|
if self.pdf_parsed:
|
|
|
obj_to_delete = []
|
|
obj_to_delete = []
|
|
@@ -415,6 +341,7 @@ class ToolPDF(FlatCAMTool):
|
|
|
raise grace
|
|
raise grace
|
|
|
|
|
|
|
|
ap_dict = pdf_content[k]
|
|
ap_dict = pdf_content[k]
|
|
|
|
|
+ print(k, ap_dict)
|
|
|
if ap_dict:
|
|
if ap_dict:
|
|
|
layer_nr = k
|
|
layer_nr = k
|
|
|
if k == 0:
|
|
if k == 0:
|
|
@@ -432,980 +359,3 @@ class ToolPDF(FlatCAMTool):
|
|
|
log.debug("ToolPDF --> Periodic check finished.")
|
|
log.debug("ToolPDF --> Periodic check finished.")
|
|
|
except Exception:
|
|
except Exception:
|
|
|
traceback.print_exc()
|
|
traceback.print_exc()
|
|
|
-
|
|
|
|
|
- def parse_pdf(self, pdf_content):
|
|
|
|
|
- path = {}
|
|
|
|
|
- path['lines'] = [] # it's a list of lines subpaths
|
|
|
|
|
- path['bezier'] = [] # it's a list of bezier arcs subpaths
|
|
|
|
|
- path['rectangle'] = [] # it's a list of rectangle subpaths
|
|
|
|
|
-
|
|
|
|
|
- subpath = {}
|
|
|
|
|
- subpath['lines'] = [] # it's a list of points
|
|
|
|
|
- subpath['bezier'] = [] # it's a list of sublists each like this [start, c1, c2, stop]
|
|
|
|
|
- subpath['rectangle'] = [] # it's a list of sublists of points
|
|
|
|
|
-
|
|
|
|
|
- # store the start point (when 'm' command is encountered)
|
|
|
|
|
- current_subpath = None
|
|
|
|
|
-
|
|
|
|
|
- # set True when 'h' command is encountered (close subpath)
|
|
|
|
|
- close_subpath = False
|
|
|
|
|
-
|
|
|
|
|
- start_point = None
|
|
|
|
|
- current_point = None
|
|
|
|
|
- size = 0
|
|
|
|
|
-
|
|
|
|
|
- # initial values for the transformations, in case they are not encountered in the PDF file
|
|
|
|
|
- offset_geo = [0, 0]
|
|
|
|
|
- scale_geo = [1, 1]
|
|
|
|
|
-
|
|
|
|
|
- # store the objects to be transformed into Gerbers
|
|
|
|
|
- object_dict = {}
|
|
|
|
|
- # will serve as key in the object_dict
|
|
|
|
|
- layer_nr = 1
|
|
|
|
|
- # create first object
|
|
|
|
|
- object_dict[layer_nr] = {}
|
|
|
|
|
-
|
|
|
|
|
- # store the apertures here
|
|
|
|
|
- apertures_dict = {}
|
|
|
|
|
-
|
|
|
|
|
- # initial aperture
|
|
|
|
|
- aperture = 10
|
|
|
|
|
-
|
|
|
|
|
- # store the apertures with clear geometry here
|
|
|
|
|
- # we are interested only in the circular geometry (drill holes) therefore we target only Bezier subpaths
|
|
|
|
|
- clear_apertures_dict = {}
|
|
|
|
|
- # everything will be stored in the '0' aperture since we are dealing with clear polygons not strokes
|
|
|
|
|
- clear_apertures_dict['0'] = {}
|
|
|
|
|
- clear_apertures_dict['0']['size'] = 0.0
|
|
|
|
|
- clear_apertures_dict['0']['type'] = 'C'
|
|
|
|
|
- clear_apertures_dict['0']['geometry'] = []
|
|
|
|
|
-
|
|
|
|
|
- # on stroke color change we create a new apertures dictionary and store the old one in a storage from where
|
|
|
|
|
- # it will be transformed into Gerber object
|
|
|
|
|
- old_color = [None, None, None]
|
|
|
|
|
-
|
|
|
|
|
- # signal that we have clear geometry and the geometry will be added to a special layer_nr = 0
|
|
|
|
|
- flag_clear_geo = False
|
|
|
|
|
-
|
|
|
|
|
- line_nr = 0
|
|
|
|
|
- lines = pdf_content.splitlines()
|
|
|
|
|
-
|
|
|
|
|
- for pline in lines:
|
|
|
|
|
- if self.app.abort_flag:
|
|
|
|
|
- # graceful abort requested by the user
|
|
|
|
|
- raise grace
|
|
|
|
|
-
|
|
|
|
|
- line_nr += 1
|
|
|
|
|
- log.debug("line %d: %s" % (line_nr, pline))
|
|
|
|
|
-
|
|
|
|
|
- # COLOR DETECTION / OBJECT DETECTION
|
|
|
|
|
- match = self.stroke_color_re.search(pline)
|
|
|
|
|
- if match:
|
|
|
|
|
- color = [float(match.group(1)), float(match.group(2)), float(match.group(3))]
|
|
|
|
|
- log.debug(
|
|
|
|
|
- "ToolPDF.parse_pdf() --> STROKE Color change on line: %s --> RED=%f GREEN=%f BLUE=%f" %
|
|
|
|
|
- (line_nr, color[0], color[1], color[2]))
|
|
|
|
|
-
|
|
|
|
|
- if color[0] == old_color[0] and color[1] == old_color[1] and color[2] == old_color[2]:
|
|
|
|
|
- # same color, do nothing
|
|
|
|
|
- continue
|
|
|
|
|
- else:
|
|
|
|
|
- if apertures_dict:
|
|
|
|
|
- object_dict[layer_nr] = deepcopy(apertures_dict)
|
|
|
|
|
- apertures_dict.clear()
|
|
|
|
|
- layer_nr += 1
|
|
|
|
|
-
|
|
|
|
|
- object_dict[layer_nr] = {}
|
|
|
|
|
- old_color = copy(color)
|
|
|
|
|
- # we make sure that the following geometry is added to the right storage
|
|
|
|
|
- flag_clear_geo = False
|
|
|
|
|
- continue
|
|
|
|
|
-
|
|
|
|
|
- # CLEAR GEOMETRY detection
|
|
|
|
|
- match = self.fill_color_re.search(pline)
|
|
|
|
|
- if match:
|
|
|
|
|
- fill_color = [float(match.group(1)), float(match.group(2)), float(match.group(3))]
|
|
|
|
|
- log.debug(
|
|
|
|
|
- "ToolPDF.parse_pdf() --> FILL Color change on line: %s --> RED=%f GREEN=%f BLUE=%f" %
|
|
|
|
|
- (line_nr, fill_color[0], fill_color[1], fill_color[2]))
|
|
|
|
|
- # if the color is white we are seeing 'clear_geometry' that can't be seen. It may be that those
|
|
|
|
|
- # geometries are actually holes from which we can make an Excellon file
|
|
|
|
|
- if fill_color[0] == 1 and fill_color[1] == 1 and fill_color[2] == 1:
|
|
|
|
|
- flag_clear_geo = True
|
|
|
|
|
- else:
|
|
|
|
|
- flag_clear_geo = False
|
|
|
|
|
- continue
|
|
|
|
|
-
|
|
|
|
|
- # TRANSFORMATIONS DETECTION #
|
|
|
|
|
-
|
|
|
|
|
- # Detect combined transformation.
|
|
|
|
|
- match = self.combined_transform_re.search(pline)
|
|
|
|
|
- if match:
|
|
|
|
|
- # detect save graphic stack event
|
|
|
|
|
- # sometimes they combine save_to_graphics_stack with the transformation on the same line
|
|
|
|
|
- if match.group(1) == 'q':
|
|
|
|
|
- log.debug(
|
|
|
|
|
- "ToolPDF.parse_pdf() --> Save to GS found on line: %s --> offset=[%f, %f] ||| scale=[%f, %f]" %
|
|
|
|
|
- (line_nr, offset_geo[0], offset_geo[1], scale_geo[0], scale_geo[1]))
|
|
|
|
|
-
|
|
|
|
|
- self.gs['transform'].append(deepcopy([offset_geo, scale_geo]))
|
|
|
|
|
- self.gs['line_width'].append(deepcopy(size))
|
|
|
|
|
-
|
|
|
|
|
- # transformation = TRANSLATION (OFFSET)
|
|
|
|
|
- if (float(match.group(3)) == 0 and float(match.group(4)) == 0) and \
|
|
|
|
|
- (float(match.group(6)) != 0 or float(match.group(7)) != 0):
|
|
|
|
|
- log.debug(
|
|
|
|
|
- "ToolPDF.parse_pdf() --> OFFSET transformation found on line: %s --> %s" % (line_nr, pline))
|
|
|
|
|
-
|
|
|
|
|
- offset_geo[0] += float(match.group(6))
|
|
|
|
|
- offset_geo[1] += float(match.group(7))
|
|
|
|
|
- # log.debug("Offset= [%f, %f]" % (offset_geo[0], offset_geo[1]))
|
|
|
|
|
-
|
|
|
|
|
- # transformation = SCALING
|
|
|
|
|
- if float(match.group(2)) != 1 and float(match.group(5)) != 1:
|
|
|
|
|
- log.debug(
|
|
|
|
|
- "ToolPDF.parse_pdf() --> SCALE transformation found on line: %s --> %s" % (line_nr, pline))
|
|
|
|
|
-
|
|
|
|
|
- scale_geo[0] *= float(match.group(2))
|
|
|
|
|
- scale_geo[1] *= float(match.group(5))
|
|
|
|
|
- # log.debug("Scale= [%f, %f]" % (scale_geo[0], scale_geo[1]))
|
|
|
|
|
-
|
|
|
|
|
- continue
|
|
|
|
|
-
|
|
|
|
|
- # detect save graphic stack event
|
|
|
|
|
- match = self.save_gs_re.search(pline)
|
|
|
|
|
- if match:
|
|
|
|
|
- log.debug(
|
|
|
|
|
- "ToolPDF.parse_pdf() --> Save to GS found on line: %s --> offset=[%f, %f] ||| scale=[%f, %f]" %
|
|
|
|
|
- (line_nr, offset_geo[0], offset_geo[1], scale_geo[0], scale_geo[1]))
|
|
|
|
|
- self.gs['transform'].append(deepcopy([offset_geo, scale_geo]))
|
|
|
|
|
- self.gs['line_width'].append(deepcopy(size))
|
|
|
|
|
-
|
|
|
|
|
- # detect restore from graphic stack event
|
|
|
|
|
- match = self.restore_gs_re.search(pline)
|
|
|
|
|
- if match:
|
|
|
|
|
- try:
|
|
|
|
|
- restored_transform = self.gs['transform'].pop(-1)
|
|
|
|
|
- offset_geo = restored_transform[0]
|
|
|
|
|
- scale_geo = restored_transform[1]
|
|
|
|
|
- except IndexError:
|
|
|
|
|
- # nothing to remove
|
|
|
|
|
- log.debug("ToolPDF.parse_pdf() --> Nothing to restore")
|
|
|
|
|
- pass
|
|
|
|
|
-
|
|
|
|
|
- try:
|
|
|
|
|
- size = self.gs['line_width'].pop(-1)
|
|
|
|
|
- except IndexError:
|
|
|
|
|
- log.debug("ToolPDF.parse_pdf() --> Nothing to restore")
|
|
|
|
|
- # nothing to remove
|
|
|
|
|
- pass
|
|
|
|
|
-
|
|
|
|
|
- log.debug(
|
|
|
|
|
- "ToolPDF.parse_pdf() --> Restore from GS found on line: %s --> "
|
|
|
|
|
- "restored_offset=[%f, %f] ||| restored_scale=[%f, %f]" %
|
|
|
|
|
- (line_nr, offset_geo[0], offset_geo[1], scale_geo[0], scale_geo[1]))
|
|
|
|
|
- # log.debug("Restored Offset= [%f, %f]" % (offset_geo[0], offset_geo[1]))
|
|
|
|
|
- # log.debug("Restored Scale= [%f, %f]" % (scale_geo[0], scale_geo[1]))
|
|
|
|
|
-
|
|
|
|
|
- # PATH CONSTRUCTION #
|
|
|
|
|
-
|
|
|
|
|
- # Start SUBPATH
|
|
|
|
|
- match = self.start_subpath_re.search(pline)
|
|
|
|
|
- if match:
|
|
|
|
|
- # we just started a subpath so we mark it as not closed yet
|
|
|
|
|
- close_subpath = False
|
|
|
|
|
-
|
|
|
|
|
- # init subpaths
|
|
|
|
|
- subpath['lines'] = []
|
|
|
|
|
- subpath['bezier'] = []
|
|
|
|
|
- subpath['rectangle'] = []
|
|
|
|
|
-
|
|
|
|
|
- # detect start point to move to
|
|
|
|
|
- x = float(match.group(1)) + offset_geo[0]
|
|
|
|
|
- y = float(match.group(2)) + offset_geo[1]
|
|
|
|
|
- pt = (x * self.point_to_unit_factor * scale_geo[0],
|
|
|
|
|
- y * self.point_to_unit_factor * scale_geo[1])
|
|
|
|
|
- start_point = pt
|
|
|
|
|
-
|
|
|
|
|
- # add the start point to subpaths
|
|
|
|
|
- subpath['lines'].append(start_point)
|
|
|
|
|
- # subpath['bezier'].append(start_point)
|
|
|
|
|
- # subpath['rectangle'].append(start_point)
|
|
|
|
|
- current_point = start_point
|
|
|
|
|
- continue
|
|
|
|
|
-
|
|
|
|
|
- # Draw Line
|
|
|
|
|
- match = self.draw_line_re.search(pline)
|
|
|
|
|
- if match:
|
|
|
|
|
- current_subpath = 'lines'
|
|
|
|
|
- x = float(match.group(1)) + offset_geo[0]
|
|
|
|
|
- y = float(match.group(2)) + offset_geo[1]
|
|
|
|
|
- pt = (x * self.point_to_unit_factor * scale_geo[0],
|
|
|
|
|
- y * self.point_to_unit_factor * scale_geo[1])
|
|
|
|
|
- subpath['lines'].append(pt)
|
|
|
|
|
- current_point = pt
|
|
|
|
|
- continue
|
|
|
|
|
-
|
|
|
|
|
- # Draw Bezier 'c'
|
|
|
|
|
- match = self.draw_arc_3pt_re.search(pline)
|
|
|
|
|
- if match:
|
|
|
|
|
- current_subpath = 'bezier'
|
|
|
|
|
- start = current_point
|
|
|
|
|
- x = float(match.group(1)) + offset_geo[0]
|
|
|
|
|
- y = float(match.group(2)) + offset_geo[1]
|
|
|
|
|
- c1 = (x * self.point_to_unit_factor * scale_geo[0],
|
|
|
|
|
- y * self.point_to_unit_factor * scale_geo[1])
|
|
|
|
|
- x = float(match.group(3)) + offset_geo[0]
|
|
|
|
|
- y = float(match.group(4)) + offset_geo[1]
|
|
|
|
|
- c2 = (x * self.point_to_unit_factor * scale_geo[0],
|
|
|
|
|
- y * self.point_to_unit_factor * scale_geo[1])
|
|
|
|
|
- x = float(match.group(5)) + offset_geo[0]
|
|
|
|
|
- y = float(match.group(6)) + offset_geo[1]
|
|
|
|
|
- stop = (x * self.point_to_unit_factor * scale_geo[0],
|
|
|
|
|
- y * self.point_to_unit_factor * scale_geo[1])
|
|
|
|
|
-
|
|
|
|
|
- subpath['bezier'].append([start, c1, c2, stop])
|
|
|
|
|
- current_point = stop
|
|
|
|
|
- continue
|
|
|
|
|
-
|
|
|
|
|
- # Draw Bezier 'v'
|
|
|
|
|
- match = self.draw_arc_2pt_c1start_re.search(pline)
|
|
|
|
|
- if match:
|
|
|
|
|
- current_subpath = 'bezier'
|
|
|
|
|
- start = current_point
|
|
|
|
|
- x = float(match.group(1)) + offset_geo[0]
|
|
|
|
|
- y = float(match.group(2)) + offset_geo[1]
|
|
|
|
|
- c2 = (x * self.point_to_unit_factor * scale_geo[0],
|
|
|
|
|
- y * self.point_to_unit_factor * scale_geo[1])
|
|
|
|
|
- x = float(match.group(3)) + offset_geo[0]
|
|
|
|
|
- y = float(match.group(4)) + offset_geo[1]
|
|
|
|
|
- stop = (x * self.point_to_unit_factor * scale_geo[0],
|
|
|
|
|
- y * self.point_to_unit_factor * scale_geo[1])
|
|
|
|
|
-
|
|
|
|
|
- subpath['bezier'].append([start, start, c2, stop])
|
|
|
|
|
- current_point = stop
|
|
|
|
|
- continue
|
|
|
|
|
-
|
|
|
|
|
- # Draw Bezier 'y'
|
|
|
|
|
- match = self.draw_arc_2pt_c2stop_re.search(pline)
|
|
|
|
|
- if match:
|
|
|
|
|
- start = current_point
|
|
|
|
|
- x = float(match.group(1)) + offset_geo[0]
|
|
|
|
|
- y = float(match.group(2)) + offset_geo[1]
|
|
|
|
|
- c1 = (x * self.point_to_unit_factor * scale_geo[0],
|
|
|
|
|
- y * self.point_to_unit_factor * scale_geo[1])
|
|
|
|
|
- x = float(match.group(3)) + offset_geo[0]
|
|
|
|
|
- y = float(match.group(4)) + offset_geo[1]
|
|
|
|
|
- stop = (x * self.point_to_unit_factor * scale_geo[0],
|
|
|
|
|
- y * self.point_to_unit_factor * scale_geo[1])
|
|
|
|
|
-
|
|
|
|
|
- subpath['bezier'].append([start, c1, stop, stop])
|
|
|
|
|
- current_point = stop
|
|
|
|
|
- continue
|
|
|
|
|
-
|
|
|
|
|
- # Draw Rectangle 're'
|
|
|
|
|
- match = self.rect_re.search(pline)
|
|
|
|
|
- if match:
|
|
|
|
|
- current_subpath = 'rectangle'
|
|
|
|
|
- x = (float(match.group(1)) + offset_geo[0]) * self.point_to_unit_factor * scale_geo[0]
|
|
|
|
|
- y = (float(match.group(2)) + offset_geo[1]) * self.point_to_unit_factor * scale_geo[1]
|
|
|
|
|
- width = (float(match.group(3)) + offset_geo[0]) * self.point_to_unit_factor * scale_geo[0]
|
|
|
|
|
- height = (float(match.group(4)) + offset_geo[1]) * self.point_to_unit_factor * scale_geo[1]
|
|
|
|
|
- pt1 = (x, y)
|
|
|
|
|
- pt2 = (x+width, y)
|
|
|
|
|
- pt3 = (x+width, y+height)
|
|
|
|
|
- pt4 = (x, y+height)
|
|
|
|
|
- subpath['rectangle'] += [pt1, pt2, pt3, pt4, pt1]
|
|
|
|
|
- current_point = pt1
|
|
|
|
|
- continue
|
|
|
|
|
-
|
|
|
|
|
- # Detect clipping path set
|
|
|
|
|
- # ignore this and delete the current subpath
|
|
|
|
|
- match = self.clip_path_re.search(pline)
|
|
|
|
|
- if match:
|
|
|
|
|
- subpath['lines'] = []
|
|
|
|
|
- subpath['bezier'] = []
|
|
|
|
|
- subpath['rectangle'] = []
|
|
|
|
|
- # it means that we've already added the subpath to path and we need to delete it
|
|
|
|
|
- # clipping path is usually either rectangle or lines
|
|
|
|
|
- if close_subpath is True:
|
|
|
|
|
- close_subpath = False
|
|
|
|
|
- if current_subpath == 'lines':
|
|
|
|
|
- path['lines'].pop(-1)
|
|
|
|
|
- if current_subpath == 'rectangle':
|
|
|
|
|
- path['rectangle'].pop(-1)
|
|
|
|
|
- continue
|
|
|
|
|
-
|
|
|
|
|
- # Close SUBPATH
|
|
|
|
|
- match = self.end_subpath_re.search(pline)
|
|
|
|
|
- if match:
|
|
|
|
|
- close_subpath = True
|
|
|
|
|
- if current_subpath == 'lines':
|
|
|
|
|
- subpath['lines'].append(start_point)
|
|
|
|
|
- # since we are closing the subpath add it to the path, a path may have chained subpaths
|
|
|
|
|
- path['lines'].append(copy(subpath['lines']))
|
|
|
|
|
- subpath['lines'] = []
|
|
|
|
|
- elif current_subpath == 'bezier':
|
|
|
|
|
- # subpath['bezier'].append(start_point)
|
|
|
|
|
- # since we are closing the subpath add it to the path, a path may have chained subpaths
|
|
|
|
|
- path['bezier'].append(copy(subpath['bezier']))
|
|
|
|
|
- subpath['bezier'] = []
|
|
|
|
|
- elif current_subpath == 'rectangle':
|
|
|
|
|
- # subpath['rectangle'].append(start_point)
|
|
|
|
|
- # since we are closing the subpath add it to the path, a path may have chained subpaths
|
|
|
|
|
- path['rectangle'].append(copy(subpath['rectangle']))
|
|
|
|
|
- subpath['rectangle'] = []
|
|
|
|
|
- continue
|
|
|
|
|
-
|
|
|
|
|
- # PATH PAINTING #
|
|
|
|
|
-
|
|
|
|
|
- # Detect Stroke width / aperture
|
|
|
|
|
- match = self.strokewidth_re.search(pline)
|
|
|
|
|
- if match:
|
|
|
|
|
- size = float(match.group(1))
|
|
|
|
|
- continue
|
|
|
|
|
-
|
|
|
|
|
- # Detect No_Op command, ignore the current subpath
|
|
|
|
|
- match = self.no_op_re.search(pline)
|
|
|
|
|
- if match:
|
|
|
|
|
- subpath['lines'] = []
|
|
|
|
|
- subpath['bezier'] = []
|
|
|
|
|
- subpath['rectangle'] = []
|
|
|
|
|
- continue
|
|
|
|
|
-
|
|
|
|
|
- # Stroke the path
|
|
|
|
|
- match = self.stroke_path__re.search(pline)
|
|
|
|
|
- if match:
|
|
|
|
|
- # scale the size here; some PDF printers apply transformation after the size is declared
|
|
|
|
|
- applied_size = size * scale_geo[0] * self.point_to_unit_factor
|
|
|
|
|
- path_geo = []
|
|
|
|
|
- if current_subpath == 'lines':
|
|
|
|
|
- if path['lines']:
|
|
|
|
|
- for subp in path['lines']:
|
|
|
|
|
- geo = copy(subp)
|
|
|
|
|
- try:
|
|
|
|
|
- geo = LineString(geo).buffer((float(applied_size) / 2),
|
|
|
|
|
- resolution=self.step_per_circles)
|
|
|
|
|
- path_geo.append(geo)
|
|
|
|
|
- except ValueError:
|
|
|
|
|
- pass
|
|
|
|
|
- # the path was painted therefore initialize it
|
|
|
|
|
- path['lines'] = []
|
|
|
|
|
- else:
|
|
|
|
|
- geo = copy(subpath['lines'])
|
|
|
|
|
- try:
|
|
|
|
|
- geo = LineString(geo).buffer((float(applied_size) / 2), resolution=self.step_per_circles)
|
|
|
|
|
- path_geo.append(geo)
|
|
|
|
|
- except ValueError:
|
|
|
|
|
- pass
|
|
|
|
|
- subpath['lines'] = []
|
|
|
|
|
-
|
|
|
|
|
- if current_subpath == 'bezier':
|
|
|
|
|
- if path['bezier']:
|
|
|
|
|
- for subp in path['bezier']:
|
|
|
|
|
- geo = []
|
|
|
|
|
- for b in subp:
|
|
|
|
|
- geo += self.bezier_to_points(start=b[0], c1=b[1], c2=b[2], stop=b[3])
|
|
|
|
|
- try:
|
|
|
|
|
- geo = LineString(geo).buffer((float(applied_size) / 2),
|
|
|
|
|
- resolution=self.step_per_circles)
|
|
|
|
|
- path_geo.append(geo)
|
|
|
|
|
- except ValueError:
|
|
|
|
|
- pass
|
|
|
|
|
- # the path was painted therefore initialize it
|
|
|
|
|
- path['bezier'] = []
|
|
|
|
|
- else:
|
|
|
|
|
- geo = []
|
|
|
|
|
- for b in subpath['bezier']:
|
|
|
|
|
- geo += self.bezier_to_points(start=b[0], c1=b[1], c2=b[2], stop=b[3])
|
|
|
|
|
- try:
|
|
|
|
|
- geo = LineString(geo).buffer((float(applied_size) / 2), resolution=self.step_per_circles)
|
|
|
|
|
- path_geo.append(geo)
|
|
|
|
|
- except ValueError:
|
|
|
|
|
- pass
|
|
|
|
|
- subpath['bezier'] = []
|
|
|
|
|
-
|
|
|
|
|
- if current_subpath == 'rectangle':
|
|
|
|
|
- if path['rectangle']:
|
|
|
|
|
- for subp in path['rectangle']:
|
|
|
|
|
- geo = copy(subp)
|
|
|
|
|
- try:
|
|
|
|
|
- geo = LineString(geo).buffer((float(applied_size) / 2),
|
|
|
|
|
- resolution=self.step_per_circles)
|
|
|
|
|
- path_geo.append(geo)
|
|
|
|
|
- except ValueError:
|
|
|
|
|
- pass
|
|
|
|
|
- # the path was painted therefore initialize it
|
|
|
|
|
- path['rectangle'] = []
|
|
|
|
|
- else:
|
|
|
|
|
- geo = copy(subpath['rectangle'])
|
|
|
|
|
- try:
|
|
|
|
|
- geo = LineString(geo).buffer((float(applied_size) / 2), resolution=self.step_per_circles)
|
|
|
|
|
- path_geo.append(geo)
|
|
|
|
|
- except ValueError:
|
|
|
|
|
- pass
|
|
|
|
|
- subpath['rectangle'] = []
|
|
|
|
|
-
|
|
|
|
|
- # store the found geometry
|
|
|
|
|
- found_aperture = None
|
|
|
|
|
- if apertures_dict:
|
|
|
|
|
- for apid in apertures_dict:
|
|
|
|
|
- # if we already have an aperture with the current size (rounded to 5 decimals)
|
|
|
|
|
- if apertures_dict[apid]['size'] == round(applied_size, 5):
|
|
|
|
|
- found_aperture = apid
|
|
|
|
|
- break
|
|
|
|
|
-
|
|
|
|
|
- if found_aperture:
|
|
|
|
|
- for pdf_geo in path_geo:
|
|
|
|
|
- if isinstance(pdf_geo, MultiPolygon):
|
|
|
|
|
- for poly in pdf_geo:
|
|
|
|
|
- new_el = {}
|
|
|
|
|
- new_el['solid'] = poly
|
|
|
|
|
- new_el['follow'] = poly.exterior
|
|
|
|
|
- apertures_dict[copy(found_aperture)]['geometry'].append(deepcopy(new_el))
|
|
|
|
|
- else:
|
|
|
|
|
- new_el = {}
|
|
|
|
|
- new_el['solid'] = pdf_geo
|
|
|
|
|
- new_el['follow'] = pdf_geo.exterior
|
|
|
|
|
- apertures_dict[copy(found_aperture)]['geometry'].append(deepcopy(new_el))
|
|
|
|
|
- else:
|
|
|
|
|
- if str(aperture) in apertures_dict.keys():
|
|
|
|
|
- aperture += 1
|
|
|
|
|
- apertures_dict[str(aperture)] = {}
|
|
|
|
|
- apertures_dict[str(aperture)]['size'] = round(applied_size, 5)
|
|
|
|
|
- apertures_dict[str(aperture)]['type'] = 'C'
|
|
|
|
|
- apertures_dict[str(aperture)]['geometry'] = []
|
|
|
|
|
- for pdf_geo in path_geo:
|
|
|
|
|
- if isinstance(pdf_geo, MultiPolygon):
|
|
|
|
|
- for poly in pdf_geo:
|
|
|
|
|
- new_el = {}
|
|
|
|
|
- new_el['solid'] = poly
|
|
|
|
|
- new_el['follow'] = poly.exterior
|
|
|
|
|
- apertures_dict[str(aperture)]['geometry'].append(deepcopy(new_el))
|
|
|
|
|
- else:
|
|
|
|
|
- new_el = {}
|
|
|
|
|
- new_el['solid'] = pdf_geo
|
|
|
|
|
- new_el['follow'] = pdf_geo.exterior
|
|
|
|
|
- apertures_dict[str(aperture)]['geometry'].append(deepcopy(new_el))
|
|
|
|
|
- else:
|
|
|
|
|
- apertures_dict[str(aperture)] = {}
|
|
|
|
|
- apertures_dict[str(aperture)]['size'] = round(applied_size, 5)
|
|
|
|
|
- apertures_dict[str(aperture)]['type'] = 'C'
|
|
|
|
|
- apertures_dict[str(aperture)]['geometry'] = []
|
|
|
|
|
- for pdf_geo in path_geo:
|
|
|
|
|
- if isinstance(pdf_geo, MultiPolygon):
|
|
|
|
|
- for poly in pdf_geo:
|
|
|
|
|
- new_el = {}
|
|
|
|
|
- new_el['solid'] = poly
|
|
|
|
|
- new_el['follow'] = poly.exterior
|
|
|
|
|
- apertures_dict[str(aperture)]['geometry'].append(deepcopy(new_el))
|
|
|
|
|
- else:
|
|
|
|
|
- new_el = {}
|
|
|
|
|
- new_el['solid'] = pdf_geo
|
|
|
|
|
- new_el['follow'] = pdf_geo.exterior
|
|
|
|
|
- apertures_dict[str(aperture)]['geometry'].append(deepcopy(new_el))
|
|
|
|
|
-
|
|
|
|
|
- continue
|
|
|
|
|
-
|
|
|
|
|
- # Fill the path
|
|
|
|
|
- match = self.fill_path_re.search(pline)
|
|
|
|
|
- if match:
|
|
|
|
|
- # scale the size here; some PDF printers apply transformation after the size is declared
|
|
|
|
|
- applied_size = size * scale_geo[0] * self.point_to_unit_factor
|
|
|
|
|
- path_geo = []
|
|
|
|
|
-
|
|
|
|
|
- if current_subpath == 'lines':
|
|
|
|
|
- if path['lines']:
|
|
|
|
|
- for subp in path['lines']:
|
|
|
|
|
- geo = copy(subp)
|
|
|
|
|
- # close the subpath if it was not closed already
|
|
|
|
|
- if close_subpath is False:
|
|
|
|
|
- geo.append(geo[0])
|
|
|
|
|
- try:
|
|
|
|
|
- geo_el = Polygon(geo).buffer(0.0000001, resolution=self.step_per_circles)
|
|
|
|
|
- path_geo.append(geo_el)
|
|
|
|
|
- except ValueError:
|
|
|
|
|
- pass
|
|
|
|
|
- # the path was painted therefore initialize it
|
|
|
|
|
- path['lines'] = []
|
|
|
|
|
- else:
|
|
|
|
|
- geo = copy(subpath['lines'])
|
|
|
|
|
- # close the subpath if it was not closed already
|
|
|
|
|
- if close_subpath is False:
|
|
|
|
|
- geo.append(start_point)
|
|
|
|
|
- try:
|
|
|
|
|
- geo_el = Polygon(geo).buffer(0.0000001, resolution=self.step_per_circles)
|
|
|
|
|
- path_geo.append(geo_el)
|
|
|
|
|
- except ValueError:
|
|
|
|
|
- pass
|
|
|
|
|
- subpath['lines'] = []
|
|
|
|
|
-
|
|
|
|
|
- if current_subpath == 'bezier':
|
|
|
|
|
- geo = []
|
|
|
|
|
- if path['bezier']:
|
|
|
|
|
- for subp in path['bezier']:
|
|
|
|
|
- for b in subp:
|
|
|
|
|
- geo += self.bezier_to_points(start=b[0], c1=b[1], c2=b[2], stop=b[3])
|
|
|
|
|
- # close the subpath if it was not closed already
|
|
|
|
|
- if close_subpath is False:
|
|
|
|
|
- geo.append(geo[0])
|
|
|
|
|
- try:
|
|
|
|
|
- geo_el = Polygon(geo).buffer(0.0000001, resolution=self.step_per_circles)
|
|
|
|
|
- path_geo.append(geo_el)
|
|
|
|
|
- except ValueError:
|
|
|
|
|
- pass
|
|
|
|
|
- # the path was painted therefore initialize it
|
|
|
|
|
- path['bezier'] = []
|
|
|
|
|
- else:
|
|
|
|
|
- for b in subpath['bezier']:
|
|
|
|
|
- geo += self.bezier_to_points(start=b[0], c1=b[1], c2=b[2], stop=b[3])
|
|
|
|
|
- if close_subpath is False:
|
|
|
|
|
- geo.append(start_point)
|
|
|
|
|
- try:
|
|
|
|
|
- geo_el = Polygon(geo).buffer(0.0000001, resolution=self.step_per_circles)
|
|
|
|
|
- path_geo.append(geo_el)
|
|
|
|
|
- except ValueError:
|
|
|
|
|
- pass
|
|
|
|
|
- subpath['bezier'] = []
|
|
|
|
|
-
|
|
|
|
|
- if current_subpath == 'rectangle':
|
|
|
|
|
- if path['rectangle']:
|
|
|
|
|
- for subp in path['rectangle']:
|
|
|
|
|
- geo = copy(subp)
|
|
|
|
|
- # # close the subpath if it was not closed already
|
|
|
|
|
- # if close_subpath is False and start_point is not None:
|
|
|
|
|
- # geo.append(start_point)
|
|
|
|
|
- try:
|
|
|
|
|
- geo_el = Polygon(geo).buffer(0.0000001, resolution=self.step_per_circles)
|
|
|
|
|
- path_geo.append(geo_el)
|
|
|
|
|
- except ValueError:
|
|
|
|
|
- pass
|
|
|
|
|
- # the path was painted therefore initialize it
|
|
|
|
|
- path['rectangle'] = []
|
|
|
|
|
- else:
|
|
|
|
|
- geo = copy(subpath['rectangle'])
|
|
|
|
|
- # # close the subpath if it was not closed already
|
|
|
|
|
- # if close_subpath is False and start_point is not None:
|
|
|
|
|
- # geo.append(start_point)
|
|
|
|
|
- try:
|
|
|
|
|
- geo_el = Polygon(geo).buffer(0.0000001, resolution=self.step_per_circles)
|
|
|
|
|
- path_geo.append(geo_el)
|
|
|
|
|
- except ValueError:
|
|
|
|
|
- pass
|
|
|
|
|
- subpath['rectangle'] = []
|
|
|
|
|
-
|
|
|
|
|
- # we finished painting and also closed the path if it was the case
|
|
|
|
|
- close_subpath = True
|
|
|
|
|
-
|
|
|
|
|
- # in case that a color change to white (transparent) occurred
|
|
|
|
|
- if flag_clear_geo is True:
|
|
|
|
|
- # if there was a fill color change we look for circular geometries from which we can make
|
|
|
|
|
- # drill holes for the Excellon file
|
|
|
|
|
- if current_subpath == 'bezier':
|
|
|
|
|
- # if there are geometries in the list
|
|
|
|
|
- if path_geo:
|
|
|
|
|
- try:
|
|
|
|
|
- for g in path_geo:
|
|
|
|
|
- new_el = {}
|
|
|
|
|
- new_el['clear'] = g
|
|
|
|
|
- clear_apertures_dict['0']['geometry'].append(new_el)
|
|
|
|
|
- except TypeError:
|
|
|
|
|
- new_el = {}
|
|
|
|
|
- new_el['clear'] = path_geo
|
|
|
|
|
- clear_apertures_dict['0']['geometry'].append(new_el)
|
|
|
|
|
-
|
|
|
|
|
- # now that we finished searching for drill holes (this is not very precise because holes in the
|
|
|
|
|
- # polygon pours may appear as drill too, but .. hey you can't have it all ...) we add
|
|
|
|
|
- # clear_geometry
|
|
|
|
|
- try:
|
|
|
|
|
- for pdf_geo in path_geo:
|
|
|
|
|
- if isinstance(pdf_geo, MultiPolygon):
|
|
|
|
|
- for poly in pdf_geo:
|
|
|
|
|
- new_el = {}
|
|
|
|
|
- new_el['clear'] = poly
|
|
|
|
|
- apertures_dict['0']['geometry'].append(deepcopy(new_el))
|
|
|
|
|
- else:
|
|
|
|
|
- new_el = {}
|
|
|
|
|
- new_el['clear'] = pdf_geo
|
|
|
|
|
- apertures_dict['0']['geometry'].append(deepcopy(new_el))
|
|
|
|
|
- except KeyError:
|
|
|
|
|
- # in case there is no stroke width yet therefore no aperture
|
|
|
|
|
- apertures_dict['0'] = {}
|
|
|
|
|
- apertures_dict['0']['size'] = applied_size
|
|
|
|
|
- apertures_dict['0']['type'] = 'C'
|
|
|
|
|
- apertures_dict['0']['geometry'] = []
|
|
|
|
|
- for pdf_geo in path_geo:
|
|
|
|
|
- if isinstance(pdf_geo, MultiPolygon):
|
|
|
|
|
- for poly in pdf_geo:
|
|
|
|
|
- new_el = {}
|
|
|
|
|
- new_el['clear'] = poly
|
|
|
|
|
- apertures_dict['0']['geometry'].append(deepcopy(new_el))
|
|
|
|
|
- else:
|
|
|
|
|
- new_el = {}
|
|
|
|
|
- new_el['clear'] = pdf_geo
|
|
|
|
|
- apertures_dict['0']['geometry'].append(deepcopy(new_el))
|
|
|
|
|
- else:
|
|
|
|
|
- # else, add the geometry as usual
|
|
|
|
|
- try:
|
|
|
|
|
- for pdf_geo in path_geo:
|
|
|
|
|
- if isinstance(pdf_geo, MultiPolygon):
|
|
|
|
|
- for poly in pdf_geo:
|
|
|
|
|
- new_el = {}
|
|
|
|
|
- new_el['solid'] = poly
|
|
|
|
|
- new_el['follow'] = poly.exterior
|
|
|
|
|
- apertures_dict['0']['geometry'].append(deepcopy(new_el))
|
|
|
|
|
- else:
|
|
|
|
|
- new_el = {}
|
|
|
|
|
- new_el['solid'] = pdf_geo
|
|
|
|
|
- new_el['follow'] = pdf_geo.exterior
|
|
|
|
|
- apertures_dict['0']['geometry'].append(deepcopy(new_el))
|
|
|
|
|
- except KeyError:
|
|
|
|
|
- # in case there is no stroke width yet therefore no aperture
|
|
|
|
|
- apertures_dict['0'] = {}
|
|
|
|
|
- apertures_dict['0']['size'] = applied_size
|
|
|
|
|
- apertures_dict['0']['type'] = 'C'
|
|
|
|
|
- apertures_dict['0']['geometry'] = []
|
|
|
|
|
- for pdf_geo in path_geo:
|
|
|
|
|
- if isinstance(pdf_geo, MultiPolygon):
|
|
|
|
|
- for poly in pdf_geo:
|
|
|
|
|
- new_el = {}
|
|
|
|
|
- new_el['solid'] = poly
|
|
|
|
|
- new_el['follow'] = poly.exterior
|
|
|
|
|
- apertures_dict['0']['geometry'].append(deepcopy(new_el))
|
|
|
|
|
- else:
|
|
|
|
|
- new_el = {}
|
|
|
|
|
- new_el['solid'] = pdf_geo
|
|
|
|
|
- new_el['follow'] = pdf_geo.exterior
|
|
|
|
|
- apertures_dict['0']['geometry'].append(deepcopy(new_el))
|
|
|
|
|
- continue
|
|
|
|
|
-
|
|
|
|
|
- # Fill and Stroke the path
|
|
|
|
|
- match = self.fill_stroke_path_re.search(pline)
|
|
|
|
|
- if match:
|
|
|
|
|
- # scale the size here; some PDF printers apply transformation after the size is declared
|
|
|
|
|
- applied_size = size * scale_geo[0] * self.point_to_unit_factor
|
|
|
|
|
- path_geo = []
|
|
|
|
|
- fill_geo = []
|
|
|
|
|
-
|
|
|
|
|
- if current_subpath == 'lines':
|
|
|
|
|
- if path['lines']:
|
|
|
|
|
- # fill
|
|
|
|
|
- for subp in path['lines']:
|
|
|
|
|
- geo = copy(subp)
|
|
|
|
|
- # close the subpath if it was not closed already
|
|
|
|
|
- if close_subpath is False:
|
|
|
|
|
- geo.append(geo[0])
|
|
|
|
|
- try:
|
|
|
|
|
- geo_el = Polygon(geo).buffer(0.0000001, resolution=self.step_per_circles)
|
|
|
|
|
- fill_geo.append(geo_el)
|
|
|
|
|
- except ValueError:
|
|
|
|
|
- pass
|
|
|
|
|
- # stroke
|
|
|
|
|
- for subp in path['lines']:
|
|
|
|
|
- geo = copy(subp)
|
|
|
|
|
- geo = LineString(geo).buffer((float(applied_size) / 2), resolution=self.step_per_circles)
|
|
|
|
|
- path_geo.append(geo)
|
|
|
|
|
- # the path was painted therefore initialize it
|
|
|
|
|
- path['lines'] = []
|
|
|
|
|
- else:
|
|
|
|
|
- # fill
|
|
|
|
|
- geo = copy(subpath['lines'])
|
|
|
|
|
- # close the subpath if it was not closed already
|
|
|
|
|
- if close_subpath is False:
|
|
|
|
|
- geo.append(start_point)
|
|
|
|
|
- try:
|
|
|
|
|
- geo_el = Polygon(geo).buffer(0.0000001, resolution=self.step_per_circles)
|
|
|
|
|
- fill_geo.append(geo_el)
|
|
|
|
|
- except ValueError:
|
|
|
|
|
- pass
|
|
|
|
|
- # stroke
|
|
|
|
|
- geo = copy(subpath['lines'])
|
|
|
|
|
- geo = LineString(geo).buffer((float(applied_size) / 2), resolution=self.step_per_circles)
|
|
|
|
|
- path_geo.append(geo)
|
|
|
|
|
- subpath['lines'] = []
|
|
|
|
|
- subpath['lines'] = []
|
|
|
|
|
-
|
|
|
|
|
- if current_subpath == 'bezier':
|
|
|
|
|
- geo = []
|
|
|
|
|
- if path['bezier']:
|
|
|
|
|
- # fill
|
|
|
|
|
- for subp in path['bezier']:
|
|
|
|
|
- for b in subp:
|
|
|
|
|
- geo += self.bezier_to_points(start=b[0], c1=b[1], c2=b[2], stop=b[3])
|
|
|
|
|
- # close the subpath if it was not closed already
|
|
|
|
|
- if close_subpath is False:
|
|
|
|
|
- geo.append(geo[0])
|
|
|
|
|
- try:
|
|
|
|
|
- geo_el = Polygon(geo).buffer(0.0000001, resolution=self.step_per_circles)
|
|
|
|
|
- fill_geo.append(geo_el)
|
|
|
|
|
- except ValueError:
|
|
|
|
|
- pass
|
|
|
|
|
- # stroke
|
|
|
|
|
- for subp in path['bezier']:
|
|
|
|
|
- geo = []
|
|
|
|
|
- for b in subp:
|
|
|
|
|
- geo += self.bezier_to_points(start=b[0], c1=b[1], c2=b[2], stop=b[3])
|
|
|
|
|
- geo = LineString(geo).buffer((float(applied_size) / 2), resolution=self.step_per_circles)
|
|
|
|
|
- path_geo.append(geo)
|
|
|
|
|
- # the path was painted therefore initialize it
|
|
|
|
|
- path['bezier'] = []
|
|
|
|
|
- else:
|
|
|
|
|
- # fill
|
|
|
|
|
- for b in subpath['bezier']:
|
|
|
|
|
- geo += self.bezier_to_points(start=b[0], c1=b[1], c2=b[2], stop=b[3])
|
|
|
|
|
- if close_subpath is False:
|
|
|
|
|
- geo.append(start_point)
|
|
|
|
|
- try:
|
|
|
|
|
- geo_el = Polygon(geo).buffer(0.0000001, resolution=self.step_per_circles)
|
|
|
|
|
- fill_geo.append(geo_el)
|
|
|
|
|
- except ValueError:
|
|
|
|
|
- pass
|
|
|
|
|
- # stroke
|
|
|
|
|
- geo = []
|
|
|
|
|
- for b in subpath['bezier']:
|
|
|
|
|
- geo += self.bezier_to_points(start=b[0], c1=b[1], c2=b[2], stop=b[3])
|
|
|
|
|
- geo = LineString(geo).buffer((float(applied_size) / 2), resolution=self.step_per_circles)
|
|
|
|
|
- path_geo.append(geo)
|
|
|
|
|
- subpath['bezier'] = []
|
|
|
|
|
-
|
|
|
|
|
- if current_subpath == 'rectangle':
|
|
|
|
|
- if path['rectangle']:
|
|
|
|
|
- # fill
|
|
|
|
|
- for subp in path['rectangle']:
|
|
|
|
|
- geo = copy(subp)
|
|
|
|
|
- # # close the subpath if it was not closed already
|
|
|
|
|
- # if close_subpath is False:
|
|
|
|
|
- # geo.append(geo[0])
|
|
|
|
|
- try:
|
|
|
|
|
- geo_el = Polygon(geo).buffer(0.0000001, resolution=self.step_per_circles)
|
|
|
|
|
- fill_geo.append(geo_el)
|
|
|
|
|
- except ValueError:
|
|
|
|
|
- pass
|
|
|
|
|
- # stroke
|
|
|
|
|
- for subp in path['rectangle']:
|
|
|
|
|
- geo = copy(subp)
|
|
|
|
|
- geo = LineString(geo).buffer((float(applied_size) / 2), resolution=self.step_per_circles)
|
|
|
|
|
- path_geo.append(geo)
|
|
|
|
|
- # the path was painted therefore initialize it
|
|
|
|
|
- path['rectangle'] = []
|
|
|
|
|
- else:
|
|
|
|
|
- # fill
|
|
|
|
|
- geo = copy(subpath['rectangle'])
|
|
|
|
|
- # # close the subpath if it was not closed already
|
|
|
|
|
- # if close_subpath is False:
|
|
|
|
|
- # geo.append(start_point)
|
|
|
|
|
- try:
|
|
|
|
|
- geo_el = Polygon(geo).buffer(0.0000001, resolution=self.step_per_circles)
|
|
|
|
|
- fill_geo.append(geo_el)
|
|
|
|
|
- except ValueError:
|
|
|
|
|
- pass
|
|
|
|
|
- # stroke
|
|
|
|
|
- geo = copy(subpath['rectangle'])
|
|
|
|
|
- geo = LineString(geo).buffer((float(applied_size) / 2), resolution=self.step_per_circles)
|
|
|
|
|
- path_geo.append(geo)
|
|
|
|
|
- subpath['rectangle'] = []
|
|
|
|
|
-
|
|
|
|
|
- # we finished painting and also closed the path if it was the case
|
|
|
|
|
- close_subpath = True
|
|
|
|
|
-
|
|
|
|
|
- # store the found geometry for stroking the path
|
|
|
|
|
- found_aperture = None
|
|
|
|
|
- if apertures_dict:
|
|
|
|
|
- for apid in apertures_dict:
|
|
|
|
|
- # if we already have an aperture with the current size (rounded to 5 decimals)
|
|
|
|
|
- if apertures_dict[apid]['size'] == round(applied_size, 5):
|
|
|
|
|
- found_aperture = apid
|
|
|
|
|
- break
|
|
|
|
|
-
|
|
|
|
|
- if found_aperture:
|
|
|
|
|
- for pdf_geo in path_geo:
|
|
|
|
|
- if isinstance(pdf_geo, MultiPolygon):
|
|
|
|
|
- for poly in pdf_geo:
|
|
|
|
|
- new_el = {}
|
|
|
|
|
- new_el['solid'] = poly
|
|
|
|
|
- new_el['follow'] = poly.exterior
|
|
|
|
|
- apertures_dict[copy(found_aperture)]['geometry'].append(deepcopy(new_el))
|
|
|
|
|
- else:
|
|
|
|
|
- new_el = {}
|
|
|
|
|
- new_el['solid'] = pdf_geo
|
|
|
|
|
- new_el['follow'] = pdf_geo.exterior
|
|
|
|
|
- apertures_dict[copy(found_aperture)]['geometry'].append(deepcopy(new_el))
|
|
|
|
|
- else:
|
|
|
|
|
- if str(aperture) in apertures_dict.keys():
|
|
|
|
|
- aperture += 1
|
|
|
|
|
- apertures_dict[str(aperture)] = {}
|
|
|
|
|
- apertures_dict[str(aperture)]['size'] = round(applied_size, 5)
|
|
|
|
|
- apertures_dict[str(aperture)]['type'] = 'C'
|
|
|
|
|
- apertures_dict[str(aperture)]['geometry'] = []
|
|
|
|
|
- for pdf_geo in path_geo:
|
|
|
|
|
- if isinstance(pdf_geo, MultiPolygon):
|
|
|
|
|
- for poly in pdf_geo:
|
|
|
|
|
- new_el = {}
|
|
|
|
|
- new_el['solid'] = poly
|
|
|
|
|
- new_el['follow'] = poly.exterior
|
|
|
|
|
- apertures_dict[str(aperture)]['geometry'].append(deepcopy(new_el))
|
|
|
|
|
- else:
|
|
|
|
|
- new_el = {}
|
|
|
|
|
- new_el['solid'] = pdf_geo
|
|
|
|
|
- new_el['follow'] = pdf_geo.exterior
|
|
|
|
|
- apertures_dict[str(aperture)]['geometry'].append(deepcopy(new_el))
|
|
|
|
|
- else:
|
|
|
|
|
- apertures_dict[str(aperture)] = {}
|
|
|
|
|
- apertures_dict[str(aperture)]['size'] = round(applied_size, 5)
|
|
|
|
|
- apertures_dict[str(aperture)]['type'] = 'C'
|
|
|
|
|
- apertures_dict[str(aperture)]['geometry'] = []
|
|
|
|
|
- for pdf_geo in path_geo:
|
|
|
|
|
- if isinstance(pdf_geo, MultiPolygon):
|
|
|
|
|
- for poly in pdf_geo:
|
|
|
|
|
- new_el = {}
|
|
|
|
|
- new_el['solid'] = poly
|
|
|
|
|
- new_el['follow'] = poly.exterior
|
|
|
|
|
- apertures_dict[str(aperture)]['geometry'].append(deepcopy(new_el))
|
|
|
|
|
- else:
|
|
|
|
|
- new_el = {}
|
|
|
|
|
- new_el['solid'] = pdf_geo
|
|
|
|
|
- new_el['follow'] = pdf_geo.exterior
|
|
|
|
|
- apertures_dict[str(aperture)]['geometry'].append(deepcopy(new_el))
|
|
|
|
|
-
|
|
|
|
|
- # ############################################# ##
|
|
|
|
|
- # store the found geometry for filling the path #
|
|
|
|
|
- # ############################################# ##
|
|
|
|
|
-
|
|
|
|
|
- # in case that a color change to white (transparent) occurred
|
|
|
|
|
- if flag_clear_geo is True:
|
|
|
|
|
- try:
|
|
|
|
|
- for pdf_geo in path_geo:
|
|
|
|
|
- if isinstance(pdf_geo, MultiPolygon):
|
|
|
|
|
- for poly in fill_geo:
|
|
|
|
|
- new_el = {}
|
|
|
|
|
- new_el['clear'] = poly
|
|
|
|
|
- apertures_dict['0']['geometry'].append(deepcopy(new_el))
|
|
|
|
|
- else:
|
|
|
|
|
- new_el = {}
|
|
|
|
|
- new_el['clear'] = pdf_geo
|
|
|
|
|
- apertures_dict['0']['geometry'].append(deepcopy(new_el))
|
|
|
|
|
- except KeyError:
|
|
|
|
|
- # in case there is no stroke width yet therefore no aperture
|
|
|
|
|
- apertures_dict['0'] = {}
|
|
|
|
|
- apertures_dict['0']['size'] = round(applied_size, 5)
|
|
|
|
|
- apertures_dict['0']['type'] = 'C'
|
|
|
|
|
- apertures_dict['0']['geometry'] = []
|
|
|
|
|
- for pdf_geo in fill_geo:
|
|
|
|
|
- if isinstance(pdf_geo, MultiPolygon):
|
|
|
|
|
- for poly in pdf_geo:
|
|
|
|
|
- new_el = {}
|
|
|
|
|
- new_el['clear'] = poly
|
|
|
|
|
- apertures_dict['0']['geometry'].append(deepcopy(new_el))
|
|
|
|
|
- else:
|
|
|
|
|
- new_el = {}
|
|
|
|
|
- new_el['clear'] = pdf_geo
|
|
|
|
|
- apertures_dict['0']['geometry'].append(deepcopy(new_el))
|
|
|
|
|
- else:
|
|
|
|
|
- try:
|
|
|
|
|
- for pdf_geo in path_geo:
|
|
|
|
|
- if isinstance(pdf_geo, MultiPolygon):
|
|
|
|
|
- for poly in fill_geo:
|
|
|
|
|
- new_el = {}
|
|
|
|
|
- new_el['solid'] = poly
|
|
|
|
|
- new_el['follow'] = poly.exterior
|
|
|
|
|
- apertures_dict['0']['geometry'].append(deepcopy(new_el))
|
|
|
|
|
- else:
|
|
|
|
|
- new_el = {}
|
|
|
|
|
- new_el['solid'] = pdf_geo
|
|
|
|
|
- new_el['follow'] = pdf_geo.exterior
|
|
|
|
|
- apertures_dict['0']['geometry'].append(deepcopy(new_el))
|
|
|
|
|
- except KeyError:
|
|
|
|
|
- # in case there is no stroke width yet therefore no aperture
|
|
|
|
|
- apertures_dict['0'] = {}
|
|
|
|
|
- apertures_dict['0']['size'] = round(applied_size, 5)
|
|
|
|
|
- apertures_dict['0']['type'] = 'C'
|
|
|
|
|
- apertures_dict['0']['geometry'] = []
|
|
|
|
|
- for pdf_geo in fill_geo:
|
|
|
|
|
- if isinstance(pdf_geo, MultiPolygon):
|
|
|
|
|
- for poly in pdf_geo:
|
|
|
|
|
- new_el = {}
|
|
|
|
|
- new_el['solid'] = poly
|
|
|
|
|
- new_el['follow'] = poly.exterior
|
|
|
|
|
- apertures_dict['0']['geometry'].append(deepcopy(new_el))
|
|
|
|
|
- else:
|
|
|
|
|
- new_el = {}
|
|
|
|
|
- new_el['solid'] = pdf_geo
|
|
|
|
|
- new_el['follow'] = pdf_geo.exterior
|
|
|
|
|
- apertures_dict['0']['geometry'].append(deepcopy(new_el))
|
|
|
|
|
-
|
|
|
|
|
- continue
|
|
|
|
|
-
|
|
|
|
|
- # tidy up. copy the current aperture dict to the object dict but only if it is not empty
|
|
|
|
|
- if apertures_dict:
|
|
|
|
|
- object_dict[layer_nr] = deepcopy(apertures_dict)
|
|
|
|
|
-
|
|
|
|
|
- if clear_apertures_dict['0']['geometry']:
|
|
|
|
|
- object_dict[0] = deepcopy(clear_apertures_dict)
|
|
|
|
|
-
|
|
|
|
|
- # delete keys (layers) with empty values
|
|
|
|
|
- empty_layers = []
|
|
|
|
|
- for layer in object_dict:
|
|
|
|
|
- if not object_dict[layer]:
|
|
|
|
|
- empty_layers.append(layer)
|
|
|
|
|
- for x in empty_layers:
|
|
|
|
|
- if x in object_dict:
|
|
|
|
|
- object_dict.pop(x)
|
|
|
|
|
-
|
|
|
|
|
- if self.app.abort_flag:
|
|
|
|
|
- # graceful abort requested by the user
|
|
|
|
|
- raise grace
|
|
|
|
|
-
|
|
|
|
|
- return object_dict
|
|
|
|
|
-
|
|
|
|
|
- def bezier_to_points(self, start, c1, c2, stop):
|
|
|
|
|
- """
|
|
|
|
|
- # Equation Bezier, page 184 PDF 1.4 reference
|
|
|
|
|
- # https://www.adobe.com/content/dam/acom/en/devnet/pdf/pdfs/pdf_reference_archives/PDFReference.pdf
|
|
|
|
|
- # Given the coordinates of the four points, the curve is generated by varying the parameter t from 0.0 to 1.0
|
|
|
|
|
- # in the following equation:
|
|
|
|
|
- # R(t) = P0*(1 - t) ** 3 + P1*3*t*(1 - t) ** 2 + P2 * 3*(1 - t) * t ** 2 + P3*t ** 3
|
|
|
|
|
- # When t = 0.0, the value from the function coincides with the current point P0; when t = 1.0, R(t) coincides
|
|
|
|
|
- # with the final point P3. Intermediate values of t generate intermediate points along the curve.
|
|
|
|
|
- # The curve does not, in general, pass through the two control points P1 and P2
|
|
|
|
|
-
|
|
|
|
|
- :return: A list of point coordinates tuples (x, y)
|
|
|
|
|
- """
|
|
|
|
|
-
|
|
|
|
|
- # here we store the geometric points
|
|
|
|
|
- points = []
|
|
|
|
|
-
|
|
|
|
|
- nr_points = np.arange(0.0, 1.0, (1 / self.step_per_circles))
|
|
|
|
|
- for t in nr_points:
|
|
|
|
|
- term_p0 = (1 - t) ** 3
|
|
|
|
|
- term_p1 = 3 * t * (1 - t) ** 2
|
|
|
|
|
- term_p2 = 3 * (1 - t) * t ** 2
|
|
|
|
|
- term_p3 = t ** 3
|
|
|
|
|
-
|
|
|
|
|
- x = start[0] * term_p0 + c1[0] * term_p1 + c2[0] * term_p2 + stop[0] * term_p3
|
|
|
|
|
- y = start[1] * term_p0 + c1[1] * term_p1 + c2[1] * term_p2 + stop[1] * term_p3
|
|
|
|
|
- points.append([x, y])
|
|
|
|
|
-
|
|
|
|
|
- return points
|
|
|
|
|
-
|
|
|
|
|
- # def bezier_to_circle(self, path):
|
|
|
|
|
- # lst = []
|
|
|
|
|
- # for el in range(len(path)):
|
|
|
|
|
- # if type(path) is list:
|
|
|
|
|
- # for coord in path[el]:
|
|
|
|
|
- # lst.append(coord)
|
|
|
|
|
- # else:
|
|
|
|
|
- # lst.append(el)
|
|
|
|
|
- #
|
|
|
|
|
- # if lst:
|
|
|
|
|
- # minx = min(lst, key=lambda t: t[0])[0]
|
|
|
|
|
- # miny = min(lst, key=lambda t: t[1])[1]
|
|
|
|
|
- # maxx = max(lst, key=lambda t: t[0])[0]
|
|
|
|
|
- # maxy = max(lst, key=lambda t: t[1])[1]
|
|
|
|
|
- # center = (maxx-minx, maxy-miny)
|
|
|
|
|
- # radius = (maxx-minx) / 2
|
|
|
|
|
- # return [center, radius]
|
|
|
|
|
- #
|
|
|
|
|
- # def circle_to_points(self, center, radius):
|
|
|
|
|
- # geo = Point(center).buffer(radius, resolution=self.step_per_circles)
|
|
|
|
|
- # return LineString(list(geo.exterior.coords))
|
|
|
|
|
- #
|
|
|